1. Identity statement | |
Reference Type | Conference Paper (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Holder Code | ibi 8JMKD3MGPEW34M/46T9EHH |
Identifier | 8JMKD3MGPEW34M/45EEKSE |
Repository | sid.inpe.br/sibgrapi/2021/09.15.23.44 |
Last Update | 2021:09.29.12.59.33 (UTC) administrator |
Metadata Repository | sid.inpe.br/sibgrapi/2021/09.15.23.44.20 |
Metadata Last Update | 2022:06.14.00.00.34 (UTC) administrator |
DOI | 10.1109/SIBGRAPI54419.2021.00021 |
Citation Key | GamaOlivSant:2021:LeSeMe |
Title | Learning to Segment Medical Images from Few-Shot Sparse Labels  |
Format | On-line |
Year | 2021 |
Access Date | 2025, Mar. 13 |
Number of Files | 1 |
Size | 2105 KiB |
|
2. Context | |
Author | 1 Gama, Pedro Henrique Targino 2 Oliveira, Hugo 3 Santos, Jefersson Alex dos |
Affiliation | 1 Universidade Federal de Minas Gerais, Brazil 2 Universidade de São Paulo, Brazil 3 Universidade Federal de Minas Gerais, Brazil |
Editor | Paiva, Afonso Menotti, David Baranoski, Gladimir V. G. Proença, Hugo Pedro Junior, Antonio Lopes Apolinario Papa, João Paulo Pagliosa, Paulo dos Santos, Thiago Oliveira e Sá, Asla Medeiros da Silveira, Thiago Lopes Trugillo Brazil, Emilio Vital Ponti, Moacir A. Fernandes, Leandro A. F. Avila, Sandra |
e-Mail Address | pehtg13@gmail.com |
Conference Name | Conference on Graphics, Patterns and Images, 34 (SIBGRAPI) |
Conference Location | Gramado, RS, Brazil (virtual) |
Date | 18-22 Oct. 2021 |
Publisher | IEEE Computer Society |
Publisher City | Los Alamitos |
Book Title | Proceedings |
Tertiary Type | Full Paper |
History (UTC) | 2021-09-29 12:59:33 :: pehtg13@gmail.com -> administrator :: 2021 2022-03-02 00:54:16 :: administrator -> menottid@gmail.com :: 2021 2022-03-02 13:26:24 :: menottid@gmail.com -> administrator :: 2021 2022-06-14 00:00:34 :: administrator -> :: 2021 |
|
3. Content and structure | |
Is the master or a copy? | is the master |
Content Stage | completed |
Transferable | 1 |
Version Type | finaldraft |
Keywords | computer vision meta-learning semantic segmentation medical imaging |
Abstract | In this paper, we propose a novel approach for few-shot semantic segmentation with sparse labeled images.We investigate the effectiveness of our method, which is based on the Model-Agnostic Meta-Learning (MAML) algorithm, in the medical scenario, where the use of sparse labeling and few-shot can alleviate the cost of producing new annotated datasets. Our method uses sparse labels in the meta-training and dense labels in the meta-test, thus making the model learn to predict dense labels from sparse ones. We conducted experiments with four Chest X-Ray datasets to evaluate two types of annotations (grid and points). The results show that our method is the most suitable when the target domain highly differs from source domains, achieving Jaccard scores comparable to dense labels, using less than 2% of the pixels of an image with labels in few-shot scenarios. |
Arrangement 1 | urlib.net > SDLA > Fonds > SIBGRAPI 2021 > Learning to Segment... |
Arrangement 2 | urlib.net > SDLA > Fonds > Full Index > Learning to Segment... |
doc Directory Content | access |
source Directory Content | there are no files |
agreement Directory Content | |
|
4. Conditions of access and use | |
data URL | http://urlib.net/ibi/8JMKD3MGPEW34M/45EEKSE |
zipped data URL | http://urlib.net/zip/8JMKD3MGPEW34M/45EEKSE |
Language | en |
Target File | SIBGRAPI_MetaLearning_Medical.pdf |
User Group | pehtg13@gmail.com |
Visibility | shown |
Update Permission | not transferred |
|
5. Allied materials | |
Mirror Repository | sid.inpe.br/banon/2001/03.30.15.38.24 |
Next Higher Units | 8JMKD3MGPEW34M/45PQ3RS 8JMKD3MGPEW34M/4742MCS |
Citing Item List | sid.inpe.br/sibgrapi/2021/11.12.11.46 100 sid.inpe.br/sibgrapi/2022/06.10.21.49 2 sid.inpe.br/banon/2001/03.30.15.38.24 1 |
Host Collection | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notes | |
Empty Fields | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination edition electronicmailaddress group isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url volume |
|