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Abstract—The conservation of tropical forests is urgent and
necessary due to the important role they play in the global
ecosystem. Several governmental and private initiatives were
created to detect deforestation in tropical forests through analyses
of remote sensing images, which demands skilled labor and dif-
ferent ways to deal with a great amount of data. Citizen Science
could be used to mitigate these challenges, as it consists of non-
specialized volunteers collecting, analyzing, and classifying data
to solve technical and scientific problems. In this sense, this work
proposes the ForestEyes Project 1, which aims to combine citizen
science and machine learning for deforestation detection. The
volunteers classify remote sensing images, and these data are used
as the training set for classification algorithms. The volunteers
classified more than 5, 000 tasks from remote sensing images
of the Brazilian Legal Amazon, and the results were compared
to a groundtruth from the Amazon Deforestation Monitoring
Project PRODES. The volunteers achieved good labeling of the
remote sensing data, even for recent deforestation tasks, building
high-confidence labeled collections as they selected the most
relevant samples and discarded noisy segments that might disrupt
machine learning techniques. Finally, the proposed methodology
is promising, and with improvements, it could be able to generate
complementary information to official monitoring programs or
even generate information for areas not yet monitored.

I. INTRODUCTION

Tropical forests are forests located between the Tropics
of Cancer and Capricorn, near the equator. They play an
important role in the global ecosystem once they have great
biodiversity, absorb billions of tonnes of carbon, promote
cloud formation and rains, and are home to indigenous peo-
ple [1]–[3].

Unfortunately, millions of hectares of tropical forests have
been lost each year through deforestation and degradation due
to different and complex economic reasons such as agriculture,
livestock, mining, wood extraction, and others. This continu-
ous deforestation can bring irreversible and catastrophic conse-
quences, such as loss of biodiversity, impact on climate change
due to increased greenhouse gas emissions, desertification,
water scarcity, increased diseases, and even the emergence of
pandemics [1], [2], [4], [5].

∗Ph.D. thesis
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For the conservation of tropical forests, monitoring pro-
grams have been created, both by government agencies and
by non-profit institutions. Remote sensing images, image pro-
cessing, machine learning, and expert photo interpretation are
used for analysis, identification, and quantification of changes
in forest cover [3].

The shortage of skilled labor and the large amount of
data to be analyzed is a major challenge for information and
communication technologies [6]. A possible solution to this
problem is to use citizen science, in which non-specialized
volunteers collect, analyze and classify data to solve technical
and scientific problems. It is an area that has been attracting
a lot of attention due to the large volume of data generated,
which is of high quality and low cost of acquisition [7], [8].

Citizen science can be a valuable source of data for the Earth
Observation area, which includes monitoring deforestation.
In the civic science projects ForestWatchers [3], EarthWatch-
ers [9] and Geo-Wiki [10], volunteers analyze and classify
images from remote sensing, and these classifications are used
to generate deforestation maps or alerts. In the Forest Watcher
project, volunteers collect data in situ to confirm deforestation
alerts issued by the Global Forest Watch [11].

The volunteers’ classifications could be used as a training
set of classifier algorithms. In this context, in April/2019,
the ForestEyes Project was launched, which has its Citizen
Science Module hosted on the well-known platform Zooni-
verse [12]. Volunteers analyze and classify remote sensing im-
ages, and this data is used to train machine learning techniques
that will detect deforestation in new remote sensing images.

The project was tested in areas of the Brazilian Legal
Amazon, specifically in the state of Rondônia. Data from
the PRODES monitoring program were used to validate the
results. In this program, experts photo-interpret images from
the Landsat-8 satellite, delimiting the deforestation polygons
and calculating the annual rate of deforestation in the Brazilian
Legal Amazon. Both annual rates and thematic images are
available on the TerraBrasilis portal [13].
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Fig. 1. ForestEyes Project’s schematic representation.

II. FORESTEYES PROJECT

Figure 1 presents a general schematic representation of the
ForestEyes Project, and its modules are better explained next.

A. Pre-processing Module

The steps of the Pre-processing Module can be seen in
Figure 2. First, the remote sensing images are collected (step
(a)). As ForestEyes is currently using PRODES data to validate
the volunteers’ contributions, the collected images are the ones
that were analyzed by INPE’s experts. These images are from
the Landsat-8 OLI sensor and are freely available on the
EarthExplorer platform of the United States Geological Survey
(USGS).

The Landsat-8 satellite has 11 spectral bands, but only 7
bands were collected: coastal, blue, green, red, near-infrared,
shortwave infrared I, and shortwave infrared II. These bands
have a spatial resolution of 30 meters, that is, each pixel
represents an area of 30 × 30 m2. In step (b), the 7 bands
undergo resampling, to be compatible with the parameters of
the PRODES mosaic, and the region of interest is cropped.

As the segmentation algorithms have images of 3 bands as
input parameters, it was necessary to perform a dimensionality
reduction. This reduction is done at step (c) with Principal
Component Analysis (PCA) [15]. The three components gen-
erated from the 7 Landsat-8 bands are then merged into one
(step (d)) image, which will be the input parameter of the
segmentation algorithm. Until now, 3 segmentation algorithms
were tested with good results: SLIC [16], IFT-SLIC [17] e
MaskSLIC [18].

From the segmented image, the segments are separated (step
(e)) and stored in a database (step (f)). Some segments are sent
to the Citizen Science Module, and the rest of the segments
will be part of the test set of the Machine Learning Module.
Currently, the selection of the segments to be sent to the
Citizen Science Module is done manually. For the future, the
implementation of an automatic selection method is planned.

B. Citizen Science Module

The Citizen Science Module is hosted on the Zooniverse
platform. This platform was chosen due to its extensive
and consolidated community, in addition to already hosting
numerous Citizen Science projects.

The platform allows the creation of one or more workflows,
defined as the sequence of tasks that will be performed by
volunteers. In the case of ForestEyes, volunteers receive the

images of the segments and must classify them among three
options: Forest, Non-Forest, and Undefined. It is also allowed
to add tutorials, define the number of volunteers to perform
each task, zoom on the image, among other options.

A project can be public, under review (Beta Review), or an
official Zooniverse project. In a public project, access is only
allowed to people who have the project’s link, not receiving
support from the platform’s community. This support is only
available for official projects, which must go through Beta
Review, where the platform team and a group of volunteers
test and review the project. ForestEyes was sent to Beta
Review in March/2018, and in April/2019, after implementing
the suggested improvements, it was released as an official
Zooniverse project.

In the Citizen Science Module, the selected segments are
uploaded in the Zooniverse, and a new workflow is created.
Each segment is a task, being represented by images with
different color compositions. For all ForestEyes workflows,
15 answers are needed to complete a task, that is, 15 distinct
volunteers must classify the same task.

The volunteers’ answers are stored at Zooniverse and can
be downloaded as a CSV file. Each line is an answer, and
the columns display different information, like the id of the
classification; name, id, and IP of the volunteer; volunteer’s
answer; analyzed task, among others.

C. Organization and Selection Module

Although ForestEyes stipulates 15 answers for each task,
Zooniverse allows tasks to receive more answers. Furthermore,
it is allowed for the same volunteer to answer the same task
more than once. Thus, before starting the analysis of the
Organization and Selection Module, filtering is performed on
the responses, eliminating redundant and excessive responses,
besides excluding metadata that are not important.

For now, the class of each segment is defined by the majority
vote of the volunteers’ answers. Other analyzes are also carried
out, such as task’s difficulty level, consensus convergence,
volunteers’ hit rates, and score, and volunteers’ variability,
which are detailed in [19] and [20].

With the classification of the segments, it is possible to
create the training set of the Machine Learning Module.
Currently, only the Forest and Non-Forest class segments
are considered. For the future, it is also planned to discard
segments based on other analyzes carried out, such as difficult
tasks, for example.
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Fig. 2. Schematic representation of the Pre-processing Module steps in the ForestEyes Project. Source: [14].

The Organization and Selection Module is also responsi-
ble for comparing the volunteers’ classifications to a given
groundtruth. At the moment, PRODES data was used to
build different groundtruth sets, which will be explained in
Section II-C2. To understand these sets, it will be necessary
to define a metric called Homogeneity Ratio (HoR), presented
in Section II-C1.

1) Homogeneity Ratio (HoR): Only the Forest and Non-
Forest classes are considered to calculate HoR. Given a
segment, NP is the number of pixels that belong to this
segment, NFP is the number of pixels of this segment that
belong to the Forest class, and NNP is the number of pixels
of Non-Forest class. As only these two classes are considered,
NP = NFP +NNP . HoR will be the percentage of pixels
of the majority class, as shown in equation (1).

HoR =
max(NFP,NNP )

NP
(1)

2) Groundtruth sets: To compare the volunteers’ classifica-
tions with PRODES data, two strategies were used to define
the groundtruth. The first is pixel-based. Given an image
from PRODES, all classes different than Forest (deforesta-
tion, residue, hydrography, clouds, non-forest vegetation, and
others) are defined as Non-Forest, resulting in a binary image
that will be referred to as GT-PRODES.

The second strategy is segment-based, creating Groundtruth
with Undefined (GT-U) and Groundtruth with the Majority
(GT-M). These two new ground truths were created consid-
ering the HoR of each segment. With GT-U, the segments
with HoR < 0.7 are classified as Undefined, otherwise
(HoR ≥ 0.7) are classified as the majority class (Forest or
Non-Forest). As for GT-M, the segment is classified with the
class that presents HoR > 0.5.

D. Machine Learning and Post-processing modules

The Machine Learning Module trains a classifier algorithm,
which then classifies a test set. For this, firstly, the features
extraction of each segment is done through the use of image
descriptors, such as texture descriptors as Haralick [21] and
Local Binary Patterns (LBP) [22], and the color descrip-
tors Global Color Histogram (GCH) [23], Border/Interior

Classification (BIC) [24], Mean Color and Color Bitmap
(CBmap) [25]. The resulting feature vectors are normalized,
and the procedure for training and applying the classifier
algorithm is performed.

The classifications of the test set will be analyzed and eval-
uated by a future Post-Processing Module. This module can
also help in future decision-making, such as a deforestation
warning system. In addition, a feedback system (dashed line
in Figure 1) is planned, in which interesting samples of the
test set will be sent to the volunteers, to be incorporated in
the training set and thus improve the classifier algorithm. The
choice of these new samples to compose the training set will
be carried out through active learning approaches [26].

III. ACTIVE LEARNING APPROACHES FOR DEFORESTED
AREAS CLASSIFICATION

To attest to the use of active learning in the scope of this
thesis, different classification algorithms, and active learning
approaches were tested in the classification of pixels of remote
sensing images in Forest and Non-Forest. Six approaches were
used, being 3 based on posterior probability (Low Confidence,
High Confidence, and Hybrid Confidence), 2 based on com-
mittee (normalized Entropy Query-by-Bagging - nEQB [26] -
and Committee 5CB), and one based on large margin (Margin
Sampling, MS [26]). Nine different classifiers were used as
k-Nearest Neighbors (kNN), Multi-layer Perceptron (MLP),
Random Forest (RF), and Support Vector Machines (SVM).
The results were compared with Random Sampling (RS) [20],
[27].

A first experiment was carried out to build training sets from
active learning approaches. An image of an area of Rondônia,
in the year 2016, was used, resampled to 60m of spatial
resolution, with groundtruth GT-PRODES. Each pixel has 7
features corresponding to the Landsat-8 OLI sensor bands.

A 5-fold cross-validation was performed where the initial
training set was composed of 10 pixels (5 for each class). At
each iteration, 6 samples were chosen by the active learning
approaches and inserted into the training set. This procedure
was repeated until 500 iterations, and the results were com-
pared with traditional supervised learning, which used all the
samples available for training.



The Low Confidence and Hybrid Confidence approaches
achieved better results than RS and even presented similar
results to supervised learning but using much fewer samples in
the training. The High Confidence approach achieved the worst
results once relevant new information is not being inserted into
the classifier’s training [20], [27].

The best individual classifier, RF, and Comittee 5CB were
compared with the baselines nEQB and MS, which use SVM
as classifier. The baselines had the best results, and Committee
5CB was the worst [20], [27].

A second experiment was carried out to test the general-
ization of the training sets created in the first experiment.
Some training sets from the first experiment, created in the
iterations 10, 20, 30, 40, 50 and 100 (cutoff points), are used
to classify a new remote sensing image that encompasses more
classes that aren’t Forest in PRODES, such as hydrography
and deforestation from years after 2012. The results were
compared with supervised learning, which uses the entire set
of samples from the first experiment.

Kappa and overall accuracy means were taken, with a
confidence interval (CI) of 95%. The Committee 5CB and
RF-low approaches obtained the best results for most cutoff
points. The baselines, especially nEQB, had the worst results,
with low Kappa values and accuracy, and high CI values,
in addition to presenting greater instability as the number of
samples increased [20], [27].

Comparing the results with supervised learning using the
entire set of samples, the active learning approaches RF-
low and RF-hybrid showed similar or better results than the
supervised one for all cutoff points, and the SVM classifier
presented the worst results. Given the obtained results, it was
concluded that it was feasible to use active learning in the
scope of this work [20], [27].

IV. CITIZEN SCIENCE CAMPAIGNS OF THE FORESTEYES
PROJECT

First, it was necessary to carry out a Beta-Review campaign.
As the ForestEyes Project was inspired by the Correct Clas-
sification application of the ForestWatchers Project, the same
tasks of this application were used. These tasks consisted of
RGB images from the MODIS sensor, which has a spatial
resolution of 250m. Each task was delimited by a red square
of size 3×3 pixels [3]. For the Beta-Review, in addition to the
Forest and Non-Forest responses, the Undefined answer was
created to avoid ‘guesses’ [20], [28].

Volunteers criticized the resolution of the image, and the
way tasks were displayed. As a result, images from the
Landsat-8 OLI sensor were adopted, resampled to 60m to
be compatible with the PRODES mosaic. For better display
of the tasks, the segmentation of the images with the SLIC
algorithm was adopted, and the interface presented the RGB
image and an image with a false-color composition, created
with the shortwave infrared II (B7), near-infrared (B5), and
green bands (B3) of Landsat-8. This first official ForestEyes
campaign used an image of an area of Rondônia in the year
2016, being called Landsat-8 segments 2016. Then, a new

campaign was created with an image of the same area but for
the year 2013 (Landsat-8 segments 2013). It was thought that
the difference between the images classified by the volunteers
could show the areas where deforestation occurred between
those years. However, this difference only identified 26% of
new deforestation pixels [20], [28].

A new campaign was created in which the difficulty
tasks, the Undefined tasks, and the tasks where happened
ties underwent a new segmentation process through K-means
clustering and the elbow method [29]. As a result, each
segment from the Landsat-8 campaigns has been split into
2 or more new segments. As these new segments could be
very small, only segments with a size greater than or equal
to 9 pixels were sent to volunteers. The interface has also
been changed, adding the ‘Segment too small’ response and
already presenting the segments with a default zoom. Although
volunteers did not achieve good accuracy in classifying these
segments, by joining these new classifications with those from
previous campaigns, there was an increase of more than 4%
for GT-PRODES and 48% of new deforestation pixels were
found [14], [20].

From 2017, the PRODES mosaic started to have 30m reso-
lution, so it was no longer necessary to resample the Landsat-
8 image to 60m. In addition to the best spatial resolution, a
new segmentation algorithm, IFT-SLIC, was tested. Thus, two
campaigns were created: one using segmentation with SLIC
(SLIC 2017) and another using IFT-SLIC (IFT-SLIC 2017).
Analyzing the HoR ranges, SLIC showed a higher proportion
of segments with HoR = 1.0 and a higher percentage of
segments with HoR > 0.7, which may explain why volunteers
better classified the tasks of SLIC 2017 campaign [14], [20].

As the goal of ForestEyes is to detect recent deforestation
and the difference between two classified images proved to be
insufficient to detect this type of deforestation, it was necessary
to find a new segmentation algorithm. The MaskSLIC algo-
rithm is now used since it allows the creation of an exclusion
mask. Thus, for the 2017 image, a mask was created excluding
all pixels of deforestation prior to August/2016. It was also
adopted that the segments should have an average size of 70
pixels, which corresponds to the minimum area that PRODES
detects (6.25 hectares). Many segments were generated, requir-
ing a manual choice of segments to be sent to volunteers. In the
future, an automatic procedure for this choice will be needed.
A grayscale image was added to the interface, representing the
Normalized Difference Vegetation Index (NDVI), where pixels
closer to white are dense vegetation. With this campaign,
volunteers were able to identify 65.95% of the pixels of new
deforestation [14], [20], demonstrating the challenge in this
type of detection, which can be explained by the remnant
vegetation commonly found in the deforestation process in
the Amazon rainforest [30].

A. Results of the official campaigns

The 5, 408 tasks received more than 86, 000 responses from
644 volunteers (174 anonymous and 470 registered), where
registered volunteers contributed the most and achieved the



highest hit rates. For most campaigns, volunteers’ classifica-
tions achieved more than 81% accuracy for all groundtruth
sets. All campaigns achieved high consensus convergence
(over 90%), making it possible to decrease the number of
responses needed to classify each segment [14], [20].

V. MACHINE LEARNING WITH CITIZEN SCIENCE
CONTRIBUTIONS

In this section are presented the experiments in which the
segments classified by volunteers, in the campaigns Landsat-
8 segments 2016 and MaskSLIC 2017, were used as training
sets for machine learning techniques.

A. Experiments with Landsat-8 segments 2016

As the machine learning samples are segments, it was
necessary to determine how to describe their visual properties.
For this, different image descriptors were tested in a supervised
learning experiment. The segments of the campaign Landsat-
8 segments 2016 were used as a training set, eliminating the
Undefined segments, totaling 934 perfectly balanced samples.
As test sets, images of 3 new areas of Rondônia in the
year 2016 were used, and the GT-M strategy was used as
groundtruth.

The experiments were run 30 times, and the averages of
the evaluation metrics Kappa and average accuracy were
calculated (mean of the accuracy for each class, Forest and
Non-Forest). The descriptors LBP, GCH, and BIC had the
worst results. Haralick obtained the best results, being chosen
for extracting the visual properties of segments [20].

An active learning experiment was also carried out, in
which the MS approach was compared with RS and supervised
learning using the entire training set. The training started with
6 samples randomly selected, and at each iteration, 2 samples
were inserted. The experiment was repeated 30 times, with
different initial training sets, and calculating the mean value
and CI of 95% of the average accuracy.

It was expected that MS would obtain a better result than RS
since MS uses information to decide which samples will be in-
cluded in the training. However, RS obtained results very close
to MS, being raised the hypothesis that a balanced training
set helped RS achieve good results. With this, two subsets of
samples were created, varying the proportion between Forest
and Non-Forest to 60− 40 and 70− 30. However, even with
these unbalanced sets, RS remained as efficient as MS [31].

Analyzing the initial training sets, it was noticed that they
were strongly or totally unbalanced, which made all samples
have the same distance to the hyperplane. Thus, MS inserted in
the training set the first samples in the list and not the samples
that would be more representative [31].

To solve this problem, better balanced initial training sets
were created through clustering with K-means and the elbow
method. The elbow method, analyzing all segments, defines
the number of clusters to be created through K-means. For
each cluster, the segments that belong to it are divided into
quartiles, considering the distance of each segment to the
centroid, and then randomly choose 3 segments from the first

quartile. With this better balance in the initial training, MS
stood out, and the results showed a more stable behavior [20],
[31].
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Fig. 3. Results of the AL strategy (MS) using different small training datasets
and two baseline techniques (Supervised learning and RS). Source: [32].

B. Experiments with MaskSLIC 2017

For these experiments, 4 areas of Rondônia in 2017 were
combined into one test set, and GT-M was used as groundtruth.
Also, 5 different training sets were created: ZOO15, ZOO5,
ZOO11, PRODES, and PRODES-HoR. The first three refer
to the classifications given by the 15, 5, and 11 campaign
responses, eliminating samples different of Forest and Non-
Forest. The results of ZOO5 and ZOO11 could attest to the
feasibility of using fewer responses in the Citizen Science
Module, which would generate data faster. The sets PRODES
and PRODES-HoR use the classifications given by GT-M and
GT-U, respectively, whereas, in PRODES-HoR, the undefined
samples are eliminated (HoR < 0.7) [20], [32].

The results were unsatisfactory when performing supervised
learning. A possible explanation for this was the inadequacy
of the features extracted by Haralick for the classification
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Fig. 4. Visualization of the segments present in each small training dataset represented by Haralick texture features from bands b4b6 transformed by t-SNE
approach into 2D space and separated by a linear SVM technique. The square objects represent Non-forest samples, and the circle ones represent Forest.
Source: [32].

of recent deforestation. The features extraction of Landsat-
8 bands could bring more information to the classifier and,
consequently, improve the results. Thus, different band combi-
nations were generated, creating 135 feature vectors. To define
the best combination, a supervised learning experiment was
carried out, in which the combination of the Landsat-8 red
(B4) and shortwave infrared I (B6) bands stood out and was
chosen for the next machine learning experiments [20], [32].

For the active learning experiment, it was used an SVM
classifier, K-means clustering, and elbow method to define the
initial training sets. At each iteration of the active learning,
2 samples were inserted into the training set. As the set of
available samples is small (up to 91 samples), it was decided
to perform gridsearch of the SVM parameters in all iterations.
As baselines were used the results obtained by the RS ap-
proach with the PRODES training set (RS-PRODES) and by
the supervised learning with this same set (SUPERVISED-
PRODES). These baselines were compared with the results
obtained by the MS approach for the 5 created sets (MS-
PRODES, MS-PRODES-HoR, MS-ZOO5, MS-ZOO11, MS-
ZOO15).

Figure 3(a) presents the average accuracy values in which
RS-PRODES has the worst results, and MS-ZOO approaches
achieved the best results, with MS-ZOO5 and MS-ZOO11
being better than SUPERVISED-PRODES. In Figure 3(b), the
mean of the accuracies by class and their CIs of 95% are
presented. It is possible to notice the excellent result of MS-
ZOO5 for the Non-Forest class, which is the target of the
ForestEyes Project. Furthermore, the improvement in average
accuracy for MS-PRODES in Figure 3(a) was due to a 5% gain
in the accuracy of the Non-Forest class [32]. The ZOO5 set
also presents excellent results in supervised learning, obtaining
better accuracy in Non-Forest and better average accuracy.
However, using active learning, similar or even better results
are obtained using fewer samples [20].

To explain the obtained results, the t-distributed Stochastic
Neighbor Embedding (t-SNE) [33] visualization tool was used.
It is an unsupervised and non-linear technique that performs
dimensionality reduction. The feature vectors of the training
sets had dimensionality reduced from 26 to 2, and a linear
SVM was applied to the generated points, obtaining Figure 4
for the PRODES, ZOO15, and ZOO5 sets. ZOO15 and ZOO5
sets have better separability between classes, especially ZOO5,
which may explain the better results of this set and showing
that the volunteers were able to eliminate noisy samples, which

can hinder machine learning techniques [20], [32].

VI. CONCLUSION

This work presented the ForestEyes Project, which aims
to combine citizen science and machine learning to detect
deforestation in tropical forests. The results of the experiments
validated the use of citizen science to build training sets at low
cost and with good quality, eliminating noisy or problematic
samples. Active learning is also an advantageous option since
it is possible to build a training set with fewer samples and
achieve similar or even better accuracies than when using all
available samples. Finally, with improvements, the project can
be used to complement data from official monitoring programs
as well as generate data for areas not yet monitored.
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INPE, 2019.
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