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Abstract—Target detection enables running a robotic task.
However, their limited resources make large amount of data
processing harder. Image foveation is an approach that can
reduce processing demand by reducing the amount of data to
be processed. However, as an important visual stimulli can be
attenuated by this reduction, some strategy should be applied in
order to keep/recover awareness of it. This work compares gradi-
ent descent (potential field), maximum likelihood, multilateration,
trilateration, and barycentric coordinates to solve this problem
in a multiple mobile foveas context. Our results demonstrate that
the proposed methodology detects the target converging with an
average euclidian distance of 51 pixels from the target’s center
position.

I. INTRODUCTION

Robots perform rescue of disaster victims [1], allow com-
plex surgical procedures with greater precision, flexibility,
and control than conventional techniques [2], and help the
hospital disinfection with ultraviolet rays to eliminate viruses
and bacteria [3], among other applications. Regardless of the
task, robots capture external information through sensors and
use their actuators to interact with the environment.

These systems have limited resources and operate in dy-
namic environments, that is, the robot must be able to find
some target given in the task as well as react to some adverse
event during its operation. Nonetheless, this requires runtime
processing and this is a challenging task due to the volume of
data captured. The operating environment of a robot contains
a vast volume of visual information. If not all information can
be processed simultaneously, then the robot needs to select
which part of the information is essential to perform the task.

Visual attention is able to select relevant information [4]
to conduct the robotic task (in top-down attention) and high-
light perceptible stimuli that can make the robot inoperative
(bottom-up attention). In this work, we implement the visual
attention process using the foveation technique, which is
characterized by keeping some small region of the image at
high resolution, and reducing the resolution according to the
approximation to the image periphery [5].

The foveation technique uses the movement of the fovea to
select the relevant information in the image and this movement
takes time. There are contexts where time is crucial, for
example, during a robotic search for survivors in the chaotic
scenario of a natural disaster. In this context, the robot needs to
keep visual attention on the rescue task (locate victims) while
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dodging the wreckage of the disaster that could eventually
render it inoperative [6]. This problem can be overcome using
the multifoveation technique, which uses multiple mobile
foveas in the image, allowing visual attention to be maintained
at different points in the scene at the same time.

There are several strategies to positioning the foveas in the
image [7]–[14]. These strategies produce good results when
submitted to the appropriate contexts, but a few works use the
fovea distribution for target detection. Considering the fovea
distribution in the example case mentioned above, the robot
establishes foveas in the task of detecting survivors and these
foveas help detect any adverse event that puts the robot at risk
making both tasks possible simultaneously.

In this work, we propose a new approach to target detection
using multiple moving foveas, which means that the foveas
may be positioned in different places of the image from one
frame to the next one. Our basic idea is to have estimates for
these foveas of being the targets in evidence at a given instant,
and from these dynamic and fixed foveas to estimate the final
targets’ positions in the image. Due to the difficulty in the
mathematical modeling and implementation, solving this prob-
lem remains a challenge. Here we use mathematical strategies
adapted to the context of computer vision, which consider the
distribution of the foveas to estimate the localization of the
target in the image. The mathematical strategies adopted here
are the gradient descent (potential field), maximum likelihood,
multilateration, trilateration, and barycentric coordinates.

In the remaining of this article, Section II introduces the
techniques for reduction of data based on multiresolution.
Related works using these concepts are described in detail
on Section III. Section IV has explanation about the proposed
target detection algorithm using multifoveation, which is the
core and main contributions of this work. Section V verifies
the usefulness of our methods including experimental analysis.
Finally, we discuss the main contributions and trace directions
on Section VI.

II. BASIC CONCEPTS

In the context of the evolutionary paradigm, our vision
system has gone through several transformations to reach a
more complex state. Through these transformations, our vision
established a non-uniform distribution of cones and rods on
retina. Cones, which allow a more accurated vision, are more
concentrated on fovea, a small region of the retina. Based on
this concept, Leonard Uhr and Charles Vossler [15] propose
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the first method of multi-resolution vision based on the fovea.
Multiresolution refers to a set of algorithms that decompose
a signal into different resolution levels [16]. Based on this
theory, several methods were proposed, such as: Gaussian
pyramid, Laplacian pyramid, log-polar, and use of wavelets,
among others.

In general, these methods transform the image from the
cartesian domain into another domain, where the image will be
processed and analyzed according to the chosen method. Each
method contains intrinsic properties that can facilitate signal
manipulation depending on the situation and need. Among
these methods, the Multiresolution Multi-Feature (MRMF),
proposed by Gonçalves et al. [17], selects parts of the image
and resizes them equally to smaller sizes (see Figure 1).
This method stands out for reducing the processing time in
extracting information but maintains the static structure, such
as the fixed centered fovea positioning. Feature extraction
in MRMF is performed in the multiresolution domain. Each
MRMF level is stored in memory and each sub-image has
its features extracted. Note that each multiresolution level
represents a portion of the image.
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Fig. 1. Construction of levels with the MRMF.

Gomes et al. [13], [18]–[20] formalized the mathematics of
the MRMF method and contributed by moving the structure
along the image, known as Multiresolution with Moving Fovea

(MMF). The objective of this approach is to discard features
that are not essential for the task and allow execution in real
time. In this multiresolution approach, the image is mapped to
a set of k levels, with constant size W , with indexes from 0
to m, where m is the level of the fovea, as seen in Figure 1.
Let I be an image of size U = (Ux, Uy), and for each level
k, it is delimited a portion of size S = (Sx, Sy) of I , which
will be mapped to the multi-resolution domain. It is defined
that S0 = U and Sm = W , whereas the intermediate levels
are obtained by interpolation, according to Equation 1.

Sk =
mU +Wk − kU

m
(1)

Gomes et al. [13] defined that the motion of the fovea can
be controlled by using a fovea vector F inside the image
domain (see Figure 2). Therefore, it is defined that the vector
F , originating from the center of the image I , is between
(W −U)/2 and (U −W )/2. Consequently, F = (0, 0) when
the fovea is positioned in the center of the image I . Equation 2
indicates the starting position of each region, in the space
domain, which must be transformed.

δk =
k(U −W + 2F )

2m
(2)

Fig. 2. Foveated image in different positions using the MMF method.

Medeiros et al. [21], [22] proposed the multifoveation by
replication of the MMF structure, but that results in high com-
putational costs since the structures are applied independently,
leading to redundant processing of the image’s portions. They
solved this problem by removing the redundant processing
between foveas (see Figure 3). A similar approach has also
being applied to 3D point clouds for recognition purposes [23].

III. RELATED WORKS

While analyzing the literature, we noticed that multi-
foveation is not limited to computer vision. Dario et al. [10]
proposed the construction of a tactile system with pyroelec-
tric and piezoelectric sensors using multifoveation to reduce
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Fig. 3. Removing redundancies using MMMF with the second fovea shifted
20 pixels to the right. The first column with dimension (Wx,Wy) refers to
the first fovea and the second column refers to the second fovea added with the
redundancy removed using MMMF method. The hatched region corresponds
to redundant information between the two foveas.

resources. However, they designed a static tool, limiting the
potential of the technique.

Multifoveation seeks to provide greater visual attention in a
complex and dynamic context. Based on that, Lim et al. [24]
developed a target tracking using multiple foveas with the log-
polar method. The authors divided the image into regions, and
features of the central parts determined which target will be
tracked. Ude et al. [25] built a visual attention system for
humanoid robots, which uses multiple foveas to generate a
salience map and thus drive the saccadic movements of the
robot’s visual perception.

Tracking with movement of the robot’s physical structure is
limited due to the time it takes to move the physical apparatus
from one target to another. Given this situation, Camacho et al.
[26], [27] implemented an algorithm in Field Programmable
Gate Array (FPGA) based on a gaussian pyramid that supports
multiple foveas. This algorithm performs subdivision on each
side of the fovea to build the levels of the structure. They used
the last levels of the fovea to detect target movement.

Security, videoconferencing, and traffic supervision appli-
cations require quality visual information. In this context,
Rodrı́guez et al. [28] proposed to compress static information
and send resolutions at different baud rates using multi-
foveation. Basu et al. [7]–[9] researched lossy compression
techniques with multiple foveas to solve problems related

to video conferencing context. Wei & Li [29] also used
multifoveation to control camera position and retrieve camera
movement and zoom. Sankaran et al. [30] used frequency
filtering to delimit visible information and target detecting
in videos. Pioppo et al. [12] noted that the previous method
discarded high-resolution information and proposed reusing it
to produce better quality compressed videos.

Returning to the robotics context, Nicholas et Al. [31]–[37]
studied a psychophysical model of visual perception and pro-
posed the Information-gathering Partially Observable Markov
Decision Process (I-POMDP) based on a salience map. The
I-POMDP uses sequential searches to find the target and accu-
mulates the acquired information. The salience map is widely
used in the literature. Itti et al. [5], [11] constructed a salience
map by combining features extracted from multiple Gaussian
pyramids. Cavallaro et al. [38] proposed to create an efficient
method to calculate the sensitivity functions, correspondence
map and cutoff frequencies for a given overall sensitivity value
using salience map and multifoveation. Salience maps are
combined to identify possible target positions in the study by
Xu et al. [39]. They used multifoveation and matching between
SIFT descriptors, extracted from the highest resolution level,
to indicate the position of the target.

There are few references in the literature that use the posi-
tion of multiple foveas in the detection of visual stimuli. Soos
et al. [40]–[43] used neighboring foveas to create an algorithm
for detecting moving land objects from images captured by
unmanned aerial vehicles. They implemented a field of local
potential with multiple foveas. However, they did not consider
the weighting of multi-resolution levels. Thus, target detection
at other multi-resolution levels is compromised.

IV. METHODOLOGY

A robotic task may contain one or multiple targets. A set of
features stored in the robot’s memory represent these targets.
The feature is a portion of the image that contains relevant
information. It is encoded into a series of numbers by a
descriptor.

During an operation, the robot matches the descriptors of the
target, stored in its memory, with those acquired by sensors.
Matching descriptors results in false (outliers) or true (inliers)
matches, which can be obtained by mask of the Random
Sample Consensus (RANSAC). We combine these values into
a inliers rate (see Equation 3).

p =
Inliers

Outliers+ Inliers
(3)

We use MMMF to add foveas in the images acquired by
sensors. These foveas have m levels, each one extracts features
and has a inliers rate associated. There is no guarantee that the
target is at all levels. Therefore, we propose a level weighting
approach, where the level weights are given by the proportion
of transformed pixels, defined by Equation 4. In this equation,
Ri represents the number of pixels of level i. Thus, the region
with the highest number of pixels in the cartesian domain will



contribute less to target detection compared to the levels that
have the lowest number of pixels in the cartesian domain.

wi =
Rm−i∑m
k=0Rk

, where i ∈ [0,m] (4)

The linear combination of weighted levels and inlier rates
provides a fovea detection function (see Equation 5). It returns
a maximum value when the fovea is in the center of the
target and this value decreases when we increase the distance
between the fovea and the target. This behavior is similar to
the results obtained in the study of photoreceptors developed
by Osterberg [44].

f =

m∑
k=0

wkpk (5)

We obtain a detection surface through successive placements
of the fovea by the image. This procedure requires a huge
computational cost, making its use in robotic applications
unfeasible. Thus, instead of repositioning the fovea by all
pixels in the image, we could (1) use spacing around the x and
y axes, but this procedure also requires a lot of processing or
(2) keep foveas fixed at strategic points in the image. We use
the second possibility and we subdivided the image into 4, 5,
6, and 9 regions as shown in Figure 4. For each subregion we
add a fovea (see Figure 5).

(a) 4 foveas (b) 5 foveas

(c) 6 foveas (d) 9 foveas

Fig. 4. The red dashed lines represent the subdivisions of regions and the
positions marked with a ’x’ blue are the central positions of each subregion,
where the foveas will be added.

Each fovea of these settings has a target detection value
obtained by Equation 5. We propose to use these information
in methods based on gradient descent, maximum likelihood es-
timator, multilateration, trilateration, and weighted barycentric
coordinates to estimate the target position.

(a) 4 foveas (b) 5 foveas

(c) 6 foveas (d) 9 foveas

Fig. 5. Foveas distributed in subregions.

A. Region Reduction and Intersection of Local Gradients

The local gradient is calculated by the difference between
the central fovea and the neighboring foveas. The region re-
duction method iteratively reduces the search region according
to the direction of the local potential field. The local gradi-
ent intersection method indicates an estimate of the target’s
position according to the intersection of two local gradients.
These methods make use of 3 arrangements: (1) using the
8 positions around the fovea, (2) using the 4 positions (up,
down, left and right) and (3) using the 4 positions (northeast,
southeast, southwest and northwest).

B. Maximum Likelihood Estimator (MLE)

The detection surface discussed above converges to a mul-
tivariate normal distribution, where the mean represents the
target position. We use MLE and conclude that given several
foveas distributed across the image, it is possible to estimate
the target’s position using the average of their positions
weighted by their detection rate.

C. Trilateration and Multilateration

In these methods, we interpreted the detection of the fovea
as a circumference that increases when the detection value
decreases. In other words, there is an inversely proportional
relationship between the radius of the circle and the detection
value. These methods estimate the target position using the
intersection between the circumferences and, for that, they
need information about the distances between the foveas.

D. Weighted Barycentric Coordinates

This method implements an interpolator that uses three
foveas to estimate the target position. We selected three
foveas according to their proximity and maximum detection
value together. We weighted their positions using their target
detection values.



V. RESULTS

We used the Toy video from Visual Tracker Benchmark 1

to validate our theory. This video contains a sequence of 271
frames under scale variation, fast movement and rotation of the
tracking target. The target was extracted from the first frame
of the video.

We consider foveas with 4 levels, dimension W = (80, 80)
and SURF feature extraction. However, we noticed the pres-
ence of oscillations, caused by false positives, which impair
target detection. We solve this problem by defining a high-pass
filter on the amount of matches using a threshold equal to 15.
Using these information, we run an algorithm that applies the
methodology defined in section IV. The methods IV-A to IV-D
return an estimated position (x̂, ŷ) of the center of the target
and this estimated position can be evaluated using the ground
truth available from the dataset.

However, ground truth provides a rectangular region that
outlines the target. Therefore, we define Equation 6, where
(xc, yc) is the center of the region, x and y are positions of
the upper left corner of the rectangle, and sx and sy are the
dimensions of the x and y coordinates, respectively. Moreover,
we calculate the error using the euclidean distance between the
estimated positions and the center position of the ground truth
region.

(xc, yc) =

(
x+ sx

2
,
y + sy

2

)
(6)

The results of methods based on gradient descent are
presented in Table I. Our results demonstrate that the mean
error of these methods are greater than 76 pixels and there is
a scattering of the errors generating a high standard deviation.
This information indicates that the methods may not converge
to the target position.

TABLE I
TABLE WITH MEAN ERROR (ERR) AND STANDARD DEVIATION (SD)

WITH 8 FOVEAS (8 FS), 4 FOVEAS IN UP, DOWN, LEFT AND RIGHT (4
FS1) AND 4 FOVEAS IN NORTHEAST, SOUTHEAST, SOUTHWEST AND

NORTHWEST (4 FS2).

Method
8 Fs 4 Fs1 4 Fs2

Err SD Err SD Err SD

Region
82,29 37,97 80,37 36,37 100,48 45,67

Reduction

Intersection
85,77 52,18 - - 76,50 40,17

Gradients

Table II shows that the mean error of estimated position by
multilateration, trilateration, and barycentric coordinates are,
on mean, 1, 5 times less than the MLE error. This happens
because the statistical mean varies a lot depending on the
data. In future works, we intend to implement this same
approach using the median. Furthermore, we can observe that
the standard deviations of the multilateration errors for the 4

1Dataset available on the link: http://cvlab.hanyang.ac.kr/tracker
benchmark/index.html

settings show little variation due to the use of all fixed foveas
to estimate the target position.

VI. CONCLUSION

Multifoveation can keep several targets in evidence at the
same time, and this benefits several robotic applications.
However, we realized that this technique is underutilized in
literature. Therefore, we proposed here an approach that uses
dynamic and fixed foveas to estimate the target’s position in
the image.

Basically, we shifted a mobile fovea by the image and
found a detection surface, where the peak corresponds to the
target’s center. This surface has local minimums which spoils
otimization routines. We solved it using a high-pass filter on
the number of matches.

In this study, we implemented a region reduction and inter-
section of local gradient algorithms. The first converges to the
target’s position but consumes a lot of time and computational
resources, whereas the second does not converge and requires
more information. These algorithms do not use fixed foveas.

We tried to explore the surface properties using the MLE
algorithm, but the accuracy of this method is proportional
to the amount of fovea close to the target. Posteriorly, we
realized that the algorithms were not exploring the geometry
of the foveas and proposed trilateration, multilateration and
barycentric coordinates. These last algorithms are efficient in
target detection.

We conclude that multifoveation helps robots in the target
detection task. However, some issues involving (1) multiple
targets and (2) target absence were not discussed in this study
and are essential problems to be studied in the context of visual
detection in Robotics. As such, they can be matter of further
research.
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