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Abstract—Learning to move naturally from music, i.e., to
dance, is one of the most complex motions humans often per-
form effortlessly. Synthesizing human motion through learning
techniques is becoming an increasingly popular approach to
alleviating the requirement of new data capture to produce
animations. Most approaches, addressing the problem of auto-
matic dance motion synthesis with classical convolutional and
recursive neural models, undergo training and variability issues
due to the non-Euclidean geometry of the motion manifold
structure. In this thesis1, we design a novel method based on
graph convolutional networks, that overcome the aforementioned
issues, to tackle the problem of automatic dance generation from
audio information. Our method uses an adversarial learning
scheme conditioned on the input music audios to create natural
motions preserving the key movements of different music styles.
We also collected, annotated and made publicly available a novel
multimodal dataset with paired audio, motion data and videos of
people dancing three different music styles, as a common ground
to evaluate dance generation approaches. The results suggest
that the proposed GCN model outperforms the state-of-the-art
dance generation method conditioned on music in different exper-
iments. Moreover, our graph-convolutional approach is simpler,
easier to be trained, and capable of generating more realistic
motion styles regarding qualitative and different quantitative
metrics. It also presents a visual movement perceptual quality
comparable to real motion data. The dataset, source code,
and qualitative results are available on the project’s webpage:
https://verlab.github.io/Learning2Dance CAG 2020/.

I. INTRODUCTION

Synthesizing motions through learning techniques is be-
coming an increasingly popular approach to alleviating the
requirement of capturing new real motion data to produce
animations. The motion synthesis has been applied to a myriad
of applications such as graphic animation for entertainment,
robotics, and multimodal graphic rendering engines with hu-
man crowds [1], to name a few. A crucial step to achieve
plausible animation is to learn the motion distribution and
then draw samples (i.e., new motions) from it. For instance, a
challenging human movement is dancing, where the animator
does not aim to create avatars that mimic real poses but to
produce a set of poses that match the music’s choreography,
while preserving the quality of being individual.

In this thesis, we address the problem of synthesizing
dance movements from music using adversarial training and
a convolutional graph network architecture (GCN). In dance
moves, both the particularities of the dancer and the charac-
teristics of the movement play an essential role in recognizing

1This work relates to an M.Sc. dissertation.

the dance style. Thus, a central challenge in our work is
to synthesize a set of poses taking into account three main
aspects: firstly, the motion must be plausible, i.e., a blind
evaluation should present similar results when compared to
real motions; secondly, the synthesized motion must retain
all the characteristics present in a typical performance of the
music’s choreography; third, each new set of poses should
not be strictly equal to another set, in other words, when
generating a movement for a new avatar, we must retain the
quality of being individual.

Creating motions from sound relates to the paradigm of
embodied music cognition. It couples perception and action,
physical environmental conditions, and subjective user experi-
ences (cultural heritage) [2]. Therefore, synthesizing realistic
human motions regarding embodying motion aspects remains
a challenging and active research field [3], [4]. In particular,
advances in the deep learning techniques yielded an un-
precedented combination of effective and abundant techniques
able to predict and generate data, from high accuracy scores
in image classification using convolutional neural networks
(CNN) to photo-realistic image generation with the generative
adversarial networks (GAN) [5]. In the same direction, synthe-
sizing dance motions from audio information with recursive
models and transformers is receiving a broad attention [6]–[8].

Most recently, networks operating on graphs have emerged
as promising and effective approaches to deal with problems
which structure is known a priori. A representative approach
is the work of Kipf and Welling [9], where a convolutional
architecture that operates directly on graph-structured data is
used in a semi-supervised classification task. We argue that
movements of a human skeleton, which has a graph-structured
model, follow complex sequences of poses that are temporally
related, and the set of defined and organized movements can
be better modeled using a convolutional graph network trained
using adversarial regime.

In this context, we propose an approach to synthesize
motions with three main components. Our method starts
encoding a sound signal to extract the music style using a
CNN architecture. The music style and a spatial-temporal
latent vector are used to condition a GCN architecture that
is trained in an adversarial regime to predict 2D human
body joint positions over time. Experiments with a user study
and quantitative metrics shows that our approach outperforms
the state-of-the-art method and provides plausible movements
while maintaining the characteristics of different dance styles.

https://verlab.github.io/Learning2Dance_CAG_2020/


Contributions. The contribution of this thesis can be summa-
rized as follows:

i) A new conditional GCN architecture to synthesize human
dance motions based on auditory data. In our method,
we push further the adversarial learning by providing
multimodal data with temporal dependence;

ii) A novel multimodal dataset with paired audio, motion
data and videos of people dancing different music styles.

II. RELATED WORK

Sound & Motion. Recently, we have witnessed an over-
whelming growth of new approaches to deal with the tasks
of transferring motion style and building animations of people
from sounds. For example, Cudeiro et al. [10] presented an
encoder-decoder network that uses audio features extracted
from DeepSpeech [11]. The network generates realistic 3D fa-
cial animations conditioned on subject labels to learn different
individual speaking styles. Ginosar et al. [3] enable translation
from speech to gesture, generating arms and hand movements
by mapping audio to pose. They used an adversarial training,
where a U-Net architecture transforms the encoded audio input
into a temporal sequence of 2D poses. However, their method
is subject-specific and does not generalize to other speakers.

A close related work to ours is the approach proposed by
Lee et al. [12]. The authors use a complex architecture to
synthesize dance movements (expressed as a sequence of 2D
poses) given a piece of input music. Their architecture is
based on an elaborated decomposition-to-composition frame-
work trained with an adversarial learning scheme. Our graph-
convolutional based approach, on its turn, is simpler, easier to
be trained, and generates more realistic motion styles regarding
qualitative and different quantitative metrics.
Generative Graph Convolutional Networks. Since the sem-
inal work of Goodfellow et al. [5], generative adversarial
networks (GAN) have been successfully applied to a myriad
of hard problems. Mirza and Osindero [13] proposed Con-
ditional GANs (cGAN), which provides some guidance into
the data generation. Graph Convolutional Networks (GCN)
recently emerged as a powerful tool for learning from data by
leveraging geometric properties that are embedded beyond n-
dimensional Euclidean vector spaces, such as graphs and sim-
plicial complex. In our context, conversely to classical CNNs,
GCNs can model the motion manifold space structure [4], [14].
Yan et al. [14] applied GCNs to model human movements and
classify actions. After extracting 2D human poses for each
frame from the input video, the skeletons are processed by
a Spatial-Temporal Graph Convolutional Network (ST-GCN).
Yan et al. proceeded in exploiting the representation power of
GCNs and presented the Convolutional Sequence Generation
Network (CSGN) [4]. By sampling correlated latent vectors
from a Gaussian process and using temporal convolutions, the
CSGN architecture was capable of generating temporal co-
herent long human body action sequences as skeleton graphs.
Our method takes one step further than [4], [14]. It generates
human skeletal-based graph motion sequences conditioned
on acoustic data, i.e., music. By conditioning the movement

distributions, our method learns not only to create plausible
human motions, but it also learns the music style signature
movements from different domains.
Estimating and Forecasting Human Pose. Motion synthe-
sis and motion analysis problems have been benefited from
the improvements in the accuracy of human pose estima-
tion methods. Human pose estimation from images, for its
turn, greatly benefited from the recent emergence of large
datasets [15]–[17] with annotated positions of joints, and dense
correspondences from 2D images to 3D human shapes [17]–
[21]. This large amount of annotated data has made possible
important milestones towards predicting and modeling human
motions [22]–[25]. The recent trend in time-series prediction
with recurrent neural networks (RNN) became popular in
several frameworks for human motion prediction [23], [24].
Nevertheless, the pose error accumulation in the predictions
allows mostly predicting over a limited range of future
frames [22]. Gui et al. [22] proposed to overcome this issue
by applying adversarial training using two global recurrent
discriminators that simultaneously validate the sequence-level
plausibility of the prediction and its coherence with the input
sequence. Wang et al. [25] proposed a network architecture to
model the spatial and temporal variability of motions through
a spatial component for feature extraction. Yet, these RNN
models are known to be difficult to train and computationally
cumbersome [26]. As also noted by [12], motions generated
by RNNs tend to collapse.
Transferring Style and Human Motion. Synthesizing motion
with specific movement style has been studied in a large body
of prior works [27]–[29]. Most methods formulate the problem
as transferring a specific motion style to an input motion [30],
[31], or transferring the motion from one character to another,
commonly referred as motion retargeting [32]–[34]. Another
active research direction is transferring motion from video-to-
video [27]–[29]. However, the generation of stylistic motion
from audio is less explored, and it is still a challenging
research field. Wang et al. [35] discussed how adversarial
learning could be used to generate human motion by using
a sequence of autoencoders. The authors focused on three
tasks: motion synthesis, conditional motion synthesis, and
motion style transfer. As our work, their framework enables
conditional movement generation according to a style label
parameterization, but there is no multimodality associated
with it. Jang et al. [36] presented a method inspired by
sequence-to-sequence models to generate a motion manifold.
As a significant drawback, the performance of their method
decreases when creating movements longer than 10s, which
makes the method inappropriate to generate long sequences.
Our approach, on the other hand, can create long movement
sequences conditioned on different music styles, by taking
advantage of the adversarial GCN’s power to generate new
long, yet recognizable, motion sequences.

III. METHODOLOGY

Our method has been designed to synthesize a sequence of
2D human poses resembling a human dancing according to a



music style. Specifically, we aim to estimate a motionM that
provides the best fit for a given input music audio. M is a
sequence of N human body poses defined as:

M = [P0,P1, · · · ,PN ] ∈ RN×25×2, (1)

where Pt = [J0,J1, · · · ,J24] is a graph representing the body
pose in the frame t and Ji ∈ R2 the 2D image coordinates
of i-th node of this graph. The graph topology (the edges
and nodes’ connections) follows the standard defined by
OpenPose [18].

Our approach consists of three main components, outlined
in Figure 1. We start training a 1D-CNN classifier to define
the input music style. Then, the result of the classification
is combined with a spatial-temporal correlated latent vector
generated by a Gaussian process (GP). At last, we perform
the human motion generation from the latent vector. In the
training phase of the generator, we use the latent vector to feed
a graph convolutional network that is trained in an adversarial
regime on the dance style defined by an oracle algorithm. In
the test phase, we replace the oracle by the 1D-CNN classifier.
Thus, our approach has two training stages: i) The training of
the audio classifier to be used in the test phase and ii) The
GCN training with an adversarial regime that uses the music
style to condition the motion generation.
Sound Processing and Style Feature Extraction. Our motion
generation is conditioned by a latent vector that encodes
information from the music style. In this context, we used
the SoundNet [37] architecture as the backbone to a one-
dimensional CNN, because of its displayed capabilities to
learn representations from audio to visual tasks. The 1D-CNN
receives a sound in waveform and outputs the most likely
music style considering three classes. The classifier is trained
in a dataset composed of 107 music files and divided into
three music-dance styles: Ballet, Salsa, and Michael Jackson
(MJ). To find the best hyperparameters, we run a 10-fold cross-
validation and kept the best model.
Latent Space Encoding for Motion Generation. In order to
create movements that follow the music style, while keeping
particularities of the motion and being temporally coherent,
we build a latent vector that combines the extracted music
style with a spatiotemporal correlated signal from a Gaussian
process. The information used to condition the motion genera-
tion, and to create our latent space, is a trainable dense feature
vector representation of each music style.

Then, we combine a temporal coherent random noise with
the music style representation in order to generate coherent
motions over time. Therefore, the final latent vector is the
result of concatenating the dense trainable representation of
the audio class with the coherent temporal signal in the
dimension of the features. This concatenation plays a key role
in the capability of our method to generate synthetic motions
with more than one dancing style when the audio is a mix
of different music styles. In other words, unlike a vanilla
conditional generative model, which conditioning is limited
to one class, we can condition over several classes over time.
The coherent temporal signals are sampled from Radial Basis

Function kernel (RBF) [38] to enforce temporal relationship
among the N frames.

The Gaussian process generates our random noise z and the
dense representation of the dance style is the variable used to
condition our model y. The combination of both data is used
as input for the generator.
Conditional Adversarial GCN for Motion Synthesis. To
generate realistic movements, we use a graph convolutional
neural network (GCN) trained with an adversarial strategy.
Figure 1 illustrates the training scheme.

a) Generator: The architecture of our generator G is
mainly composed of three types of layers: temporal and spatial
upsampling operations, and graph convolutions. When using
GCNs, one challenge that appears in an adversarial training
is the requirement of upsampling the latent vector in the
spatial and temporal dimensions to fit the motion space M
(Equation 1).

The temporal upsampling layer consists of transposed 2D
convolutions that double the time dimension, ignoring the
input shape of each layer. Inspired by Yan et al. [4], we
also included in our architecture a spatial upsampling layer.
This layer operates using an aggregation function defined by
an adjacency matrix Aω that maps a graph S(V,E) with
V vertices and E edges to a bigger graph S′(V ′, E′). The
network can learn the best values of Aω that leads to a good
upsampling of the graph by assigning different importance of
each neighbor to the new set of vertices.

In the first layer of the generator, we have one node
containing a total of N features; these features represent
our latent space (half from the Gaussian Process and a half
from the audio representation). The features of the subsequent
layers are computed by the operations of upsampling and
aggregation. The last layer outputs a sequence of graphs, each
one with 25 nodes containing the (x, y) coordinates of each
skeleton joint.

b) Discriminator: The discriminator D has the same
architecture used by the generator but using downsampling
layers instead of upsampling layers. Thus, all transposed 2D
convolutions are converted to standard 2D convolutions, and
the spatial downsampling layers follow the same procedure
of upsampling operations but using an aggregation matrix Bφ

with trainable weights φ, different from the weights learned
by the generator.

In the discriminator network, the feature vectors are as-
signed to each node as follows: the first layer contains a
sequence of graphs, each one with 25 nodes, where their
feature vectors are composed of the (x, y) coordinates on a
normalized space and the class of the input motion. In the
subsequent layers, the features of each node are computed
by the operations of downsampling and aggregation. The last
layer contains only one node that outputs the classification of
the input data being fake or real. Figure 1-(b) illustrates the
discriminator architecture.

c) Adversarial training: Given the motion generator and
discriminator, our conditional adversarial network aims at
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Fig. 1. Proposed methodology: (a) GCN Motion Generator G; (b) GCN Motion Discriminator D; and (c) an overview of the adversarial training regime.

minimizing the binary cross-entropy loss:

LcGAN (G,D) = min
G

max
D

(Ex∼pdata
(x)[logD(x|y)]+

Ez∼pz (z)[log(1−D(G(z|y)))]) ,
(2)

where the generator aims to maximize the error of the
discriminator, while the discriminator aims to minimize the
classification fake-real error shown in Equation 2. In partic-
ular, in our problem, pdata represents the distribution of real
motion samples, x = Mτ is a real sample from pdata, and
τ ∈ [0−Dsize] and Dsize is the number of real samples in the
dataset. Figure 1-(c) shows a concise overview of the steps in
our adversarial training.

The latent vector, which is used by the generator to syn-
thesize the fake samples x′, is represented by the variable z,
the coherent temporal signal. The dense representation of the
dance style is determined by y, and pz , which is a distribution
of all possible temporal coherent latent vectors generated by
the Gaussian process.

To improve the generated motion results, we use a motion
reconstruction loss term (Lrec) applying L1 distance in all
skeletons over the N motion frames. Thus, our final loss
is a weighted sum of the motion reconstruction and cGAN
discriminator losses given by

L = LcGAN + λLrec, (3)

where λ weights the reconstruction term. The λ value was
chosen empirically, and was fixed throughout the training
stage. The initial guess regarding the magnitude of λ followed
the values chosen by Wang et al. [27]. We then apply a cubic-
spline interpolation in the final motion to remove eventual high
frequency artifacts from the generated motion frames M.

IV. AUDIO-VISUAL DANCE DATASET

We build a new dataset composed of paired videos of
people dancing different music styles2. Our dataset differs
from existing ones mainly in the quality of the annotated
movements. For instance, the work of [12] also present a large
dataset for automatic dance generation, however they collected
the data without careful selection of representative dances to
the desired styles. On the other hand, we carefully selected
characteristic movements to compose our dataset. The dataset
is used to train and evaluate the methodologies for motion
generation from audio. We split the samples into training
and evaluation sets that contain multimodal data for three
music/dance styles: Ballet, Michael Jackson, and Salsa. These
two sets are composed of two data types: visual data from
careful-selected parts of publicly available videos of dancers
performing representative movements of the music style and
audio data from the styles we are training. Figure 2 shows
some data samples of our dataset.

In order to collect meaningful audio information, several
playlists from YouTube were chosen with the name of the
style/singer as a search query. For the visual data, we started
by collecting videos that matched the music style and had rep-
resentative moves. Each video was manually cropped in parts
of interest, by selecting representative moves for each dance
style present in our dataset. We annotate the 25 2D human
joint poses for each video by estimating the pose with Open-
Pose [18]. Each motion sample is defined as a set of 2D human
poses of 64 consecutive frames. To improve the quality of the
estimated poses in the dataset, we handled the miss-detection
of joints by exploiting the body dynamics in the video. We also
performed motion data augmentation to increase the variability

2The dataset and source code are publicly available at https://verlab.github.
io/Learning2Dance CAG 2020/.

https://verlab.github.io/Learning2Dance_CAG_2020/
https://verlab.github.io/Learning2Dance_CAG_2020/
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Fig. 2. Audio-motion dataset. Video samples of the multimodal dataset with carefully annotated audio and 2D human motions of different dance styles.

and number of motion samples. Experimental evaluations with
the same architecture and hyperparameters, with and without
data augmentation, showed the performance evaluated with the
Fréchet Inception Distance (FID) metric improves when using
data augmentation. Moreover, we observed improvements in
the motions’ variability, and body movements were easier to
notice, when using data augmentation to train our method.

V. EXPERIMENTS & RESULTS

To assess the performance our method, we conduct several
experiments evaluating different aspects of motion synthesis
from audio information. We also compared our approach to
the state-of-the-art technique proposed by Lee et al. [12],
hereinafter referred to as D2M. We choose to compare our
method to D2M since other methods have major drawbacks
that make a comparison with our approach unsuitable, such
as different skeleton structures [3]. The experiments are as
follows: i) We performed a perceptual user study using a blind
evaluation with users trying to identify the dance style of the
dance moves. For a generated dance video, we ask the user
to choose what style (Ballet, Michael Jackson (MJ), or Salsa)
the avatar on the video is dancing; ii) Aside from the user
study, we also evaluated our approach on commonly adopted
quantitative metrics in the evaluation of generative models,
such as Fréchet Inception Distance (FID), GAN-train, and
GAN-test [39].

A. Implementation and Training Details

Audio and Poses Preprocessing. Our one-dimensional audio
CNN was trained for 500 epochs, with batch size equal to
8, Adam optimizer with β1 = 0.5 and β2 = 0.999, and
learning rate of 0.01. Similar to [40], we preprocessed the
input music audio using a µ− law non-linear transformation
to reduce noise from audio inputs that were not appropriately
recorded. We performed 10-fold cross-validation to choose the
best hyperparameters.

In order to handle different shapes of the actors and to
reduce the effect of translations in the 2D poses of the joints,

we normalized the motion data used during the adversarial
GCN training. We managed changes beyond body shape and
translations, such as the situations of actors lying on the floor
or bending forward, by selecting the diagonal distance of the
bounding box encapsulating all 2D body joints Pt of the frame
as scaling factor.
Training. We trained the GCN adversarial model for 500
epochs. We select 64 frames as the size of our samples to
follow a similar setup presented in [3]. However, it is worth
noting that our method can synthesize long motion sequences.
We use a batch size of 8 motion sets of N frames each. We
optimized the cGAN with Adam optimizer for the generator
with β1 = 0.5 and β2 = 0.999 with learning rate of 0.002. The
discriminator was optimized with Stochastic Gradient Descent
(SGD) with a learning rate of 2× 10−4. We used λ = 100 in
Equation 3. Dropout layers were used on both generator and
discriminator to prevent overfitting. The training process takes
around 8 hours with a GTX 1080 GPU.
Avatar Animations. As an application of our formulation, we
animate three virtual avatars using the generated motions to
different music styles. The image-to-image translation tech-
nique vid2vid [27] was selected to synthesize videos. We
trained vid2vid to generate new images for these avatars,
following the multi-resolution protocol described in [27]. For
inference, we feed vid2vid with the output of our GCN. We
highlight that any motion style transfer method can be used
with few adaptations, as for instance, the works of [28], [29].

B. User Study

We conducted a perceptual study with 60 users. The per-
ceptual study was composed of 45 randomly sorted tests. For
each test, the user watches a video (with no sound) synthesized
by vid2vid using a generated set of poses. Then we asked
them to associate the motion performed on the synthesized
video as belonging to one of the audio classes: Ballet, Michael
Jackson, or Salsa. In each question, the users were supposed
to listen to one audio of each class to help them to classify
the video. The set of questions was composed of 15 videos



Fig. 3. User study results. Each stacked bar represents one user evaluation
and the colors of each stacked bar indicates the dance styles (Ballet = yellow,
Michael Jackson (MJ) = blue, and Salsa = purple). We show the results for
all 60 users that fully answered our study.

of movements generated by our approach, 15 videos generated
by D2M [12], and 15 videos of real movements extracted from
our training dataset. We applied the same transformations to
all data and every video had an avatar performing the motion
with a skeleton with approximately the same dimensions. We
split equally the 15 videos shown between the three dance
styles. Figure 3 presents the user study results, and we can
draw the following observations: first, our method achieved
similar motion perceptual performance to the one obtained
from real data. Second, our method outperformed D2M with
a large margin. Thus, we argue that the proposed model is
capable of generating realistic movements taking into account
two of the following aspects: i) Our performance is similar to
the results from real motion data in a blind study; ii) Users
show higher accuracy in categorizing our generated motion.

C. Quantitative and Qualitative Evaluation

For a more detailed performance assessment regarding the
similarity between the learned distributions and the real ones,
we adopted the commonly used Fréchet Inception Distance
(FID). We computed the FID values using motion features
extracted from the action recognition ST-GCN model pre-
sented in [14], similar to the metric used in [4], [12]. We also
computed the GAN-Train and GAN-Test metrics, two well-
known GAN evaluation metrics [39]. The detailed quantitative
results can be seen in the Sections 5.2 and 5.3 in the Masters’
thesis or in [41]. Figure 4 shows some qualitative results. We
can notice that the sequences generated by D2M presented
some characteristics clearly inherent to the dance style, but
they are not present along the whole sequence. Conversely,
our method generates poses commonly associated with ballet
movements such as rotating the torso with stretched arms.

VI. CONCLUSIONS

We proposed a new method for synthesizing human motion
from music. Unlike previous methods, we explore graph
convolutional networks trained in an adversarial regime to
address the problem. We achieved better qualitative and quan-
titative performance as compared to a state-of-the-art dance
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Fig. 4. Qualitative results. Results of our approach in comparison to D2M
[12] for Ballet

generation technique. Our method outperformed Dancing to
Music method proposed by [12], in terms of FID, GAN-Train,
and GAN-Test metrics. We also conducted a user study, which
showed that our method received similar scores to real dance
movements, which was not observed in the competitor. More-
over, we presented a new dataset with audio and visual data,
carefully collected to train and evaluate algorithms designed
to synthesize human motion in dance scenarios. We observe
several potential applications such as in the animation of
human avatars and human crowds used in the gaming industry.
Finally, the work presented in this thesis indicates that when
working with learning techniques for motion synthesis, the
model awareness of the geometric motion data structure results
in simpler models, while leading to more realistic motions.
Limitations & Future Work: We plan to investigate the
following extensions of our formulation: i) Since we only
condition the motion to the style, the variability of the move-
ments in one dance style is related only with the random noise
from the Gaussian process. Simultaneously using the audio
information to create this variability should be a more suitable
approach; ii) We intend to extend our dataset in terms of dance
styles. This extension will allow us to stress our approach and
create samples to be used in realistic animations following the
auditory data in broader contexts.
Acknowledgments: We would like to thank the PPGCC-
UFMG, CAPES, FAPEMIg, and CNPq for funding different
parts of this work.

VII. PUBLICATIONS

The results of this thesis were published in the inter-
national journal Computers & Graphics [41]. This journal
has been recently ranked 4 in the top Computer Graphics
publications3. We also would like to highlight that the student
also contributed as co-author to two related publications on
human motion synthesis: one in the international conference
WACV’20 [29] and one in the International Journal of Com-
puter Vision (IJCV’21) [42].

3https://scholar.google.com/citations?view op=top venues&hl=en&vq=
eng computergraphics
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