
Training Deep Networks from Zero to Hero:
avoiding pitfalls and going beyond

Moacir A. Ponti, Fernando P. dos Santos, Leo S. F. Ribeiro, Gabriel B. Cavallari
ICMC – Universidade de São Paulo (USP), São Carlos, SP, Brazil

Email: ponti@usp.br, fernando persan@alumni.usp.br, leo.sampaio.ferraz.ribeiro@usp.br, gabriel.cavallari@usp.br

Abstract—Training deep neural networks may be challenging
in real world data. Using models as black-boxes, even with trans-
fer learning, can result in poor generalization or inconclusive
results when it comes to small datasets or specific applications.
This tutorial covers the basic steps as well as more recent options
to improve models, in particular, but not restricted to, supervised
learning. It can be particularly useful in datasets that are not
as well-prepared as those in challenges, and also under scarce
annotation and/or small data. We describe basic procedures as
data preparation, optimization and transfer learning, but also
recent architectural choices such as use of transformer modules,
alternative convolutional layers, activation functions, wide/depth,
as well as training procedures including curriculum, contrastive
and self-supervised learning.

I. INTRODUCTION

Different fields were revolutionized in the last decade due
to the huge investment in Deep Learning research. With
the curation of large datasets and its availability, as well as
popularization of graphical processing units, those methods
became popular in all machine learning, pattern recognition,
computer vision, natural language and signal/image processing
communities [1]. After becoming pervasive more broadly in
related fields such as engineering, computer science and ap-
plied math [2]–[4], we observed a crescent number of projects
and papers including deep learning techniques were adopted
by practitioners from other fields in attempt to solve particular
problems [5]–[7]. Such hype raised concerns about the pitfalls
in use of machine and deep learning methods. A remarkable
example is the study of Roberts et al (2021) that, in a universe
of over 2,000 papers using machine learning to detect and
prognosticate for COVID-19 using medical imaging, found
none of the models to be of potential clinical use due to
methodological flaws and/or underlying biases [8].

In fact, training deep neural networks may be challenging
in real world data. Using models as black-boxes, even with
transfer learning – a popular and widely used technique in
this context –, can result in poor generalization or inconclusive
results when it comes to small datasets or specific applications.
In this paper, we focus on the main issues related to training
deep networks, and describe recent methods and strategies to
deal with different types of tasks and data. Basic definitions
about machine learning, deep learning and deep neural net-
works are outside the scope of this paper. For those, please
refer to the following as good starting points [1], [9], [10].

We cover the basic steps to avoid common pitfalls as
well as more recent options to improve models, in particular,

1 - Architecture
● width and depth

● alternative conv.layers
● attention/transformer
● new activation layers

2- Optimization
● learning rate scheduling

● dropout
● normalization
● augmentation

3 - Training Strategies
● pre-training models

● self-supervision
● curriculum learning
● contrastive learning

4- Other tricks
● visualization

● feature extraction
● augmented test data

Fig. 1. Main concepts related to training of Deep Networks

but not restricted to, supervised learning in visual content.
Those guidelines can be particularly useful in datasets that
are not as well-prepared as those in challenges, and also under
scarce annotation and/or small data. Figure 1 summarizes the
main options to be considered. We describe importance of
basic procedures but also recent architectural choices such as
use of transformer modules, alternative convolutional layers,
activation functions, wide and deep networks, as well as
training procedures including as curriculum, contrastive and
self-supervised learning1.

A. Notation

Let x ∈ X be examples from a training set containing n
instances, from which we may have target values or labels
y ∈ Y . Such training set can be used to train a deep neural
network (DNN) with multiple processing layers. For simplicity
we define such neural network as a composition of functions
fl(.) (related to some layer l) that has a set of parameters Θl,
takes as input a vector xl and outputs a vector xl+1:

f(x) = fL (· · · f2(f1(x1,Θ1); Θ2) · · · ),ΘL)

x1 is the input data coming from the training set, and func-
tions fl(.) can represent different layers such as: Dense (or
Fully Connected), Convolutional, Pooling, Dropout, Recurrent,
among others. Θl represents all learnable parameters of a given
layer. For example in dense layers those are matrices W and
bias values b, while in convolutional layers represent weights

1For an extended version containing details of the methods mentioned in
thies paper see the arXiv extended version. For source-code related to this
paper refer to: https://github.com/maponti/trainingdeepnetworks.



for convolutional kernels/filters. Also, let us have z ∈ Z as
examples from a test set used to evaluate the trained model.

There are also non-sequential networks having different
branches containing independent or shared parameters such as
siamese or triplet networks but for which at least the output
layer is shared among the branches. Other models operate
using more than one independent networks: a remarkable ex-
ample is the Generative Adversarial Network, which contains
a discriminator and a generator function.

II. HOW TO START AND COMMON ISSUES

Common pitfalls and issues are due to overlooked details
on the design of models. In this section we present a checklist,
a kind of 7 Errors Game to begin with.

A. Basic checklist (before trying anything else)

� 1. Input representation is fair and target patterns are present
in the data. Make sure the input data is recognizible by a
human or specialist, e.g., when undersampling and trimming
an audio clip the expected patterns are still audible; when
resizing images the objects to be recognized are still visible.
For example in Figure 2 we show two resized versions of an
image to be used as input in a pre-trained neural network,
however one of them clearly lost details of the cell that may
be important for the task.

� 2. Input data is normalized accordingly. DNNs do not
work well with arbitrary ranges of numerical values. Common
choices are 0-1 scaling (by computing and storing minimum
and maximum values), or z-score standardization (by comput-
ing and storing mean and standard deviation). For example,
in Figure 4(a-b) we compared loss and accuracy curves using
normalized and non-normalized versions of the training set.

� 3. Data has quality (data-centric AI). After a decade
of model frenzy, there has been a resurgence of concerns
around data, that should be defined consistently, cover all
important cases and be sized appropriately. Most datasets
(even benchmark) have some wrong labels that hamper design
of the model. In such case, recent work showed models with
lower capacity (stronger bias) may be more resilient [11].

� 4. Both loss function and evaluation metrics makes sense.
— loss and evaluation must be adequate to the task and to
the terms involved in its computation, e.g. in a multi-class
classification task make sure you are comparing probabilities
(vectors with unity sum). For regression tasks, error functions
(such as mean squared error) are adequate, and for object
detection the intersection over union (IoU) [12] is to be
considered. Note the loss function must be differentiable, i.e.,
have a derivative! Metrics such as accuracy, area under the
curve (AUC), Jaccard and cosine distances have particular
interpretations and it is paramount to understand their meaning
for the task you want to learn before using it;
— check if the loss values are reasonable from the first
to the last iteration, inspecting for issues such as overflow,
e.g. the cross-entropy for 10 classes of a random classifica-
tion result (1/10) should be no more than, approximately,

− ln(0.1) = 2.30. Also, be sure your target (labels, range
of values) matches what the network layer and its activation
function outputs. For example, a sigmoid activation outputs
values in the range 0− 1 for every neuron, while the softmax
function outputs values so that the sum of all neurons is 1.
See Figure 4(c) for the effects of using categorical vs binary
cross entropy in a binary classification network in which the
last layer contained only one neuron with sigmoid activation;
— Plot the loss curve for the training and validation (whenever
possible) loss values along iterations (or epochs). Loss value
along iterations should decrease (fairly) smoothly and con-
verge to near zero. If not, of when the training and validation
curves are too different, investigate optimization details or
rethink adequacy of the chosen model for the task.

� 5. Projected features has reasonable structure. It is worth
visualizing the learned feature space with tSNE [13] and
UMAP [14] for example, by projecting into a 2d plane the
learned features, e.g. the output of the penultimate layer (often
the one just before the output/prediction layer). This comple-
ments the loss curve, and may show if such space makes
sense in terms of the application, or if there was no actual
convergence in terms of learning an useful representation as
in the case of Figure 3 in which a 10-class problem obtained
a test accuracy of around 0.35, which is above random, but
still far from having learning an useful representation as the
same test set is projected and show no class structure.

� 6. Model Tuning and Validation. The correct way to adjust
a model is to use a validation set, never the test set. If you
have to make any decision regarding the data preparation,
neural network design, training strategies, and other, such
decisions have to consider only the training data available. In
this scenario you may tune the model using metrics extracted
for example via a k-fold cross validation on the training set.
After all choices on network topology, training strategies,
hyperparameters are made, then you evaluate the final model
on the test set. Otherwise, the results (even for the test set)
are biased and cannot be generalized.

� 7. Use Internal and External Validation. In particular
for computed-aided diagnostics or deployment for decision-
support, it is important to be extra careful with the data
preparation, modeling and the conclusions. Methodological
flaws and biases often lead to highly optimistic reported
performance, but fail to be useful in practice. For example, a
recent study identified 2,212 studies on COVID-19 diagnosis
with chest radiographs and CT scans, from which 415 were
screened, all having methodological flaws and/or underlying
biases [8]. We recommend reading and checking your study
using PROBAST (tool to assess risk of bias and applicability
of prediction model studies) [15] and/or CLAIM (checklist for
artificial intelligence in medical imaging) [16], since they may
be useful not only to health data but to assess models for other
applications.

After you check-listed the items above, if results are still
to be improved, we now have to set ourselves to investigate:
(1) how difficult the learning task is, (2) what is the nature



of the problem that makes it difficult and what options can
be used to address it. Let us begin with difficult scenarios, as
discussed in next sections.

Fig. 2. Cell images resized to a size acceptable by a pre-trained network:
left (128 × 128) still retaining structures of the cell, right (64 × 64) with
insufficient details that would hamper learning.

Fig. 3. t-SNE projection of the test set of STL-10 image features, extracted
from the penultimate layer of a neural network that reached 35% test accuracy,
but for which the learned representations shows poor class separability.

B. Small datasets and poor convergence

Learning under scarce data is known to be an issue with
deep networks. For images, considering coarse-grained or
category level data, i.e. the classes represent significantly
different concepts such as in clothing and accessories Fashion-
MNIST dataset, studies indicate a minimum of 1500 instances
per class to allow learning. For fine-grained scenarios, i.e.
the differences between concepts are more subtle, as in bird
species CUB-200-2011 dataset (has around 60 instances per
category), the problem may becomes harder if only the visual
data is used in training. Therefore, if you have small data,
consider transfer learning or feature extraction using DNNs
(see Section V), as well as architectures with less capacity (or
reduced complexity). Data augmentation is also a possibility
(see Section IV-E), but if the original data is unrepresented,
the augmented data will also be limited.

C. Imbalance of target data in supervised tasks

Ideally, in classification tasks, the number of examples
available for each class should be similar, and for regression,

training examples covering uniformly the whole range of the
target data should be provided. When such supervision is not
balanced with respect to the target data, one may be easily
fooled by the loss function and evaluation metrics. Otherwise,
one possible strategy is to weigh the classes so that the
instances related to less frequent patterns will become more
i the training process. Also, make sure you use metrics that
evaluate how good the model along all the space of target
values. In addition, data augmentation can be investigated as
a way to mitigate for this imbalance (see Section IV-E).

D. Complexity of models, overfitting and underfitting

Overfitting and underfitting represent undesired scenarios
of learning and are related to the complexity of the models.
Although it is not the scope of this paper to explain those
phenomena (for a more complete explanation refer to [17]), it
is important to know how to diagnose them.

Underfitting usually occurs when the chosen architecture
and training procedure are not well adapted to the task and/or
the difficulty of the dataset at hand. The first symptom of this
effect is a loss curve that converges to a value far from zero,
or when there is no convergence at all.

Overfitting is more common for deep neural nets since
those are generally high capacity models, i.e. have a large
number of trainable parameters that allow for a large space
of admissible functions [17]. It occurs when the network is
excessively adjusted to the training set, approaching a model
that memorizes the training set. Because DNNs often produce
(near) zero error in the training set, it is harder to evaluate
their generalization for future data.

In an attempt to measure how deep networks may mem-
orize the training set [18] uniformly randomized the labels
of examples in benchmark datasets and showed that if the
network has sufficient capacity, those are able to reach near
zero loss (training error) by memorizing the entire training
set. More recently [11] showed lower capacity models may
be practically more useful than higher ones in real-world
datasets, which emphasizes the need for better data quality
data and better evaluation, in particular external validation
before finding a good balance between complexity of the
model and its performance on a particular dataset.

E. Attacks

Deep networks learn features for a specific target task via a
loss function that uses a specific training data. Because of its
low interpretability, it is difficult to know which patterns from
the input data were used to minimize the loss. For example,
when counting white cells in blood smear images, if the purple
color is present in all images with white, the optimization
process has a huge incentive to use the purple color only as
an indicator for white cells. Therefore, in future images, if
there is purple dye in a blood smear medium (not the actual
cells), the classifier may use this to incorrectly, but with a high
confidence, classify the image as containing white cells. On
the other hand, an image with white cells containing a different
shade of purple may not be detected. The same can happen



(a) Loss values for different normalization (b) Accuracy for different normalization (c) Accuracy for different losses

Fig. 4. Comparing loss curves (a) and accuracy (b) on the training set when training the same network with the same dataset for which the instances were
normalized to 0-1 (dashed red line) and not normalized (dotted blue line), and the accuracy when using different loss functions (c).

in soundscape ecology, for example when distinguishing from
different bird species from its singing pattern. If there is a
background noise, i.e. a critter, that usually sings at the same
time of the day as some birds, the sound of the critter may be
used by the network to detect the bird. In both scenarios, the
features obtained after training are not the concept we wished
to learn.

For example, in Figure 5 we show two test images one
without attack, and the other containing a visible one-pixel
attack, in which images in the training set from a given class
contain a white pixel in a fixed given position, biasing the
model to use that white pixel in order to predict the class, while
neglecting other visual concepts. In this case we deliberately
included the pixel in a visible region, but one could include
that in less obvious regions such as in the border, or even add
subtle features, such as gradient with similar effects [19].

Fig. 5. Example of pixel attack in which the same network is given as input
two testing images (not seeing during training state), the first without attack
and the second with a one-pixel attack (see the white dot on the car’s door),
followed by the three most probable classes output by the network. In this
image the pixel was included in a visible region to facilitate visualization.

III. ARCHITECTURE OPTIONS

A. Types of convolution units

Convolutions are of course the most important operation in
CNNs, which means there are many studies in the literature
bringing new ideas to this classic operation.

Let the kernel size, k, refers to the lateral size of each
kernel in a convolutional layer, and we consider all those
kernels to be square, so (k, k) in size. Each kernel is applied

one input channel to be accumulated for one output channel,
which leads to each convolutional layer having the collection
of (cin, cout) kernels for a total of (k, k, cin, cout) learnable
weights. The stride of a conv. layer refers to the step between
each “application” of a kernel when it “slides” over the image,
in the classic operation this step size is always one.
� 1× 1 convolution can be useful for reducing computations
further into networks by combining values along the channels
of a single pixel. These operations do not take into account
any neighbourhood, but perform the role of weighing and
collecting information for each pixel on all cin channels and
outputting at a new channel dimensionality cout.
� Transposed Convolutions play the role of a learnable,
weighted upsampling operation in generative networks, au-
toencoders and pixel-to-pixel models (e.g. segmentation tasks).
The concept simulates a fractional stride, so before applying
the kernels a feature map is padded with zeros between
spatial dimensions. When using this operation it is important
to choose k as an even number to avoid the “checkerboard
effect”, per [20] on the effect.
� Spatially Separable Convolutions save on computation by
breaking a larger convolution operation into two smaller oper-
ations. This is usually accomplished by making a convolution
with k×k kernels into a 1×k followed by a k×1 operation.
� Depthwise Separable Convolutions Follow a similar princi-
ple to spatially separable ones by also breaking the traditional
operation into two more efficient ones. First, the feature map
is convolved with cin k × k kernels, but instead of summing
the resulting activations as usual, the cin matrices go through
a 1×1 convolution to map the output to have the desired cout
number of feature maps. This yields the same output shape as
the traditional operation, but at a fraction of the cost.

B. Width, Depth and Resolution

Techniques for designing deep networks have evolved con-
siderably since AlexNet [21] won the 2012 ImageNet chal-
lenge. One of the main fronts of discussion is around scaling
networks up or down find a balance between accuracy and
memory/computational efficiency. Width, Depth and Resolu-
tion are strategies with different pros and cons.



� Wider Nets are easier to train and are able to capture finer
details in images (such as background information). Increasing
width increases computational cost exponentially [22]
� Deeper Nets perform better on “well-behaved”
datasets [23], such as single-object classes with “clear”
objects, while wider nets did better on classes that represent
scenes (e.g. “bookshop”, “seashore”).
� Scaling Depth, Width and Resolution Together yields the
best results for a wide range of tasks and desired accuracies.
Frameworks for scaling the three variables together were
presented in EfficientNet [24] and MobileNet [25].

C. Pooling

Pooling layers have been a staple of CNNs since their
introduction; These downsampling operations are useful both
for saving on computation, memory, and for summarising
feature maps as networks get deeper.
� Max Pooling is the most widely used method for classifica-
tion as it enforces discriminative features within the network.
� Average Pooling was the first pooling approach and is
currently used in Generative Adversarial Networks as in those
models they better match the upsampling layers of generators.
� Strided Convolutions, with step size > 1 are a way of im-
plementing “learnable pooling”. Less common in classification
CNNs, more common in GAN designs.
� Blur Pooling is a solution proposed by [26]. Their findings
showed that current operations break the shift equivariance
expected of CNNs and proposes that pooling operations are
first densely evaluated, blurred by a low pass filter and only
then subsampled. This improves shift equivariance.

D. Transformers and ViT

Transformers are a recent architecture created primarily for
language tasks [27]. It relies on self-attention as the defining
mechanism of its layers. Self-attention is very different from
convolutions and from recurrent layers in that very little
inductive bias is taken into account for its mechanism.

On attention layers, the relevance of one item to all other
items including itself is estimated so that each item becomes
a weighted average of each most relevant counterpart. This
is done by learning three projection matrices Wq,Wk,Wv

(similar to 3 dense layers) applied to the input items X:

Z = σ

(
(XWq)(XWk)T√

dq

)
XWv (1)

where σ is the softmax function that makes the resulting
attention weights (the result of (XWq)(XWk)T ) behave as
a probability function that weights the values XWv . dq is the
dimensionality of each item.

The architecture was quickly applied to compute vision
tasks as well. Notable examples being the ViT [28] for image
recognition, iGPT [29] for image generation. While ongoing
work with this architecture is exciting, the lack of inductive
bias means that those models require much more training data
than CNNs. ViT for example cannot be trained from scratch
on the ImageNet dataset alone and perform well.

IV. IMPROVING OPTIMIZATION

Optimization choices: algorithm, learning rate (or step size)
and batch size, matters when using deep networks for learning
representations. Using default options with arbitrary opti-
mizers may lead to suboptimal results. Also, normalization,
regularization and the sample size may significantly influence
the optimization procedure.

A. Optimizer and batch size

The original Gradient Descent algorithm computes the gra-
dient at one iteration using all training data. Stochastic Gradi-
ent Descent (SGD) is an approximation that allows calculating
the gradient of the cost function based on a random example
or a small subset of examples (minibatch). The regular SGD
is a conservative but fair choice, as long as the learning rate
and batch size are well defined. In fact, nearly every state-
of-the-art computer vision model was trained using SGD, for
example ResNet [30], SqueezeNet [31], Faster R-CNN [32],
Single Shot Detectors [33].

Adaptive methods such as Adam and RAdam are good
alternatives, requiring smaller learning rate (LR) values (0.001
or lower) and larger batch sizes when compared to SGD,
which is less sensitive to batch size choice and LR choice
is often around 0.01. Momentum can be used as an to accel-
erate convergence of regular SGD, however it adds another
hyperparameter (the velocity weight) to be set.

B. Learning rate scheduling

A bad learning rate choice may ruin all other choices.
Because the parameter adjustment is not uniform along the
training process, a learning rate/step adaptation using schedul-
ing should always be considered:
� Step Decay, decreases the learning rate by some factor along
the epochs or iterations, e.g. halving the value every 10 epochs,
� Exponential Decay, reduces the learning rate exponentially.
� Cosine Annealing, continuously decreases step to a mini-
mum value and increase it again, which acts like a simulated
restart of the learning process [34].

C. Normalization

Normalizing data is a staple of classic machine learning.
Since deep models are composite functions, it is beneficial to
keep intermediary feature maps within some range:
� Batch Norm. (BN), a widely known technique, it was intro-
duced by [35] to accelerate training of deep networks; it works
like a layer that standardizes the feature maps across each input
in a minibatch (hence the name). As learning progresses it
also learns an average mean and standard deviation across the
dataset that can then be used for doing single sample inference.
Santurkar et. al. [36] showed that BN’s advantage comes from
making the optimization space smoother.
� Instance Norm. can be also designed as a layer, but instead
of performing standardization across input samples, it does so
for each channel of each individual sample. It’s performance
is worse than BN for recognition. It was designed specifically
for generative and style transfer models [37].



� Layer Norm. Performs standardization for each individual
sample but takes mean and standard deviation from all feature
maps. It was created [38] because BN cannot be applied in
recurrent networks since the concept of a batch is harder to
define in that context. Layer Norm. is also used on most
Transformer Implementations.

D. Regularization via Dropout

Comprises mechanisms to help find the best parameters
while minimizing the loss function. During the convergence
process of deep networks, several combinations of parameters
Θ can be found to correctly classify the training examples.
Hence, Dropout [39] works by deactivating p% of neurons,
mainly after dense layers. This avoids some neurons to over-
specialize/memorize specific data. At each iteration of train-
ing, dropout provides different subsamples of activations, i.e
different stages of the network. Consequently, this mechanism
prevents overfitting during training. During inference dropout
is turned off so that all neurons are activated.

E. Data Augmentation

Unlike the other optimization techniques mentioned before,
which work to improve performances by acting on the network
structure, data augmentation techniques focus exclusively on
increasing the size and variability of the training set [40]. Con-
ceptually, it generates new instances derived from the original
training set by manipulating the features and replicating the
original label to the generated example. Thus the training set
becomes more variable and larger. Data augmentation can also
be used to balance datasets (see Subsection II-C), controlling
one of the drawbacks of deep learning [41]. A recurrent
concern in these techniques is to ensure that the transformation
performed does not alter its concept.

V. TRAINING PROCEDURES BEYOND THE BASICS

The regular approach for training deep networks is to design
its topology, define its training strategies, randomly initializing
all parameters and then train from scratch. However such
networks are both data-hungry and highly sensitive to initial-
ization. To overcome those issues, weight warmup procedures
were studied, such as first training an unsupervised autoen-
coder [42] and then use its encoder weights as initialization. In
addition, a widespread approach is to download models pre-
trained using a large datasets such as ImageNet in the case
of image classification [43]. This is called transfer learning,
and assumes the model has generalization capability. Due to
the hierarchical structure of deep networks, in which different
layers provide different levels of attributes, even different
image domains may benefit from pre-training [44], [45].
– Transfer learning from pre-trained weights:

1) remove the original output layer, design a new output
layer and randomly initialize its weights;

2) freeze the remaining layers, i.e. making the layers not
trainable, by not allowing their parameters to be updated;

3) train the last layer for a number of epochs.

– Fine-tuning after transfer learning, unfreeze and train a
subset of layers using a small learning rate (often 10−4 or
even less). As a rule of thumb, one starts by unfreezing the
layers closer to the top (output) of the network and, the more
data one has, more layers can made trainable. Use with care:
if your dataset is small, beware not to overtrain.
– Pre-trained nets can be used as feature extractor in sce-
narios with small sets of data, in which even transfer learning
would be unfeasible. For this, perform a forward pass and get
the activation maps of a given layer as a feature vector for
the input data. Getting the output from the penultimate layer
is a fair choice since this represents input data globally [44].
However, one can also insert a global pooling layer just after
a convolutional layer to summarize the data. Previous studies
show that combinations coming from different layers improve
the representation [46], [47].

Alternatively to the use of a global pooling layer, get all
activation maps/values (often high dimensional) and carry out
a separate dimensionality reduction, for instance using Prin-
cipal Component Analysis (PCA). With the extracted features
one can proceed with external methods such as classification,
clustering, and even anomaly detection [45].

In the next sections we will cover training strategies beyond
the transfer learning approach.

A. Curriculum Learning
This concept is based on the human strategy of creating a

study script, in which a teacher elaborates a student’s learning
order, facilitating training [48], [49]. With the premise that
part of the data (or the task) at hand is easier than others
to be learned, instead of trying to train all model at the
same time with randomly sampled data, it is possible to
define an order of instances or tasks. The basic technique
works with instances by defining: a scoring function and a
pacing function. The scoring function is a metric to sort the
training examples from the easiest to the most difficult, e.g. a
shallow classifier confidence. The pacing function, e.g. linear,
exponential, dictates the learning speed to incorporate more
(difficult) examples into the training set. Note that unbalanced
scenarios can be harder when applying curriculum learning.
Also, learning rate have to be properly investigated so that
not to degrade performance [49]. Curriculum learning can also
be applied as a sequence of tasks, where the easiest task is
performed before the most difficult ones [50].

B. Contrastive/Distance Learning
Deep learning is often used to learn representations using

tasks such as classification, e.g. via CNNs, and reconstruction,
e.g. via Autoencoders. An alternative way is using contrastive
learning, which consists of using losses designed around the
task of learning (dis)similarities between instances.

Commonly used losses are: contrastive, which works by
optimizing distances between representations of pairs of in-
stances, and its variant triplet loss which works using triplets of
instances. While initial applications included face recognition
[51] and content-based image retrieval [50], more recently self-
supervised learning made use of this strategy.



C. Self-supervised Learning

Given a task and sufficient labels, supervised learning can
solve it. But large amounts of manually labeled data are
often costly and time-consuming to obtain. Sometimes real-
world applications require concepts that are outside the scope
of standard datasets. And in some cases, vast amount of
unlabelled images is readily available.

Self-supervision is a form of unsupervised learning where
the data itself provides the supervision. It relies on pretext
tasks that can be formulated using only input data. For
example one can produce surrogate (or pseudo) labels for
classification or design systems that learn to compare, using
a contrastive learning strategy. Those are than used to pre-
train a model instead of relying only on large-scale benchmark
datasets. Methods include predictions of data rotation, relative
positions, maximization of mutual information, cluster-based
discrimination and instance discrimination. Relevant works
are SimCLR [52], SwAV [53] and Barlow Twins [54]. For a
deeper understanding of those models and an extensive view
of another methods, we recommend [55] and [56].

VI. RUNNING THE FINAL MILE TO IMPROVE PREDICTIONS

After previous strategies were explored, some other tricks
may produce small but valuable improvement.

A. Activation Functions beyond ReLU

The Rectified Linear Unit (ReLU) became the standard
activation function for hidden layers of deep networks because
it avoids saturation which can cause training to slow down due
to near-zero gradients. The problem is that values of ReLU
near zero produce non-useful or bad estimates for the gradient.
Numerically, it may lead to neurons that stuck completely in
the negative side and always outputs zero for the training set.
Swish and Mish functions were proposed to improve this.

Swish is a gated version of Sigmoid and defined as s(x) =
x·σ(βx), where σ(.) is the Sigmoid function and β is a hyper-
parameter that can be adjusted arbitrarily or trained. Mish is
defined as m(x) = x · tanh(ln(1 + ex)), which is bounded
below and unbounded above and the range is approximately
[−0.31,∞]. Small but consistent improvement were observed
when using Swish and Mish instead of ReLU in hidden layers
of the network, with a slight advantage for Mish.

B. Validation and Test-Augmented Data

To assess the robustness of the trained model, one can
compare its performance in the original validation set with
a perturbed version containing only modified versions of the
instances, i.e. by translation, noise injection, etc, one can
decide to include those perturbed data in the training set.

To improve final performance after the model is trained,
given a test example x, obtain augmented versions:
x(1), x(2), . . . x(m), and combine the network predictions
ŷ(1), . . . ŷ(m) (via average, majority voting or other [57]).

VII. CONCLUSION

This paper offers as a reference to allow researchers and
practitioners to avoid major issues and to improve their models
with less usual techniques. While DNNs have high general-
ization capacity and allow significant transfer learning, there
are important concepts that require attention to allow learning.
The basic recommendations for machine learning should be
observed, and given the representation learning nature of deep
networks, employ other practices that mainly try to improve
the representations, not only the main objective function.
Going beyond the basic techniques, leveraging unlabeled data
and carefully designing optimizations steps beyond the basics
may be the way towards more reliable models.

VIII. ACKNOWLEDGMENTS

The authors are grateful to FAPESP grants #17/22366-8,
#19/07316-0 and #19/02033-0 and CNPq 304266/2020-5.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[2] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software
engineering challenges of deep learning,” in 2018 44th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2018, pp. 50–59.

[3] D. M. Dimiduk, E. A. Holm, and S. R. Niezgoda, “Perspectives on the
impact of machine learning, deep learning, and artificial intelligence on
materials, processes, and structures engineering,” Integrating Materials
and Manufacturing Innovation, vol. 7, no. 3, pp. 157–172, 2018.

[4] C. F. Higham and D. J. Higham, “Deep learning: An introduction for
applied mathematicians,” Siam review, vol. 61, no. 4, pp. 860–891, 2019.

[5] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo,
K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean, “A guide to deep
learning in healthcare,” Nature medicine, vol. 25, no. 1, pp. 24–29, 2019.

[6] S. Christin, É. Hervet, and N. Lecomte, “Applications for deep learning
in ecology,” Methods in Ecology and Evolution, vol. 10, no. 10, pp.
1632–1644, 2019.

[7] I. Chalkidis and D. Kampas, “Deep learning in law: early adaptation and
legal word embeddings trained on large corpora,” Artificial Intelligence
and Law, vol. 27, no. 2, pp. 171–198, 2019.

[8] M. Roberts, D. Driggs, M. Thorpe, J. Gilbey, M. Yeung, S. Ursprung,
A. I. Aviles-Rivero, C. Etmann, C. McCague, L. Beer et al., “Common
pitfalls and recommendations for using machine learning to detect and
prognosticate for covid-19 using chest radiographs and ct scans,” Nature
Machine Intelligence, vol. 3, no. 3, pp. 199–217, 2021.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[10] M. Ponti, L. S. Ribeiro, T. S. Nazare, T. Bui, and J. Collomosse,
“Everything you wanted to know about deep learning for computer
vision but were afraid to ask,” in SIBGRAPI Conference on Graphics,
Patterns and Images Tutorials (SIBGRAPI-T 2017), 2017, pp. 1–25.

[11] C. G. Northcutt, A. Athalye, and J. Mueller, “Pervasive label errors
in test sets destabilize machine learning benchmarks,” arXiv preprint
arXiv:2103.14749, 2021.

[12] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bound-
ing box regression,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 658–666.

[13] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[14] L. McInnes, J. Healy, N. Saul, and L. Großberger, “Umap: Uniform
manifold approximation and projection,” Journal of Open Source Soft-
ware, vol. 3, no. 29, p. 861, 2018.

[15] R. F. Wolff, K. G. Moons, R. D. Riley, P. F. Whiting, M. Westwood,
G. S. Collins, J. B. Reitsma, J. Kleijnen, and S. Mallett, “Probast: a tool
to assess the risk of bias and applicability of prediction model studies,”
Annals of internal medicine, vol. 170, no. 1, pp. 51–58, 2019.



[16] J. Mongan, L. Moy, and C. E. Kahn Jr, “Checklist for artificial intelli-
gence in medical imaging (claim): a guide for authors and reviewers,”
2020.

[17] R. F. Mello and M. A. Ponti, Machine learning: a practical approach
on the statistical learning theory. Springer, 2018.

[18] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” in International
Conference on Learning Representations (ICLR), 2016.

[19] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 427–
436.

[20] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, 2016.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[22] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceed-
ings of the British Machine Vision Conference 2016, BMVC 2016, York,
UK, September 19-22, 2016, R. C. Wilson, E. R. Hancock, and W. A. P.
Smith, Eds. BMVA Press, 2016.

[23] T. Nguyen, M. Raghu, and S. Kornblith, “Do wide and deep networks
learn the same things? uncovering how neural network representations
vary with width and depth,” in International Conference on Learning
Representations, 2021.

[24] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp.
6105–6114.

[25] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[26] R. Zhang, “Making convolutional networks shift-invariant again,” in
ICML, 2019.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds. Curran Associates, Inc., 2017, pp. 5998–6008.

[28] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in International Conference on
Learning Representations, 2021.

[29] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever,
“Generative pretraining from pixels,” in Proceedings of the 37th Inter-
national Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, H. D. III and A. Singh, Eds., vol. 119. PMLR,
13–18 Jul 2020, pp. 1691–1703.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[31] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.

[32] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards
real-time object detection with region proposal networks,” in Advances
in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds., 2015, pp. 91–99.

[33] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C.
Berg, “SSD: single shot multibox detector,” in European Conference on
Computer Vision, 2016, pp. 21–37.

[34] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, p.
448–456.

[36] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch nor-
malization help optimization?” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 2488–2498.

[37] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Instance normalization:
The missing ingredient for fast stylization,” CoRR, vol. abs/1607.08022,
2016.

[38] L. J. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR,
vol. abs/1607.06450, 2016.

[39] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[40] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48,
2019.

[41] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey
on addressing high-class imbalance in big data,” Journal of Big Data,
vol. 5, no. 1, pp. 1–30, 2018.

[42] G. B. Cavallari, L. S. Ribeiro, and M. A. Ponti, “Unsupervised represen-
tation learning using convolutional and stacked auto-encoders: a domain
and cross-domain feature space analysis,” in 2018 31st SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE,
2018, pp. 440–446.

[43] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models trans-
fer better?” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2661–2671.

[44] M. A. Ponti, G. B. P. da Costa, F. P. Santos, and K. U. Silveira,
“Supervised and unsupervised relevance sampling in handcrafted and
deep learning features obtained from image collections,” Applied Soft
Computing, vol. 80, pp. 414–424, 2019.

[45] F. P. dos Santos, L. S. Ribeiro, and M. A. Ponti, “Generalization of
feature embeddings transferred from different video anomaly detection
domains,” Journal of Visual Communication and Image Representation,
vol. 60, pp. 407–416, 2019.

[46] F. P. dos Santos and M. A. Ponti, “Alignment of local and global features
from multiple layers of convolutional neural network for image classifi-
cation,” in 2019 32nd SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI). IEEE, 2019, pp. 241–248.

[47] Y. Zheng, J. Huang, T. Chen, Y. Ou, and W. Zhou, “Cnn classification
based on global and local features,” in Real-Time Image Processing and
Deep Learning 2019, vol. 10996. International Society for Optics and
Photonics, 2019, p. 109960G.

[48] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning, 2009, pp. 41–48.

[49] G. Hacohen and D. Weinshall, “On the power of curriculum learning
in training deep networks,” in International Conference on Machine
Learning. PMLR, 2019, pp. 2535–2544.

[50] T. Bui, L. S. F. Ribeiro, M. Ponti, and J. P. Collomosse, “Sketching
out the details: Sketch-based image retrieval using convolutional neural
networks with multi-stage regression,” Comput. Graph., vol. 71, pp. 77–
87, 2018.

[51] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–
823.

[52] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[53] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” 2020.

[54] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins:
Self-supervised learning via redundancy reduction,” arXiv preprint
arXiv:2103.03230, 2021.

[55] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep
neural networks: A survey,” IEEE transactions on pattern analysis and
machine intelligence, 2020.

[56] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” IEEE Transactions
on Knowledge and Data Engineering, 2021.

[57] M. Ponti, “Combining classifiers: from the creation of ensembles to
the decision fusion,” in 2011 24th SIBGRAPI Conference on Graphics,
Patterns, and Images Tutorials. IEEE, 2011, pp. 1–10.


