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Abstract—In computer vision, the restoration of missing
regions in an image can be tackled with image inpainting
techniques. Neural networks that perform inpainting in videos
require the extraction of information from neighboring frames
to obtain a temporally coherent result. The state-of-the-art
methods for video inpainting are mainly based on Transformer
Networks, which rely on attention mechanisms to handle temporal
input data. However, such networks are highly costly, requiring
considerable computational power for training and testing, which
hinders its use on modest computing platforms. In this context,
our goal is to reduce the computational complexity of state-of-
the-art video inpainting methods, improving performance and
facilitating its use in low-end GPUs. Therefore, we introduce
the Fast Spatio-Temporal Transformer Network (FastSTTN), an
extension of the Spatio-Temporal Transformer Network (STTN) in
which the adoption of Reversible Layers reduces memory usage
up to 7 times and execution time by approximately 2.2 times,
while maintaining state-of-the-art video inpainting accuracy.

I. INTRODUCTION

Image inpainting is the restoration of missing or damaged
regions of an image by using information from its surrounding
area [[1]]-[4]. Possible applications for this method also include
removing watermarks or undesirable objects [1]], [3[, [4]], as
depicted in Fig. [T} Despite the rapid progress of deep neural
networks in performing such tasks, it is still challenging to
extend these methods to videos, due to the additional time
dimension [2] and the need to maintain temporal coher-
ence [3]]. Due to sudden movements and non-trivial changes,
performing video inpainting through independent frame-by-
frame restorations may cause serious temporal inconsistencies
[1], [2]. To overcome this issue, the extraction of temporal
information from subsequent or preceding frames is required
to obtain temporal coherence [1]]. However, the use of such
temporal information significantly increases the computational
complexity of the networks [2], turning the video inpainting
process unfeasible in some cases.

Recent state-of-the-art methods for processing temporal
information are based on the Transformer Network [5]], which
makes efficient use of attention mechanisms. Outstanding
results have been achieved by such attention-based models
in various tasks, such as musical composition [6]], natural
language processing [[7], and the generation of super-resolution
images, proving capable of fooling human observers three
times more than previous methods [8]. Despite its simplic-
ity [3]], training Transformer Networks can be extremely long
and costly, and is often realistic only in powerful supercom-
puters [9]].
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Regarding video inpainting, still few approaches are found
in the literature employing Transformer Networks. Never-
theless, the Spatial-Temporal Transformer Network (STTN)
outperforms competing methods, achieving state-of-the-art in
such a task [4]]. Importantly, this breakthrough is accomplished
at a high computational cost. According to the authors, for
instance, the training and fine-tuning of the STTN have lasted
3 days and 1 day, respectively, on 8§ NVIDIA V100 GPUs.
Recent works have proposed modifications to the Transformer
architecture, such as the Reformer Network [9], which aims
for memory usage and execution time reduction through two
different strategies.

In this context, the present work aims for reducing the
computational complexity of attention-based state-of-the-art
video inpainting, improving performance and facilitating its
use in low-end GPUs. To achieve this goal, we introduce
the Fast Spatio-Temporal Transformer Network (FastSTTN).
Our architecture relies on the Spatial-Temporal Transformer
Network (STTN) [4]], augmented with Reversible Layers [9],
which recalculate layers’ activations when necessary, eliminat-
ing the necessity of storing all them in memory. Such a strategy
allows for a considerable reduction in memory usage (up to 7x)
and execution time (approximately 2.2x). We perform our ex-
periments on the YouTube-VOS Dataset [[10]] achieving state-
of-the-art video inpainting results. The FastSTTN accuracy is
on par with other competing approaches in the literature, but
at a significantly lower computational cost, which constitutes
a relevant contribution.

II. RELATED WORKS

A. Video Inpainting

Existing works for image inpainting [11]]—[13]] usually adopt
diffusion-based or patch-based methods which try to fill certain
image regions with information extracted from other areas or
from other frames. However, these methods fall short when
applied to video inpainting due to the diversity of visual
content present in the scenes and blurs caused by sudden
camera movements [[14].

Many learning-based methods found in the literature use
neural networks with convolutions to map spatio-temporal
information and predict pixels in missing regions [15]—[17].
Nonetheless, such methods present too many parameters
making their training difficult [[18]. Moreover, the use of
convolutions present additional limitations such as spatial
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Fig. 1. FastSTTN sample results: our method is capable of inpainting missing regions in video frames efficiently taking into account spatio-temporal information.
From the top to the bottom row: original frames, frames with undesirable objects suppressed with segmentation masks, and the resulting inpainted frames.

misalignment, lower resolution in the filled area, and blurry
image when in complex scenes [1]I, [19].

On the other hand, distinct methods adopt 3D convolutions
to deal with the additional dimension of time due to the need
for temporal coherence [1]], [2]], [14]l, [20]. In these approaches,
different techniques are used in order to capture information
from neighboring frames to be applied to a target region. Other
works adopt recurrence to improve the temporal stability of the
results both in the short and long term, mitigating the problem
of visual artifacts, when there is occlusion in a region and
movements discontinuities [2].

Optical flow has also been extensively explored for video
inpainting [19]-[21]]. Xu et al. consider that completing
a missing flow is much easier than completing pixels in a
missing region, since it would naturally preserves temporal
coherence. Thus, the optical flow synthesized by their network
is used to guide the propagation of pixels in order to fill in
missing regions in the video. Most pixels in such regions can
be propagated and deformed from visible regions, and the
few regions that do not appear in the video are filled using
pixel hallucination [14]]. Strobel et al. apply inpainting
to the optical flow obtained from the input video to guide the
copy-based frame-to-frame inpainting. This method fills target
regions by copying and pasting patches from other regions.
The connection between the reference frame and the region
to be filled is obtained through the filled optical flow of the
original scene through a similarity function. Thus, although the
inpainting process is performed spatially, one frame at a time,
the temporal consistency is maintained through the optical flow
used to obtain the patches to be copy-pasted into the missing
regions.

Zou et al. [19] take a different path, combining techniques
used in 3D convolutional and optical flow methods to solve
the problems of artifacts and spatial misalignment that occur
in these methods. Their model uses a Temporal Shift Module
(TSM), which combines 2D convolutions and channel shifting
into temporal information to mimic 3D convolutions. The
authors apply improvements to this module in order to correct
the misalignment that occurs during the video inpainting. Such
a module is used in feature maps at different scales and

depths. On the other hand, the optical flow is used to align
the temporal features of neighboring frames which are applied
together with the spatial features of the target frame.

The methods that use optical flow handle well spatial infor-
mation and are able to handle a higher resolution compared
to convolutional and attention methods. Despite this, they are
highly dependent on the accuracy of the optical flow and can
generate visual artifacts or be unable to capture refined details
in case of errors [19]. Also, they may fail to look up relevant
information in the reference frame when there is background
movement [22]. Finally, they may also suffer from the lack of
texture in the inpainting [23]].

B. Transformer-based Video Inpainting

The application of Transformer Networks for tackling video
inpainting is still incipient in the literature. However, the few
existing approaches already have achieved remarkable results
in the task. Firstly, we can mention the STTN by Zeng et
al. [4]], which process spatio-temporal information from a set
of frames extracted from a video in order to fill a region
from a target frame defined by a binary mask. The model
has an encoder-decoder architecture, with the encoder being
responsible for transforming the input into features and passing
them to the Transformer module, and the decoder responsible
for processing the output of the Transformer and generate the
restored image. This model is closely related to the present
work and is revisited in Section

Liu et al. introduce an architecture similar to the STTN,
named Decoupled Spatial-Temporal Transformer (DSTT).
This approach separates the spatio-temporal features into two
groups: one group with temporal information and the other
with spatial information. The group with the temporal in-
formation is passed to a temporal block, where continuous
movements in small spatial zones are detected. Meanwhile,
the group with spatial information is passed to a spatial block,
which detects local textures in the image. The two groups are
processed and the resulting information is applied to the region
to be filled in the video.

Despite the state-of-the-art results achieved by such meth-
ods, both of them demand considerable computational power



during training and testing processes. Our contribution, the
FastSTTN, is an efficient Transformer Network which differs
from these previous video inpainting approaches since it
allows a substantial reduction in memory usage and execution
time.

C. Efficient Transformer-based Methods

The literature shows that the original Transformer Net-
work [5] presents high computational complexity requiring
considerable computational power for training and testing.
Thus, different methods for reducing memory consumption
and the quadratic complexity of Transformer-based models are
desirable. Thereby, many modifications emerged, proposing
changes both in its architecture and in its attention modules
[24].

Choromanski et al. [25]] identify that the bottleneck of the
Transformer is the operation SoftMaz(Q-K ).V, where Q
(query), K T (keys), and V' (values) have the dimensions [L, d],
[d, L] and [L, d], respectively. The matrix resulting from the
multiplication of Q and K T has dimensions [L, L]. According
to the authors, this problem could be solved if there were some
way to decompose the SoftMax operation, so that first one
calculates the multiplication of KT and V to then calculates
the multiplication of @ with the result of K " -V, resulting in
the approximation SoftMaz(Q-K")-V ~ Q-(K"-V). This
approximation would result in a linear complexity. However,
according to the authors, using only trivial mathematical
methods, it is not possible to carry out such a decomposition.
Although, with the use of kernels, the authors manage to
obtain an approximation of this function. Kernels, also called
generalized dot products, represent the dot product in a feature
space, which is usually high-dimensional [26]. In other words,
with the use of kernels it is possible to multiply two matrices
(Q - KT) with a linear complexity, through a linear function
that approximates the non-linear function SoftMax.

Therefore, a series of other improvements using kernels
are proposed by Choromanski et al. [25] in a model called
Performer. Kernel parameters are changed so that the equiv-
alent function does not return negative numbers, just because
the SoftMax does not return. The authors claim it is possible
to train the network in very large datasets, such as the Ima-
geNet64, with L = 12288, and the TrEMBL, with L = 8192,
which is not possible with a Transformer within a single GPU.

Also with approximation methods, Wang et al. [27]] demon-
strate that the attention mechanism of the Transformer can
be approximated by a low-rank matrix and proposes a new
mechanism, reducing the complexity of the network from
O(N?) to O(N), both in space and time, making the com-
plexity of their Linformer network linear. The authors assume
that the attention matrix, obtained by multiplying the matrices
Q [n,d] and KT [d,n], resulting in a dimension [n,n], can
be represented by a smaller dimension matrix. Therefore, the
matrix K [n, d] is mapped, in an operation based on the lemma
of Johnson-Lindenstraus [28]], for an approximated matrix of
smaller dimension [k, d], causing the attention matrix Q - K "
to have the dimensions [n, k]. Thus, it remains to also reduce

the matrix V' [n, d] to [k, d], making the matrix resulting from
the operation SoftMax(Q - KT)-V to have the dimensions
[n,d], thus being a linear operation.

Much like the Performer architecture, Katharopoulos et
al. [29] modify the SoftMax function of the Transformer
to apply kernels internally. According to the authors, the
accumulated value Vi/ for the query @); in the position ¢ can
be written in the SoftMax function as

g sm(Qi K) -V,
z Z;V:1 sim(Qi, Kj)

where sim(Q, K) = exp(QT‘dK ) is the similarity function. In

the network proposed by the authors, the Linear Transformer,
the similarity function is expressed as a kernel function, that
is, sim(Q, K) = ¢(Q) T ¢(K), resulting in the expression
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where ¢(-) is some function represented in a feature space,
which is achieved through the use of Kernels. The terms
Z;V:1 o(K;) - VjT and Zjvzl ®(K;) can only be calculated
once and reused at each query, thus obtaining the linear time
and memory complexity O(N).
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III. METHODOLOGY

A. Preliminaries: the Transformer Network Attention Mecha-
nism

The Transformer architecture [S[] is well-known for using
attention to model long-range dependencies. Doing so, it had
a great impact in several areas of deep learning, such as
image processing [8]], [30], language modelling [31]], [32],
and question answering [7]], [33]. The network is presented
as an encoder-decoder architecture. In the encoder, each of
its six layers contains two sublayers: a Multi-Head Attention,
followed by a Fully-Connected Feed-Forward. The decoder is
also made up of six layers, but each layer has three sublayers:
in addition to the two sublayers in the encoder, there is another
Multi-Head Attention sublayer, which performs attention to
the output from the encoder. Its main differential is the
efficient use of attention mechanisms, which connect tokens
of a temporal sequence using relevance-based operations. Such
mechanisms compare a feature with all the other features of a
given input sequence, allowing for greater parallelization than
other state-of-the-art networks. Instead of using the original
features directly, they are used to project linearly the query, key
and values matrices, which are essential to the operation of the
Transformer. These projections have their own weights and are
trainable together with the network. In a simplified way, these
matrices go through scalar product operations and exponential
normalization, causing the network to learn to focus on certain
information from the input sequence. For example, Girdhar et
al. [34] claim that the attention mechanisms have learned to
emphasize hands and faces, in action recognition tasks, which
is often crucial to distinguishing activities like “holding hands”
or “looking at a person”.



The Transformer’s Multi-Head Attention mechanism relates
different positions of a single sequence and calculates its
representation. In other words, it allows inputs to interact with
each other and figure out where to “pay more attention”. In this
mechanism, the input has three representations: the matrices
query (Q), key (K) and value (V), which are obtained by
multiplying the input with a set of weights: Q@ = X - W,
K=X-Wg,and V = X - W, where X is the network’s
input, and W,, W}, W, are trainable weights initialized by
the network.

Since the first step of attention is to obtain the matrices Q, K
and V for the input, the second step is to calculate its attention
score. The score .S determines the relevance of each input in
relation to other inputs, and is calculated as: S = Q- K T. This
operation is known as dot product attention. The third and
fourth steps are to calculate the softmax of the score S, and
then to multiply it with the matrix V: Z = SoftMaxz(S) V.
The idea here is to maintain the values of the inputs you want
to focus on (pay attention), and eliminate irrelevant values
from them. Additionally, the score is divided by /d}, to obtain
more stable gradients, where dj, is the dimension of the matrix
K. This process, dubbed Scaled Dot-Product Attention by its
authors, is represented by the formula

Q- K"
Vi,
The Scaled Dot-Product Attention is also done multiple times
in parallel “heads” and the outputs of all heads are concate-
nated and go through a linear layer, resulting in an output from

the attention layer for its input.

Z = SoftMax(

) V. (1

B. Revisiting the STTN

The Spatial-Temporal Transformer Network (STIN) is a
model proposed by Zeng et al. [4] for tackling video inpaint-
ing. For training, the STTN receives a set of five frames, the
central frame being the target, and the two precedent and two
subsequent frames to the target are the auxiliary frames, or
neighbors. The masks are converted to binary and these are
also passed as input, which highlights the missing regions to
be filled by the network.

For inference, the input is composed of a target frame, the
four neighboring frames, frames distant from them and also a
binary mask for each frame. The distant frames are extracted
from the video with step 10, i.e., only one frame every ten. The
amount of frames varies with the video length and with the
position of the target frame. For example, a video with eighty
frames in total would result in an input with thirteen frames:
a set of five frames (reference and neighbors) and a set of
80/10 = 8 (eight) distant frames, where the reference frames
and neighbors are sequential but selected randomly throughout
the video.

In the STTN, the Multi-scale Patch-based Attention module
was proposed, which is responsible for extracting relevant
information in both temporal and spatial dimensions of the
video. In this module, the frames of the video are fragmented
into patches (patch-based) of different scales (multi-scale):

[108,60], [36,20], [18,10] and [9,5], which are processed
simultaneously by four attention modules, called heads, in
order to adapt to visual changes caused by complex motions
in the video. Thus, when calculating similarities in frames
from different scales, the heads capture the most relevant
information and then fill in the missing region of the frames.
Within each head, the similarity, or score, between the patches
is calculated as:

- ()"

Sij = —F/—

TR
where 1 < 4,57 < N; N is the number of patches of each O
and K matrices; pf) is the ith patch of the gquery matrix; pf is
the jth patch of the key matrix; r1, o are the patch dimensions;
and c is the number of channels of the matrices.

In addition to the Transformer layer used within the net-
work, which the authors call Multi-layer Multi-head Spatial-
Temporal Transformer, the network is composed of an en-
coder and a decoder. The encoder is composed of four 2D
convolutional layers interspersed with four activation lay-
ers LeakyReLU, and generates features from the pixels of
individual frames. The decoder is also composed of four
2D convolutional layers, but its last activation function is
a hyperbolic tangent. Furthermore, two Up Samplings are
performed between them. It is responsible for decoding the
features in order to generate an image from them.

The network adopts as discriminator the 7-PatchGAN [1]],
inspired by studies that shows that adversarial training helps
in the generation of high quality content [1]], [18]], [35]]. The 7-
PatchGAN is composed of six 3D convolutional layers, and it
learns to distinguish whether an image, generated by the STTN,
is real or fake, so that STTN learns to “cheat” the discriminator.

2)

C. Our Approach: the FastSTTN

The general idea of the Transformer [3] is to use attention
to calculate similarities between inputs (e.g., words in a text)
and know the relevance of each input to another. The inputs
are represented by the O, K and V matrices, and then the dot
product of Q and K followed by a division by the square root
of the K matrix dimension are performed. Then, a SoftMax
of the resulting value is applied, which will ultimately be
multiplied by the matrix V, and this is the attention process,
also known as Scaled Dot-Product Attention. The problem
of this method is the time complexity of this calculation,
which is O(L?), where L is the number of inputs to the
network, making it computationally expensive, requiring a lot
of memory when inputs are numerous.

Reversible Layers [36] constitute an strategy to overcome
the previously mentioned issue. The main idea is to eliminate
the need of storing the activations (i.e., input and output ten-
sors) of each layer of the network in memory. Normally, during
the back-propagation, the calculation of the gradient of a layer
is done using such activations, so it is necessary to have them
in memory, after their computation during the forward pass. In
contrast, a Reversible Layer allows activations to be calculated
on-demand. Thus, during the backward pass, activations from
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Fig. 2. Diagram showing how a Reversible Layer works.

one layer are retrieved only using the activations from the next
layer. For this purpose, pairs of inputs x1, x2 and outputs ¥y,
yo are needed. In the forward pass, we have

Y = T1 +F(.7J2) 3)

and
y2 =22 + G(11), 4

while in the backward pass the outputs y; and ys are used to
retrieve the inputs x; and xo with the equations

o =1y2 — G(y1) &)

and
1 =1y — F(x2), (6)

where F'(-) and G(-) are residual layers. Forward and back-
ward passes are illustrated in Fig. [2] For comparison, we have
y = F(x) + x in a traditional residual layer, as illustrated in

Fig.

Fig. 3. Diagram showing how a traditional residual layer works.

In our FastSTTN architecture, illustrated in Fig. we
employ the Reversible Layers strategy in the Multi-Head At-
tention layer and in the Feed Forward layer to obtain reduction
in memory consumption and faster runtime, without loss of
accuracy for filling in frames. These layers are respectively
denoted by the terms F'(-) and G(-) in Eq. (3), @), (3), and

©).

Furthermore, in order to reduce the memory occupied by
the Feed Forward layer, its processing is done in parts, where
its activations are separated into chunks, changing the Eq. (@)
to:

y2 = [y, e 9] = 23+ Gyh), ool + G, (D)
where n. is the number of chunks. Note that there is no
difference in memory consumption by processing the Feed
Forward in a normal fashion, or in chunks in parallel, but
rather by dividing into n. chunks and processing one by one.

IV. EXPERIMENTS

In this section, we present experiments and results which
highlight the computational cost and the quality of our Fast-
STTN method for video inpainting. We compare our results
regarding both training and inference with the closest related
method, the STTN [4]. The experiments are performed on
the YouTube-VOS Dataset [[10] and executed in a NVIDIA
Tesla T4 16GB GPU. Our model was implemented using the
PyTorch library and its code will be publicly available.

A. Dataset

We train the FastSTTN on YouTube-VOS dataset [10]], a
well-known dataset for video inpainting and the largest dataset
for object segmentation in videos. This dataset contains 94
categories of high-resolution videos such as animals, vehicles
and accessories, which have been carefully selected to contain
a wide variety of objects and movements and to represent
everyday scenarios. The dataset has 3,471 training videos, 474
validation videos, and 508 test videos, all taken from YouTube
with each video lasting between 3 to 6 seconds. In addition to
the diversity of videos, the dataset also includes segmentation
of objects in the scenes manually annotated. Fig. [5] shows
samples from the dataset.

The Youtube-VOS dataset can be used to evaluate the
object removal task in videos (video inpainting) because the
segmentation of the videos presents can be adopted as binary
masks for the neural network, where it highlights the region of
the image to be filled. However, for training the model, it is not
possible to use them because it is not known what is actually
behind the objects removed by the network, making it difficult
to assess whether the network filled the region correctly or not.
Thus, following [4]], the training receives as input the videos
from the dataset and masks with random shape and motion
are created and applied to the frames of the videos before
they enter the network. Samples of randomly generated mask
are shown in Fig. [f]

Usually when the region to be filled is too large, the
inpainting result is not satisfactory. To avoid this problem,
the randomly generated masks have a maximum size. More
specifically, the movement of the masks is defined by chance,
where half of the generated masks have some random move-
ment, and the other half are fixed.
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Fig. 4. The FastSTTN architecture. It has an encoder, eight Transformer reversible blocks, and a decoder. The encoder receives the input frames and generates
features from them, and passes these features to the Transformer module. The Transformer process these spatio-temporal features and learns to fill in the holes
in the frames. The decoder transforms the features processed by the Transformer back to images. During training, the input is composed of five sequential
masked frames. For inference, the input is composed of both sequential masked frames and distant frames, with its size varying accordingly to the video size.

Fig. 5. Samples from the Youtube-VOS dataset. Two frame samples (left)
and their respective semantic segmentation masks (right).

B. Results

In order to assess the efficiency of our FastSTTN method,
we compare it with the closest related state-of-the-art method
in the literature, the STTN [4]]. In our low-end setup, we firstly
measure the memory usage and the average time per iteration
of the two methods during training. A batch size of 2 frames
was considered initially since the 8 frames batch originally
employed in the STTN was not supported by a single NVIDIA
Tesla T4 GPU. As shown in Tab.[l, our FastSTTN significantly
reduces memory usage and the execution time per iteration
during training. With batch size equals to 2, the memory
needed by the network is reduced to almost half. Furthermore,
even with a low-end GPU with 16GB of memory, it is possible
to train the FastSTTN with batches of 8 frames, unlike the
STTN.

Secondly, we perform experiments regarding inference time.

Fig. 6. Examples of randomly generated masks that are applied to the input
frames during training.

TABLE I
MEMORY AND AVERAGE TIME CONSUMPTION PER ITERATION AT
TRAINING FOR THE STTN AND THE FASTSTTN ACCORDING TO BATCH

SIZE.
Batch size STIN - FaslSTI"N‘
Memory Time Memory Time
2 9.7 GB ~28 53GB ~ 2.0s
4 MemOut - 121 GB = 3.7s
8 MemOut - 13.7GB  ~ 17.5s

Tab. [lI| shows the results of experiments performed to identify
the maximum number of frames that the networks can process
in an inference step. While the STTN can process up to 13
frames with 16GB of memory, the FastSTTN can handle up
to 123 frames, showing an impressive increase of 9 times the
number of frames that can be stored on the GPU, allowing for



more complex and diverse experiments. As also happens in
training, the FastSTTN was faster than the STTN in inference,
processing the same amount of frames approximately 2.2 times
faster.

TABLE 11
MEMORY OCCUPIED AND FRAMES PER SECOND (FPS) AT THE INFERENCE
OF THE STTN AND THE FASTSTTN IN FUNCTION OF THE NUMBER OF
INPUT FRAMES (NO. OF FRAMES).

No. of Frames STIN FastSTIN
Memory FPS Memory FPS
5 6.7 GB =~ 14.5FPS 1.3 GB =~ 34.4FPS
6 7.5 GB =~ 14.3FPS 1.3 GB =~ 33.8FPS
7 8.8 GB =~ 14.9FPS 14 GB =~ 33.7FPS
8 9.9 GB =~ 14.9FPS 14 GB =~ 33.6FPS
9 112 GB =~ 15.0FPS 1.5 GB  ~ 33.9FPS
10 133 GB =~ 15.7FPS 1.8 GB  ~ 33.8FPS
11 133 GB =~ 15.8FPS 1.8 GB =~ 35.0FPS
12 147 GB =~ 15.3FPS 1.9GB =~ 33.3FPS
13 149 GB =~ 14.7FPS 1.9 GB = 33.0FPS
14 MemOut - 1.9GB =~ 35.3FPS
20 MemOut - 2.8 GB =~ 30.8FPS
30 MemOut - 3.1 GB ~ 26.7FPS
40 MemOut - 4.1 GB ~ 23.4FPS
50 MemOut - 5.1 GB =~ 22.0FPS
60 MemOut - 5.2 GB ~ 21.5FPS
80 MemOut - 124 GB = 17.3FPS
120 MemOut - 148 GB =~ 13.9FPS
123 MemOut - 15.1 GB = 13.0FPS

Following the experiments described previously, regarding
the FastSTTN efficiency and performance, we also have
evaluated its actual accuracy for video inpainting. To this
end, we have trained the FastSTTN using the same training
parameters employed in [4]], except for the batch size which
was equal to 2. The training was finalized with 215k iterations
using the early stopping strategy, taking approximately 5 days.
We have compared our results with the original pre-trained
STTN model (STTN), as well as with a STTN model trained
from scratch, which also presented convergence around 215k
iterations (STTN 215k), which took approximately 7 days. In
Fig. [7| we show qualitative results using fixed random-format
masks.

We also perform a quantitative comparison between the
same models using the metrics SSIM, PSNR and flow warping
error (Fyqrp). The first two are well-known measures of image
quality, while the last evaluates the temporal stability of the
results, as proposed by [37]. It can be seen in Tab. [II] that
all methods presents similar results in terms of accuracy,
even though the improvement of the FastSTTN. In terms of
image quality, the metrics SSIM and PSNR show slightly better
values for the STTN, while the FastSTTN has better values for

TABLE III
QUANTITATIVE EVALUATION IN FUNCTION OF THE METRICS SSIM, PSNR
AND FLOW WARPING ERROR Eyqrp. * BIGGER IS BETTER. T SMALLER IS

BETTER.
Models PSNR (dB)* SSIM *  Euyarp |
STTN [4] 19.16 0.8361  0.000912
STTN (215K it) 19.04 0.8332  0.000937
FastSTTN (215K it) 19.02 0.8297  0.000913

temporal stability.

It is worth mentioning that [4] does not mention the number
of iterations that they trained the STTN on the YouTube-
VOS dataset, only that the training took three days on 8
NVIDIA V100 GPUs, and they even perform an one-day fine-
tuning on the DAVIS dataset [38]]. In this work, we trained
the STTN and FastSTTN models up to 215k iterations for
comparative purposes between them, in order to demonstrate
that the networks are equivalent.

V. CONCLUSION

We propose the FastSTTN, a deep network that aims to
reduce the memory consumption and the running time at train-
ing and inference for state-of-the-art Transformer-based video
inpainting. We have employed the Reversible Layers method
in the Transformer blocks of our architecture. The FastSTTN
achieves a significant memory reduction and, consequently,
an improvement regarding execution time, as demonstrated in
Section [TV] by our experiments and results. Such a reduction
happens without significant performance loss, according to
our qualitative and quantitative results regarding the video
inpainting quality. The FastSTTN has achieved state-of-the-art
results on the YouTube-VOS dataset. Its accuracy is similar to
the closest related method in the literature, the STTN, but more
efficient in terms of memory consumption and processing
speed, which is a relevant contribution. Future works will
be focused in improving the network architecture to increase
the overall accuracy. Furthermore, we intent to evaluate our
method in other video inpainting dataset, such as DAVIS [38§]].
Finally, other Transformer optimization can be evaluated.
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