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Abstract—Detecting anomalies and fault novelties is of high
interest in the industry due to the scarcity of fault examples
to train classification systems. In this article two algorithms
for anomaly detection, One-Class SVM and Isolation Forest,
are successfully used as effective methods for detecting fault
novelties in problems of electrical submersible pumps. Faults
in submersible electric pumps generate an enormous cost for
companies in the oil and gas sector, since the cost of stopping
production to change the equipment is excessive, which makes it
necessary to identify problems before implementation. Empirical
evaluation shows that both one-class classifiers performed sat-
isfactorily, obtaining macro f-measure values of approximately
0.86. For comparison purposes, a Random Forest trained in a
conventional binary classification manner is tested and achieved a
macro f-measure of 0.95. Results show that the proposed solutions
can have practical applications in the classification of problems
in electrical submersible pumps, changing the way the oil and
gas industry addresses this difficulty.

I. INTRODUCTION

An Electrical Submersible Pump (ESP) [1] is an industrial
equipment widely used in offshore oil and gas production. It is
composed of multiple pumps and electric motors. Increasing
the durability of this equipment by avoiding acquiring faulty
components is an important task studied in the literature [2]-
[5]. Since an Electrical Submersible Pump (ESP) is deployed
under deep waters, any maintenance is unfeasible. Failures
may lead to significant financial losses due to the high cost
of replacing the equipment and especially because of the
interruption of production over a long period of time. The
machine learning techniques play a major role in this scenario,
which may lead to automatic and precise fault diagnosis.

Many works have addressed such a problem by using
machine learning techniques on a real-world dataset [2]—[5].
The dataset has data from five different conditions. In addition
to the normal condition (without defect), a vibration signal
collected in the test can indicate misalignment, unbalance,
and mechanical rubbing. In some cases, a faulty sensor may
generate abnormal vibration behaviour. This is considered as a
faulty pattern, although the abnormal behaviour is not neces-
sarily related to the equipment. In [2], a series of comparisons
are made regarding the results of various classifiers in this
multiclass dataset. The work in [3] shows a comparative study
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of classifier architecture, with emphasis on Extreme Learning
Machine, showing that the proposed method has an excellent
learning capability in this type of problem. The authors in
[4] develop a methodology for combining decision templates
with several classifiers, seeking improvements in the diagnosis
of the ESPs. All these before mentioned works used a set
of hand-crafted features extracted from the frequency-domain
spectrum of the vibration signal. A recent study [5] takes
an approach based on triplet networks, a special deep neural
network technique, in which the neural network is trained
for automatically extracting relevant features directly from the
frequency-domain spectrum raw data, without the intervention
of a specialist.

The methodologies covered in previous works are valuable
resources in the analysis of ESPs, since specialists who carry
out this analysis efficiently are very scarce. Usually, the knowl-
edge needed to perform this task is built over many years of
experience and is not easily taught. Experts use computational
tools to visually analyze the spectrum of vibration signal data
collected from several sensors along different points of an ESP
system. Although this procedure is quite effective in reducing
the risk of failure after deployment of the system, the lack
of trained professionals for the service requires more robust
methods capable of dealing with the problem in a simpler way.
This also highlights the difficulty of acquiring and labelling
new data for the problem.

Although the aforementioned methods have raised the stan-
dards for dealing with the problem, they all assume a super-
vised setup with a finite well-known set of possible faults that
an ESP may present. However, this is not always the case
in practice since a new unknown type of fault may appear
unexpectedly. This fact introduces a challenging problem,
since an expert must detect the new fault type and produce
new training instances to retrain the classification model.
Considering the challenging process of generating and the
possibility of these events being rare, it may not be possible
to have a representative training dataset for the fault.

The machine learning techniques already employed in this
context are not able to identify patterns of novel faults that
may eventually occur because they are not trained with these
patterns, once they are rare or may not even have appeared yet.
Therefore, this work approaches the original problem from a
different perspective, trying to indicate whether the new data
has normal or abnormal behavior without using abnormal sig-



nals during training. In this case, a normal equipment indicates
a submerged electric pump that, before being installed, does
not present any type of failure, as its signal only presents
characteristics of the normal type. The importance of clearly
identifying whether the equipment fits this type is enormous,
as the cost generated by stopping production to change the
equipment is much higher than the acquisition cost. The idea is
to learn what is the normal behavior and send an alarm anytime
something different is measured. This enables detecting any
abnormal signal, including those that may appear with an
unknown fault type not available in training data. Given the
new problem description, this work does not aim at overtaking
the state-of-the-art approaches for the supervised task but to
provide a viable alternative to detect new faults when they
appear.

The aforementioned problem is addressed in the literature
as anomaly or outlier detection and is usually referred as
one-class classification in the field of machine learning. One-
class classification methods are viable options for anomaly
detection, since they require only one target class (the majority
class, typically the normal class). These methods are able to
detect if new incoming data belongs to the normal class or not,
without requiring any training examples from the abnormal
classes. Researchers have been active in this field and a good
overview of the recently proposed methods can be found in
[6].

In this context, this work leverages the use of one-class
classification techniques for fault detection in ESP. More
specifically, it investigates two well-known methods, the One-
Class SVM [7] and Isolation forest [8], for detecting abnormal
ESP behaviour. The main challenge of this study compared to
previous approaches is detecting new untrained faults. Results
show that both of them can efficiently detect abnormal signal
patterns in ESP approaching the results of state-of-the-art
methods trained in a fully supervised manner.

The remainder of this paper is organized as follows. Sec-
tion II briefly presents the methodology for acquiring vibration
signals. Section III discusses how fault detection of ESPs
may be performed using the One-class Classifier approach.
Section IV shows the adopted experimental methodology.
Section V compares empirically the one-class classifiers with
a Random Forest binary classifier used as an upper limit.
Section VI discusses the results and presents ideas for future
works.

II. SIGNAL PROCESSING FOR FAULT DIAGNOSIS SYSTEMS

An ESP is an equipment composed of electrical motors,
pumps and seals. Accelerometers are attached at strategic
positions of an ESP for collecting vibration signals.

Once the sensors are attached, the ESP is tested in a suitable
laboratory and under certain frequency and flow operating
conditions. Each sensor measures the acceleration of vibration
at a certain point in the ESP. The vibration signals are
therefore collected from the time domain at a sampling rate
of 4096 points per second and converted to the frequency
domain as it is an easier format to be analyzed by humans.

A specialist is able to analyze the graphics of these signals
in the frequency domain and provide the correct diagnosis.
However, signals in the frequency domain are still difficult to
diagnose by traditional machine learning methods due to the
high number of points per signal and due to the complexity
of the relationship between these points. Due to this difficulty,
a set of features was extracted with the help of a specialist,
seeking to represent the signals in a synthesized way by 8
features used in [2].

« median(3,5) Median of the amplitudes in the interval
(3Hz, 5Hz);

o median(F-1,F+1) Median of the amplitudes in the inter-
val (F-1Hz, F+1Hz);

o a: Coefficient a of the exponential regression of type
e(@X+b) where X is an array of equally separated
frequencies from 5Hz to 19Hz.

e b: Coefficient b of the exponential regression of type
e(@X+0) in the interval (5Hz, 19Hz);

« rotationlx: Frequency of the highest amplitude in the
interval (F-3Hz, F-0.2Hz);

o peaklx: Amplitude in rotationlx;

o peak2x: Amplitude in 2-rotationlx;

o rms(F-1,F+1) Root mean square of the amplitudes in the
interval (F-1, F+1).
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Fig. 1: Sample of a normal and abnormal signal.

III. FAULT DETECTION OF ESPS VIA ONE-CLASS
CLASSIFICATION

Novelty detection or detection of new fault types is a
challenging problem. An ideal solution should not require the
intervention of a specialist. In this situation, an ideal solution
should work directly on the available data, not assuming any
type of special distribution for the abnormal classes. In this
paper, we propose to adopt one-class algorithms for solving
the fault detection problem in ESPs. Instead of relying on a
representative training dataset composed of multiclass training
data, our solution uses only signals of normal behaviour.

The proposed system starts with a preprocessing step that
transforms signals of ESPs with normal behaviour in the



Fig. 2: A ESP system with six components and attached
36 sensors. Each square or circle represents a sensor, the
symbology represents orthogonal placement.

time domain (usually having 400000 points) to the frequency
domain and then extracts the eight real-valued features defined
in Section II. Subsequently, a one-class classification model is
trained on these eight pre-defined features in order to adjust
the threshold parameter defining what is normal and what is
not based on the normal data only. After trained, the one-class
model can be applied to infer whether a new signal of unknown
class belongs to the normal or abnormal group (including new
and old faults). Figure 3 illustrates the proposed solution. Note
that the proposed system is independent of how many fault
types exist and how many are currently known since it does
not consider the fault during training.

Two one-class classification models are investigated to
compose the system, one-class SVM [7] and Isolation Forest
[8], therefore they are described in detail in the following
subsections.

A. One-Class SVM

The one-class SVM classifier [7] adapts the binary support-
vector-machine (SVM) classifier to one-class problems, learn-
ing the limits of the target class (normal signal), and being
able to classify points outside this limit (outliers).

1) The standard Support Vector Machine: A SVM
tries to find a hyperplane for separating data into the
two classes. The SVM considers the data set @ =
{(z1,91), (x2,92), - -, (T, yn)} as points where € R? in
any space where x; is the i-th entry point and y; € {—1,1}
indicates the class the data belongs. A ¢ nonlinear function
creates a nonlinear decision boundary by projecting the data
to a larger dimension where there may be a “straight” hy-
perplane that separates the data from the two classes. When

this hyperplane is projected back into the original space it
assumes a non-linear form. The distance from the hyperplane
to the nearest points of each class is ideally equal, seeking
the maximum margin between classes. To avoid that noise
data provoke classification overfitting, the gap variables &; are
introduced. This allows some points to stay within the margin,
while a constant C' > 0 determines the trade-off between
maximizing the margin and the number of points of training
data within the margin, i.e. training errors. The function that
must be minimized in the SVM classifier is defined as:

min i 16

w,b,E;

subject to: (D)

yi(quﬁ(:vi)—&—b) >1-¢ foralli=1,...,n
&>0 foralli=1,...,n

When this quadratic problem is solved using Lagrange
multipliers, the rule of the decision function for a data point
x becomes:

f(z) =sgn (Z oy K (z, ;) + b>

where the function K(.,.) is a kernel function and «; are the
Lagrange multipliers, every o; > 0 is weighted in the decision
function and, therefore, “supports” the machine. Considering
that SVMs are usually sparse, there will be few Lagrange
multipliers with a non-zero value.

2) One-Class SVM: An approach for adapting standard
SVM classifiers for one-class problems was proposed by [7].
This method separates the data from the origin and maximizes
the distance of the hyperplane from the origin, resulting in
a binary function that captures regions of the space where
the probability density of the data resides, returning +1 in
a “small” region (capturing the data points training) and -1
elsewhere.

Therefore, the quadratic equation to be minimized is defined
as:

Juin %Ilwll2 + % 25 —p
subject to: 2)
(w-@(x;)) =p—¢& foralli=1,...,n

&>0 foralli=1,...,n

It is possible to visualize the similarity of the objective
functions (1) and (2). In the standard SVM, the parameter
C is a regularization parameter used to decide the smoothness
of the fit. In (2), the parameter v assumes this role, defining
an upper limit in the fraction of outliers (mistaken classified
examples in the training set) and is a lower limit of the number
of training examples used as a support vector. Unlike the
parameter C' in (1), the parameter v always varies from 0
to 1 and represents the proportion of outliers (or mistaken
classified examples) in the training set. Therefore, based on
this interpretation, setting a value for this parameter is a
feasible task for the domain specialist.
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(a) Training and Prediction phases for one-class classifiers.
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Fig. 3: Proposed fault detection process via one-class classification.

Resolving by the Lagrange technique again and using a
kernel function for calculations of the scalar product, the new
decision function becomes:

f(z) = sgn((w- ¢ (i) — p) = sgn Z o K (z, i) — p

Therefore, this approach creates a hyperplane characterized
by w and p that has maximum distance from the origin in
the F' resource space and separates all data points from the
origin. Another approach [9], not used in this article, creates
a circumscribed hypersphere around the data in the resource
space.

In this work, the most used choice for the kernel function
K(.,.) is adopted, whereas an empirical experiment was con-
ducted to estimate the proportion of outliers v. The radial basis
function (or RBF kernel), which is mathematically defined as
in (3), is used as kernel function.

K (x,x") = exp (— ! 5 lIx — x'||2> 3)
ng-o

where n; is the number of features (8 in our case) and o is

the sample standard deviation.

An empirical study was conducted to set the value for the
parameter v. A sample of 30 normal condition (without defect)
examples was selected and their classification was reviewed by
the specialist. Miss-classification was detected on 6 examples,
therefore we set v = 0.02. In order to avoid bias of any kind,
those 30 examples were discarded from the training process.

B. Isolation Forest

An approach for adapting tree-based methods to one-class
problems was proposed in [8]. The method seeks to isolate
anomalies, since they are “few and different” and, therefore,
more susceptible to isolation. In a random tree induced by the
data, the partitioning of the instances is repeated recursively
until all instances are isolated, producing shorter paths for
anomalies, because by assumption they are easier to isolate.
Indeed, fewer number of anomalies results in a smaller number
of partitions, since a fewer number of instances requires a
smaller number of splits in the dataset for isolating each

instance. A data set X = (x1,x2, . .., x,) is splitted recursively
by randomly selecting an attribute ¢ and a division value p,
until the tree reaches a maximum size or data can no longer be
split (there is a single instance or all instances have the same
features values). Path Length h(z) is defined as the number of
edges that traverses from the root node to the leaf node for an
instance x in an isolation tree. Since an isolation tree (iTree)
has a structure equivalent to a binary search tree (BST), the
average estimate of height h(z) for determining path length
in the tree is the same as for unsuccessful search in a BST,
being defined as:

c¢n)=2H(n—-1)—(2(n—1)/n)

where n is the number of instances in the dataset and H is
the harmonic number, which can be estimated by H (i) =
In(i) + 0.5772 (Euler’s constant). As c¢(n) is the average of
h(zx) found, this value is used to normalize h(z) and get an
estimation of the anomaly score for a give instance x:

_ E(h(=))

“eln)

s(z,n) =2

where E(h(z)) is the average value of h(z), taken over
all trained trees composing the isolation trees method. It is
interesting to note that the values of s, anomaly score, indicate
that:

o if s is very close to 1, then x is very likely to be an
anomaly;

e if s is much smaller than 0.5, then x is likely to be a
normal value;

« if for a sample, all instances have s close to 0.5, it is safe
to assume that there are no anomalies in the sample.

The authors in [8] verify, based on empirical tests, that
convergence is usually achieved before 1000 trees (estimators),
but this quantity was chosen to be sure that the method
converges well.

IV. EXPERIMENTAL METHODOLOGY

This section describes the experimental setup, the dataset
used and the classification models used for solving our prob-
lem.



A. Dataset

The dataset described in [5] is used to conduct the ex-
periments of this paper. The dataset is composed of 5617
vibration signals obtained through multiple sensors coupled
to strategic points of an ESP (see Section II). Each signal can
show evidence of three types of possible faults: misalignment,
imbalance and rubbing. There are cases in which the sensor
itself is defective, causing abnormal behavior in the collected
data. Although not related to the equipment, a faulty sensor is
considered a fault of the system. In this paper, the one-class
classifiers are trained with signals with a normal behaviour.
In testing phase, signals with abnormal behaviour are added
for performance evaluation. The dataset is composed of 4493
normal signals (80%) and 1124 abnormal signals (20%). The
complete list of distribution of fault types among signals is
presented in Table 1.

TABLE I: Class distribution of 5617 collected vibration sig-
nals.

Class name Type A priori distribution [%]
Normal normal 80
Rubbing abnormal 4.86
Faulty sensor | abnormal 5.25
Misalignment | abnormal 0.93
Unbalance abnormal 8.96

The dataset in question is not in the public domain, however
the authors intend to make it available through an article, so
it would be interesting to follow the authors’ website.

B. An upper bound classifier

In order to analyze the effectiveness of the one-class classi-
fiers for solving the fault detection problem, a binary classifier,
trained with the normal examples (negative class) and the
abnormal classes (positive class) is used as an upper bound.
Since the binary classifier is trained with more training data,
and deals with an easier problem than one-class approaches,
it is expected that one-class approaches achieves an inferior
performance. Therefore, the binary classifier can be seen as
an upper limit. The classification model adopted for the upper
bound classifier is Random forest [10], an ensemble tree-based
method commonly used for classification problems. It has been
successfully used for fault diagnosing of ESPs [2], being the
best one among the tested supervised classifiers models.

The algorithm starts from the construction of a set of
independent and identical initialized decision trees. These
decision trees are made distinct from each other by randomly
selecting subsets of features and instances for training each
one. After the model is trained, each decision tree contributes
with a single vote for a class. The most voted class gives the
final decision.

It is important to emphasize that although the one-class
classifier also deals with a binary problem, the problem
setup is inherently different from the binary classifier used as
upper bound (i.e., Random Forest). The upper bound requires
samples from all classes for training, whereas the one-class
uses only the normal class. Therefore, if samples of a new

type of fault appear, the Random Forest would not be trained
to recognize them, as the one-class classifiers would.

C. Model evaluation setup

In order to compare quantitatively all chosen classifiers
models, the Macro F-measure is used as a performance metric
since there is an evident imbalance in the dataset, making it an
appropriate metric for this problem. This metric is defined as
follows. Denote c as the number of classes in the classification
problem. For each class j, there are individual true positives,
false positives and false negatives, defined as tp;, fp; and fn;,
respectively. Macro-averaged precision and macro-averaged
recall are defined as

. I~ tp;
Precisiony; = — -7
M= 7:21 tp; + fp;

and
C

1 tp;
Recall); = — -7
c ; tp; + fn;
Macro-averaged F-measure is the harmonic mean of precision
and recall:

2 - Precision; - Recall,
Fy = — . 4)
Precision,; + Recall,,

A traditional 10-fold stratified cross validation is used to
evaluate the upper bound Random Forest and the one-class
solution. The entire dataset was divided in 10 folds of almost
equal size and class distribution. For the upper bound Random
Forest, the different faulty signals are converted to abnormal
examples and the binary classier is evaluated. The same
configuration is used for one-class classifiers, but faulty signal
(abnormal examples) are removed at training time.

The Random Forest in this work uses 1000 decision tree
with no pruning, where each one uses a maximum of 3
features. The Gini criterion was used to measure the quality
of the division for each decision tree.

V. EXPERIMENTAL RESULTS

The experiments were conducted in the python program-
ming language using Scikit Learn [11] as a machine learning
framework and testing platform. The experiments aim to
accept or reject the hypothesis that one-class classifiers are
an adequate tool for detecting novelties in vibration signals
from electrical submersible pumps. The results are presented
in Figures 4, 5 and Table II.

Figure 4 shows a boxplot with the classifiers performance on
all folds, while Table II shows the average performance. As ex-
pected, the Random Forest achieved the highest performance.
However, it can only be used as an upper limit given that it
accesses the abnormal data in the training process. Both one-
class classifiers have satisfactory and similar performances,
achieving an average macro F-measure of approximately 0.86.
Clearly, it is observed that there is no significant difference
in the F-measure performance between One-Class SVM and
Isolation Forest. These results suggest that proposed solution
may be usefull in the oil and gas industry to detect abnormal



behaviour in Electrical Submersible Pumps. Indeed, a model
that predicts a test example as an outlier with probability
of 20% (the priori distribution of abnormal examples in the
dataset) leads to a much lower F-measure of 0.5.
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Fig. 4: Boxplot for Macro F-measure for the ten-fold cross-
validation for one-class classifiers. The binary classifier (Ran-
dom Forest) is used for comparison purposes (upper bound).

TABLE II: Macro F-measure average of the classifiers tested
over the 10 folds.

Classifier Mean Std deviation
One-Class SVM 0.8685 0.0143
Isolation Forest 0.8602 0.0179

Random Forest (upper bound) | 0.9564 0.0084

Figure 5 presents the confusion matrix of the one-class
classifiers. One may observe that classifiers are not limited
in correctly classifying only normal data. The Isolation Forest
detected more anomalies than the One-class SVM but also
classified more normal examples as faulty. The Random Forest
achieved a slightly better performance than the Isolation
Forest when detecting anomalies and also a slightly better
performance than the One-class SVM when detecting normal
samples. Even though both one-class classifiers have similar
overall performances, the ability of the Isolation Forest to de-
tect more anomalies than the One-class SVM makes the former
method more appropriate for real application. Classifying a
faulty ESP as normal may lead to significant financial losses
due to the high maintenance costs, and particularly because of
long-term production interruptions.

TABLE III: Recall of each class obtained by classifiers.

Class name Clz%ssiﬁer
One-Class SVM | Isolation Forest | Random Forest
Rubbing 39.92 75.46 79.12
Faulty sensor 97.28 98.98 98.64
Misalignment 98.08 84.62 92.31
Unbalance T1.77 93.04 99.64

As it can be seen in Table III, there is indeed a significant
difference of performance at detecting rubbing. It seems that
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Fig. 5: Confusion Matrix resulting from cross-validation for
each classifier. From left to right: One-Class SVM, Isolation
Forest and Random Forest.

signals with a rubbing behaviour appear to be quite normal by
all three classifiers, specially by one-class SVM. The Isolation
Forest and the Random Forest are very consistent in the other 3
classes. It can also be noted that the One-Class SVM presents
difficulties in dealing with signals of unbalance, although it is
a very consistent classifier for dealing with signals of faulty
sensor and misalignment.

Finally, the Table IV shows the average time of each
classifier.

TABLE IV: Average time of each classifier for 10 runs on a
computer with a AMD Ryzen 7 1800x processor and 16GB
of RAM memory.

Classifier Average Time (seconds)
One-Class SVM 0.1798
Isolation Forest 6.3124
Random Forest 11.9425

VI. CONCLUSIONS

In this paper, a proposal was presented to use one-class
classifiers to detect novelties in electrical submersible pump
fault detection problems. The results show a good performance
in both evaluated one-class classifiers. The overall F-measure
performances are much higher than 0.5 (performance of a
random model) and came close to Random Forest, which



performs a binary classification task by using additional data
not available to one-class classifiers. The results obtained show
that both one-class classifiers behave similarly. They have
a great power of generalization in this type of problem of
finding novelties, differently from the classifiers studied in the
previous works [2]-[5] that do not have this generalization
capability.

The one-class classifiers have a similar average macro
F-measure. However, their recall ratio (see Table III) are
considerable different. In the real application where a low false
negative rate is more desired than a low false positive rate, the
Isolation Forest is preferable. In addition, the Isolation Forest
is known to be less sensitive to changes in the parameters than
the one-class SVM, which is very sensitive to the v parameter.

Based on those results, a possible approach for future
studies would be an ensemble of one-class classifiers, giving
preference to those classifiers that present better performance
in case of divergence of the result. Moreover, finding an
efficient and effective deep neural network approach for one-
class classification is one of the possible future work of this
research. For instance, the deep one-class classification [12]
may be investigated.
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