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Abstract—Self-supervised learning approaches were shown to
benefit feature learning by training models under a pretext task.
In this context, learning from limited data can be tackled using
a combination of semi-supervised learning and self-supervision.
In this paper we combine the traditional supervised learning
paradigm with the rotation prediction self-supervised task, that
are used simultaneously to train a siamese model with a joint
loss function and shared weights. In particular, we are interested
in the case in which the proportion of labeled with respect to
unlabeled data is small. We investigate the effectiveness of a
compact feature space obtained after training under such limited
annotation scenario, in terms of linear class separability and
under attack. The study includes images from multiple domains,
such as natural images (STL-10 dataset), products (Fashion-
MNIST dataset) and biomedical images (Malaria dataset). We
show that in scenarios where we have only a few labeled data the
model augmented with a self-supervised task can take advantage
of the unlabeled data to improve the learned representation in
terms of the linear discrimination, as well as allowing learning
even under attack. Also, we discuss the choices in terms of self-
supervision and cases of failure considering the different datasets.

I. INTRODUCTION

Deep convolutional neural networks have been successful
in computer vision thanks to their ability to learn high-level
semantic visual representations, which have enabled remark-
able performance in various tasks [1]–[3]. Current computer
vision systems demonstrate excellent performance in a variety
of benchmarks, such as object detection, image recognition
and semantic segmentation. These networks mainly follow
the supervised learning paradigm, in which many input-output
pairs are required for training. However, large amounts of
manually labeled data are costly, time-consuming, complex
and expensive to obtain, and some real-world applications
require categories that are not present in standard large-scale
benchmark datasets. Therefore, investigate strategies to learn
without or under limited annotated data [4], [5] is of great
importance to take advantage of the large availability of
unsupervised data.

Recently, self-supervised learning methods [6] demonstrated
promising results using only unlabeled data, being able to learn
features that are competitive with respect to carefully tuned su-
pervised baselines [7]–[10]. Those methods are trained to solve
pretext tasks that require high-level semantic understating to

be solved, producing useful representations that can be used
for solving other downstream tasks such as image recognition.

Semi-supervised learning [11] allow using unlabeled data
in deep learning [5], and since self-supervised learning can
leverage unlabeled data and mitigate the hunger of deep
networks, it has potential to improve the final model. Indeed,
state-of-the art semi-supervised models are able to perform at
the same level as strong supervised models while using only
a fraction of the labeled data [12]–[17].

Fig. 1. An illustration of our approach: while labeled images can be used to
train a classification-based CNN (in green), unlabeled data is used to learn an
auxiliary task, producing an embedding that is more robust to attack and more
discriminative. The pixel attack is deliberately exaggerated in this image for
the sake of illustration.

Multiple studies explore self-supervised tasks and semi-
supervised methods with the purpose of learning good fea-
tures with less human-annotated data. Usually they test the
learned features by fine-tuning the model on other tasks, but
it remains uncertain if the standard evaluation protocol is
sufficiently strong [18]. Introducing noise to the training data
may also be useful to study the model’s robustness [19], as
well as designing robust models [20]. However, understanding
different aspects of those models when trained on distinct
image domains has not yet been fully investigated, specially
in scenarios where noise comes from the training data.

We hypothesize that a self-supervised task, even a simple
one like the rotation-prediction task, can help the process of
learning image representations in a scenario that we have both
few labeled data and under 1-pixel attacks as noise. In this



work, by using a setup as illustrated in Figure 1, we compare
the effectiveness of this method on 3 different image domains,
also studying the robustness of the method to noise in the form
of 1-pixel attacks. We show it is possible to use unlabeled data
to obtain more discriminative and more robust representations
compared to the supervised baselines when evaluating the
resulting feature spaces.

II. RELATED WORK

In this section we review the most relevant developments in
the fields related to our work, and summarize two particular
categories most related to this work: self-supervised learning
and consistency regularization.

A. Self-supervised learning

Self-supervised learning relies on pretext tasks that can
be formulated using only unsupervised data. By producing
surrogate labels, those tasks make use of those generated labels
to guide the learning process. These models learn useful image
representations in order to solve those tasks and achieve state-
of-the-art performance when we consider methods that rely
only on unlabeled images. Auxiliary tasks were shown to be
important for the context of minimal data-learning [21] and to
allow, in the context of images, to learn low-level features as
good as via strong supervision [22].

One of the first methods of self-supervision was based on
patches generated from the image. In [23], the authors train a
CNN model that predicts relative location of two randomly
sampled non-overlapping image patches. Another method
solves jigsaw puzzles considering image tiles obtained from
the image [24]. Also, clustering techniques were proposed to
improve self-supervised learning [25]. Some self-supervised
techniques employ image-level losses, instead of using image
patches. Grayscale image colorization task was proposed as a
pretext task [26]. It is also possible to learn useful features by
predicting simple rotation transformations [27].

An important step towards good self-supervised tasks was
to encourage models to learn representations that are invariant
to heavy image augmentations, by also imposing restrictions
on the representation space learned [28]. It is also possible
to consider what [29] calls as visual primitives, requiring
that the sum of representations of all image patches should
be close to the representation of the whole image. K-means
clustering can also be used to produce pseudo-labels for the
data as presented in [30], which was one of the first works
to accomplish competitive performance to supervised models,
specifically AlexNet.

The use of contrastive learning became popular more re-
cently [31]. SWAV [10] proposes a swapped prediction con-
trastive objective with online clustering to deal with multi-
view augmentation. SimCLR [8] learns representations by
maximizing agreement between differently augmented views
of the same image in the latent space. MoCo [7] maintains
a queue of negative samples and uses a moving-averaged
encoder to improve the queue consistency. Those studies

achieve competitive results on the ImageNet dataset compared
to the supervised baselines.

B. Consistency Regularization

Semi-supervised learning (SSL) is a class of algorithms that
learn considering both labeled and unlabeled data. Consistency
regularization methods add auxiliary loss terms computed on
the unlabeled data. The auxiliary loss terms can be considered
as a regularizer. π-Model [13], Mean Teacher [12] and Virtual
Adversarial Training [14] that take advantage of consistency
losses, among other works.

In terms of semi-supervised training strategy and the use
of the rotation-prediction as an auxiliary task, our work is
most related to S4L [32], SESEMI [33] and [34]. In [32]
the authors train semi-supervised models with the rotation-
prediction auxiliary and also other tasks, on the ImageNet
dataset. In [33], the author uses the rotation-prediction task as
an auxiliary loss term to train the model on SVHN, CIFAR-10
and CIFAR-100. Different from those two, we test the method
not only in natural and color images, but also in a grayscale
(Fashion-MNIST) image domain and also the Malaria dataset,
a dataset that is not angle oriented (unlike photographs that
have angle bias). In [34] the authors find that self-supervision
can increase model’s robustness to adversarial examples, label
and input corruptions. They use the rotation-prediction task
as an auxiliary loss term to train the semi-supervised model
on CIFAR-10. In our work we perform 1-pixel attacks and
evaluate the resulting feature representations.

III. METHOD

In this section we present the general description of our
approach. We do not intent to compare our results with state-
of-the art semi-supervised classification methods, but rather
to evaluate how discriminative (and robust) are the represen-
tations obtained from the different methods and strategies.
In particular we are interested in the semi-supervised image
classification problem of different domains, including natural
and biomedical images.

Let a dataset Dl containing Nl pairs of images and labels,
and an unlabeled dataset Du that contains Nu images without
annotation. Our semi-supervised method considers a joint
classification loss L to train a siamese network:

LSS = λl · `l(Dl) + λu · `u(Du) (1)

where both `l and `u optimize a cross-entropy loss function:
the former with a supervised paradigm, and the latter with a
self-supervised task. The weights λl and λu are non-negative
numbers. The loss function L can be used under different self-
supervised losses `u.

In this work we focus on the rotation prediction self-
supervised task. In this task the network must predict one of
the four rotation degrees (0º, 90º, 180º, 270º) applied to the
image, turning the task into a 4-class classification problem.

Our siamese network has shared weights and receives mini-
batches containing an equal amount of labeled and unlabeled
images (balancing the supervised and self-supervised tasks).



Algorithm 1 Pseudocode, Keras-like style

#load base network (pre-softmax)
base_encoder = base_network()

input_lab = Input(name='input_lab')
input_rot = Input(name='input_rot')

encoder_labeled = base_encoder(input_lab)
encoder_rotation = base_encoder(input_rot)

y_labeled = Dense(n_classes, 'softmax',
name='y_lab')(encoder_labeled)

y_rotation = Dense(4, 'softmax',
name='y_rot')(encoder_rotation)

semi = Model(inputs=[input_lab, input_rot],
outputs=[y_labeled, y_rotation])

semi.compile(optimizer=opt,
loss={'y_lab':'categorical_crossentropy',

'y_rot':'categorical_crossentropy'})

# train_generator is a generator that
# returns [x_lab, x_rot], [y_lab, y_rot]
history = semi.fit(train_generator)

At each epoch, the model sees all unlabeled images Nu, while
the labeled images Nl are seen by the model a total of Nu/Nl

times. Because Nu > Nl and we used balanced batches, that
way we can make sure that in one epoch the model sees all
the unlabeled image set. Therefore, our network will see more,
although repeated, labeled instances per epoch when compared
to the fully supervised one. We compensate that by allowing
more epochs for the supervised setting, until convergence.

In Figure 2 we illustrate the semi-supervised network, while
Algorithm 1 shows the pseudocode for our network.

A. Datasets

We assess the performance of our method on three different
datasets: STL-10 [35], Fashion-MNIST [36] and Malaria [37].
STL-10 is an image recognition dataset designed for semi-
supervised and unsupervised feature learning, containing 96×
96 color images of airplanes, birds, cars, cats, deers, dogs,
horses, monkeys, ships and trucks. Fashion-MNIST has 28×28
grayscale images with centered pieces of clothing and fashion
accessories. Malaria dataset contains cell images of multiple
resolutions with instances of parasitized and uninfected cells
from the thin blood smear slide images of segmented cells.
Figure 3 shows examples of images from those datasets.

B. Experimental setup

The following CNN backbones were investigated: Mo-
bilenetV2, InceptionV3 and ResNet50v2. For all backbones,
before the prediction layers, we added 2 fully connected layers
of size 4096 and 128, both with relu activation. The final
representation is obtained from the 128-D layer.

On both supervised baseline and the semi-supervised ap-
proach, we used a fixed learning rate of 0.001 with an
exponential learning rate decay starting at 2/5 of total epochs.

For all experiments reported in this paper, we used λl = 1.0
and λu = 1.0.

We employed a batch size of 64 and Adam optimizer. We
do not use data augmentation. The supervised baselines for
all datasets were trained for 100 epochs. The semi-supervised
baselines were trained for 30, 50 and 100 epochs for the
Fashion-MNIST, STL-10 and Malaria datasets, respectively.
We train each model 5 times, each time with a different
random split of labeled data. The random labeled images
sets used in the supervised baseline are the same used in
the semi-supervised model. All models, supervised and semi-
supervised, were trained from scratch.

For STL-10, we maintained the original image size of 96×
96. For Fashion-MNIST, images were resized to 96× 96. For
Malaria dataset, we resized the images to 128× 128 .

C. Evaluation

We investigate a scenario of limited availability of labels
under supervised and semi-supervised learning. In particular,
all experiments will consider a small fraction (1% and 5%) of
the labeled data with respect to the total amount of unlabeled
data Nu, i.e. Nl will be either 0.01Nu or 0.05Nu. A supervised
method using this fraction is used as the baseline of our
experiments. Under semi-supervised mode, the same small
fraction of the labeled data is used, but with addition of
unlabeled data.

The 1-pixel attack case was produced assuming access to
the training data. Thus, we attack images contained in Dl.
For each class we arbitrarily choose a pixel location where
the value is always the same on every image of that class as
illustrated in Figure 4.

In order to evaluate the discriminative capability of the
learned representations, we employed a linear SVM on the
128-D extracted features. The SVM classifier is a shallow
classifier with low complexity bias and low sensitivity to
parameter tuning, also having strong learning guarantees that
make it useful as a tool to evaluate linear separability of
feature spaces [38]. After extracting features from both the
training and testing sets using the network model, the SVM is
trained using the features obtained from the training set, i.e.
the 1% or 5% fraction of the original data, using no kernels
and parameter C = 1. Then, the features obtained from the
test set (never seen during network training or SVM training)
are used to obtain the accuracies reported as result.

IV. RESULTS

The STL-10 dataset originally consists of 100,000 images
in the unlabeled set, 5,000 images in the training set and 8,000
images in the test set. When training the supervised baselines,
we use either 1,000 or 5,000 images from the training set as
labeled images (1% or 5% of images in relation to the total
unsupervised set). When training the semi-supervised model,
we use same fractions of labeled data but also use the whole
100,000 unlabeled images. The results for the STL-10 dataset
are shown in Table I for 1% of labelled data and in Table II for



Fig. 2. An illustration of the method for semi-supervised learning. The CNN has shared weights so that both the classification and the auxiliary task play a
role in learning features, which is guided by the semi-supervised loss.

Fig. 3. Examples of STL-10, Fashion-MNIST and Malaria image classes,
respectively.

TABLE I
LINEAR SVM TEST ACCURARY OF THE STL-10 DATASET WHEN USING

1% OF LABELED DATA.

Architecture
Supervised

(1% of data)
Semi-supervised
(1% + unlabeled) ∆

Pixel
attack

No
attack

Pixel
attack

No
attack

Pixel
attack

No
attack

Mobilenetv2 10.0 ± 0.0 10.0 ± 0.0 31.9 ± 2.7 44.9 ± 2.7 +21.9 +34.9
Inceptionv3 40.3 ± 3.1 43.4 ± 2.5 38.9 ± 2.4 48.4 ± 3.5 -1.4 +5.0
Resnet50v2 33.9 ± 3.6 34.8 ± 1.3 40.2 ± 5.3 46.6 ± 2.4 +6.3 +11.8

5% of labeled data. In all tables, ∆ represents the difference
between using only supervised and semi-supervised.

The Fashion-MNIST dataset originally consists of 60,000
images in the training set and 10,000 images in the test set.
When training the supervised baselines, we use either 1%
(600) or 5% (3,000) of labeled images. When training the
semi-supervised model, we use the same fractions of labeled
data but also use the whole 60,000 images as unlabeled data.
The results for the Fashion-MNIST dataset using 1% and 5%
of labeled data are shown, respectively, in Tables III and IV.

Malaria dataset originally consists of 27,558 labeled images
in total. For our experiments we consider half of total images
for the training set and the other half for the test set. When
training the supervised baselines, we use either 1% (137)
or 5% (685) of the training set. When training the semi-
supervised model, we use the same fractions of labeled data
but also use the whole training set of 13,779 images as
unlabeled data. The results for the Malaria dataset are shown

TABLE II
LINEAR SVM TEST ACCURARY OF THE STL-10 DATASET WHEN USING

5% OF LABELED DATA

Architecture
Supervised

(5% of data)
Semi-supervised
(5% + unlabeled) ∆

Pixel
attack

No
attack

Pixel
attack

No
attack

Pixel
attack

No
attack

Mobilenetv2 24.9 ± 3.7 54.3 ± 0.4 37.5 ± 2.2 63.9 ± 3.3 +12.6 +9.6
Inceptionv3 43.6 ± 3.8 64.2 ± 1.8 51.2 ± 3.4 65.6 ± 3.0 +7.6 +1.4
Resnet50v2 34.0 ± 2.7 56.6 ± 2.4 42.3 ± 3.0 64.1 ± 2.2 +8.3 +7.5

TABLE III
LINEAR SVM TEST ACCURARY OF THE FASHION DATASET WHEN USING

1% OF LABELED DATA

Architecture
Supervised

(1% of data)
Semi-supervised
(1% + unlabeled) ∆

Pixel
attack

No
attack

Pixel
attack

No
attack

Pixel
attack

No
attack

Mobilenetv2 10.0 ± 0 10.0 ± 0 69.2 ± 2.7 79.6 ± 1.9 +59.2 +69.6
Inceptionv3 70.9 ± 2.2 77.7 ± 0.8 67.9 ± 1.8 80.3 ± 1.6 -3.0 +2.6
Resnet50v2 71.1 ± 1.7 77.0 ± 1.9 73.3 ± 0.6 79.3 ± 5.7 +2.2 +2.3

in Tables V and VI.

A. Class precision/recall and Visualization of feature spaces

In order to understand in more detail the effects of using
semi-supervised learning based on a self-supervised auxiliary
task, we visualized (using t-SNE projection of the 128-D
features from the test set) some scenarios and showed the
class-wise precision/recall values.

First, the STL-10 results with 5% of the labeled data, it
is possible to see better clusters in both no attack (Figure 5)
and attack (Figure 6 see better clusters for classes such as
car, bird and truck) visualizations, although the improvement
without attack is marginal. From Table VII we can see that the
semi-supervised learning helped improving the average recall
by a small margin, which may have slightly impacted the
accuracy and F1-score. Under attack, as shown in Table VIII,
the improvement is more evident in all metrics, decreasing
also the recall standard deviation.

For the Fashion-MNIST dataset, we confirm the remarkable
improvement on the learned features, when visualizing the



Fig. 4. Examples of 1-pixel attack. From left to right: two images of airplanes from STL-10, two images of trousers from Fashion-MNIST and two images
of infected samples from Malaria. Best viewed with zoom.

TABLE IV
LINEAR SVM TEST ACCURARY OF THE FASHION DATASET WHEN USING

5% OF LABELED DATA

Architecture
Supervised

(5% of data)
Semi-supervised
(5% + unlabeled) ∆

Pixel
attack

No
attack

Pixel
attack

No
attack

Pixel
attack

No
attack

Mobilenetv2 36.2 ± 8.5 48.2 ± 2.1 74.5 ± 2.0 87.3 ± 0.2 +38.3 +39.1
Inceptionv3 66.1 ± 3.5 86.9 ± 0.9 72.4 ± 1.0 87.8 ± 0.6 +6.3 +0.9
Resnet50v2 73.5 ± 0.7 85.9 ± 0.5 77.4 ± 1.7 87.5 ± 0.2 +3.9 +1.6

TABLE V
LINEAR SVM TEST ACCURARY OF THE MALARIA DATASET WHEN USING

1% OF LABELED DATA

Architecture
Supervised

(1% of data)
Semi-supervised
(1% + unlabeled) ∆

Pixel
attack

No
attack

Pixel
attack

No
attack

Pixel
attack

No
attack

Mobilenetv2 49.9 ± 0 49.9 ± 0 54.8 ± 2.0 88.3 ± 5.0 +4.9 +38.4
Inceptionv3 55.7 ± 7.3 60.2 ± 9.0 53.7 ± 2.4 92.3 ± 1.2 -2.0 +32.1
Resnet50v2 53.8 ± 1.7 54.6 ± 4.3 60.5 ± 3.7 89.0 ± 0.8 +6.7 +34.4

spaces without attack in Figure 7.
Finally, Malaria may be the more interesting case. Note

how the improvement again balances out the results from both
classes as show in Table IX. Also the space was completely
overlapped, and was improved significantly as shown in Fig-
ure 8. Even for the attack case, in which the performance was
not significantly improved, the visualization shows the space
to be better formed (see Figure 9) as it appears to be a gradient
from more uninfected samples (in cyan, on the left hand side)
to more dense infected samples (in red, on the right hand side
of the visualization plane).

Fig. 5. tSNE visualization for STL-10 5% Inception v3, without attack. Left:
supervised, Right: semi-supervised

Fig. 6. tSNE visualization for STL-10 5% Inception v3, with attack. Left:
supervised, Right: semi-supervised

Fig. 7. tSNE visualization for Fashion 1% Mobilenet v2, without attack. Left:
supervised, Right: semi-supervised.

Fig. 8. tSNE visualization for Malaria 1% Inception v3, without attack. Left:
supervised, Right: semi-supervised.



TABLE VI
LINEAR SVM TEST ACCURACY OF THE MALARIA DATASET WHEN USING

5% OF LABELED DATA

Architecture
Supervised

(5% of data)
Semi-supervised
(5% + unlabeled) ∆

Pixel
attack

No
attack

Pixel
attack

No
attack

Pixel
attack

No
attack

Mobilenetv2 49.9 ± 0 49.9 ± 0 57.6 ± 3.8 94.4 ± 0.4 +7.7 +44.5
Inceptionv3 69.2 ± 15.2 94.3 ± 0.4 57.0 ± 1.0 94.3 ± 0.5 -12.2 +0.0
Resnet50v2 83.2 ± 15.0 93.7 ± 0.7 59.2 ± 4.1 93.6 ± 0.7 -24.0 -0.1

TABLE VII
CLASS-WISE PRECISION, RECALL AND F1-SCORE FOR STL-10 5%

INCEPTION V3 WITHOUT ATTACK.

Supervised
class precision recall f1-score

airplane 0.77 0.80 0.78
bird 0.61 0.53 0.57
car 0.79 0.77 0.78
cat 0.44 0.47 0.46

deer 0.63 0.57 0.60
dog 0.40 0.51 0.44

horse 0.66 0.66 0.66
monkey 0.55 0.51 0.53

ship 0.77 0.78 0.77
truck 0.72 0.68 0.70

mean/std 0.63 ± 0.13 0.62 ± 0.12 0.62 ± 0.12
accuracy 0.631

Semi-Supervised
class precision recall f1-score

airplane 0.83 0.79 0.81
bird 0.53 0.52 0.53
car 0.85 0.81 0.83
cat 0.42 0.53 0.47

deer 0.64 0.59 0.61
dog 0.43 0.41 0.42

horse 0.65 0.62 0.64
monkey 0.51 0.52 0.52

ship 0.79 0.78 0.78
truck 0.73 0.75 0.74

mean/std 0.63 ± 0.16 0.63 ± 0.14 0.63 ± 0.14
accuracy 0.636

B. Convergence of the proposed loss

In order to show how the proposed loss compares with a
regular classification loss in terms of convergence, we show
in Figures 10 and 11 the curves for the classification network
loss and for the semi-supervised network. Note that we are
able to converge smoothly to a low value in less epochs than

Fig. 9. tSNE visualization for Malaria 1% Inception v3, with attack. Left:
supervised, Right: semi-supervised.

TABLE VIII
CLASS-WISE PRECISION, RECALL AND F1-SCORE FOR STL-10 5%

INCEPTION V3 WITH ATTACK.

Supervised
class precision recall f1-score

airplane 0.47 0.50 0.49
bird 0.30 0.27 0.28
car 0.52 0.42 0.46
cat 0.35 0.59 0.44

deer 0.25 0.14 0.18
dog 0.25 0.16 0.20

horse 0.54 0.68 0.61
monkey 0.22 0.21 0.22

ship 0.59 0.65 0.62
truck 0.40 0.41 0.41

mean/std 0.38 ± 0.13 0.40 ± 0.20 0.39 ± 0.16
accuracy 0.407

Semi-Supervised
class precision recall f1-score

airplane 0.51 0.49 0.50
bird 0.67 0.60 0.63
car 0.61 0.54 0.57
cat 0.39 0.42 0.40

deer 0.30 0.32 0.31
dog 0.47 0.36 0.41

horse 0.74 0.66 0.69
monkey 0.27 0.33 0.30

ship 0.61 0.61 0.61
truck 0.58 0.69 0.63

mean/std 0.51 ± 0.15 0.50 ± 0.13 0.50 ± 0.14
accuracy 0.506

TABLE IX
CLASS-WISE PRECISION, RECALL AND F1-SCORE FOR MALARIA 1%

INCEPTION V3 WITHOUT ATTACK.

Supervised
class precision recall f1-score
uninf. 0.58 0.87 0.69

parasit. 0.75 0.37 0.49
mean/std 0.66 ± 0.12 0.62 ± 0.35 0.59 ± 0.14
accuracy 0.624

Semi-Supervised
class precision recall f1-score
uninf. 0.91 0.96 0.93

parasit. 0.96 0.90 0.93
mean/std 0.93 ± 0.03 0.93 ± 0.04 0.93 ± 0.0
accuracy 0.937

TABLE X
CLASS-WISE PRECISION, RECALL AND F1-SCORE FOR MALARIA 1%

INCEPTION V3 WITH ATTACK.

Supervised
class precision recall f1-score
uninf. 0.55 0.72 0.62

parasit. 0.59 0.41 0.49
mean/std 0.57 ± 0.02 0.56 ± 0.21 0.55 ± 0.09
accuracy 0.569

Semi-Supervised
class precision recall f1-score
uninf. 0.54 0.47 0.50

parasit. 0.53 0.60 0.56
mean/std 0.53 ± 0.007 0.53 ± 0.09 0.53 ± 0.04
accuracy 0.536



the supervised scenario, however the semi-supervised network
sees more (replicated) labeled instances per epoch.

V. DISCUSSION

Overall, the semi-supervised network was able to improve
results over the supervised version. A remarkable result is
that, even CNN backbones that were not able to converge
using only supervised learning: MobileNetV2 with 1% data,
were significantly improved by using the unlabeled data, for
example see Table IV in which the results jumped from
random (10%) to almost 80%. More than that, for natural
images (STL-10) and a more well-behaved dataset (Fashion),
there seems to be even higher gains in attack scenarios when
more labeled data is used (5%). It is expected that this
improvement is less intense for (1%) since the attack relies
mainly on the classification loss.

For the biomedical images domain, there are two main
important observations: first because the images of Malaria are
not angle-oriented, the rotation task becomes harder. Neverthe-
less, significant improvement was found when incorporating
unlabeled data. Second, the attack had an even stronger impact
on results due to the nature of the images, that contain patterns
that are similar to the attack, degrading the results, as shown
in two architectures in table VI. With only 137 images (1%)
in the training set, it was possible to go from near random
results in supervised learning up to 92% accuracy with our
semi-supervised network (see Table V) which is comparable
even when we use 5% of data that attained at most 94%.

VI. CONCLUSION

Self-supervised learning demonstrates to be useful in semi-
supervised scenarios, not only to improve the numerical re-
sults, but in particular to learn more discriminative spaces,
as well as a representation that is more robust with respect
to attack. Our results showed that the choice of the auxiliary
task must take into account the nature of the images and may
not suit all applications. However, the mere introduction of
unlabeled data into the training process significantly improved
all minimal-data learning cases, e.g. using 1% of the available
labels, even for a simple rotation prediction auxiliary task. This
result may pose significant impact on applications in which
annotation is costly, such as biomedical images.

As in previous and recent work, self-supervision appears as
a relevant method to allow learning from minimal annotated
data. More than that, when it is used during the learning
process, it may help improving robustness against attacks.
Future work may investigate other types of auxiliary tasks in
the context of semi-supervised learning, as well as robustness
against other undesired scenarios.
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