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Abstract—Training deep neural networks is challenging when
large and annotated datasets are unavailable. Extensive manual
annotation of data samples is time-consuming, expensive, and
error-prone, notably when it needs to be done by experts.
To address this issue, increased attention has been devoted to
techniques that propagate uncertain labels (also called pseudo
labels) to large amounts of unsupervised samples and use them
for training the model. However, these techniques still need
hundreds of supervised samples per class in the training set and
a validation set with extra supervised samples to tune the model.
We improve a recent iterative pseudo-labeling technique, Deep
Feature Annotation (DeepFA), by selecting the most confident
unsupervised samples to iteratively train a deep neural network.
Our confidence-based sampling strategy relies on only dozens
of annotated training samples per class with no validation set,
considerably reducing user effort in data annotation. We first
ascertain the best configuration for the baseline – a self-trained
deep neural network – and then evaluate our confidence DeepFA
for different confidence thresholds. Experiments on six datasets
show that DeepFA already outperforms the self-trained baseline,
but confidence DeepFA can considerably outperform the original
DeepFA and the baseline.

I. INTRODUCTION

The success of supervised deep neural networks is evident
in many applications. However, the need for large annotated
training sets is a well-known problem [1], [2]. Data augmen-
tation and transfer learning aim to address this problem, with
semi-supervised learning [3]–[5], its variants pseudo-labeling
[6], [7] and meta pseudo-labeling [8], and few-shot learning
[9], [10], all receiving increased attention.

Semi-supervised learning methods [3]–[5] propagate labels
from a small set of supervised samples to a large set of
unsupervised ones by exploiting their distribution in a given
latent feature space. Pseudo-labeling approaches [6], [7] (a
particular case of self-training) essentially adopt the semi-
supervised strategy with the apprentice model assigning un-
certain (pseudo) labels to unsupervised samples. Meta pseudo-
labeling [8] uses an auxiliary model (teacher) to generate
pseudo labels to train the primary model (student). In few-shot
learning [9], [10], the model is designed from a handful of
supervised samples with or without unlabeled data. Whenever

many unsupervised samples are available, semi-supervised
learning techniques should be preferred to increase the number
of labeled training samples and, consequently, improve feature
learning and classification performances.

In semi-supervised learning, pseudo-labeling was first pro-
posed for more effectively fine-tuning a pretrained model [6].
The model can be retrained with a large annotated dataset
by assuming that pseudo labels are actual labels. Yet, label
propagation errors can negatively affect the performance of
classifiers trained from them [11], [12]. To mitigate the
problem, the confidence of the apprentice model has been
included in the loss function [5], [13]. Yet, pseudo-labeling
methods still require a training set with hundreds of supervised
samples per class and a validation set with extra supervised
samples (at least other 1000 labeled samples) to guarantee
reasonable label-propagation accuracy [6]–[8], [14].

In this work, we improve an iterative meta pseudo-labeling
strategy, named Deep Feature Annotation (DeepFA) [15],
using the confidence of the auxiliary model used for label
propagation to select the unsupervised samples for training
the primary model. In DeepFA, the auxiliary model is a
combination of the t-SNE projection technique [16] applied
to a latent feature space (the last convolutional layer) of the
primary model, and a semi-supervised optimum-path forest
(OPFSemi) classifier [17]. The primary model is trained with
a small supervised set, generating the first latent feature set
for label propagation by the auxiliary model. In DeepFA,
the auxiliary model propagates labels to all unsupervised
samples, similar to [18]. This may increase label propagation
errors since unsupervised samples, which are far away from
supervised ones, may receive incorrect labels. As OPFSemi
has no parameters to optimize, DeepFA does not need an extra
validation set with supervised samples.

In contrast, we propose to retrain the primary model by
using only the most confident unsupervised samples, with
confidence given by the label propagation method. We call
this variant confidence DeepFA (conf-DeepFA). Retraining the
primary model, latent feature projection, and label propagation
repeat for a few iterations to improve the primary model. At



each iteration, the primary model is expected to improve its
latent feature space reducing the label propagation errors of the
auxiliary model. Given that OPFSemi is sensitive to the curse
of high dimensionality, we use t-SNE to reduce the feature
space to two dimensions. This combination produces a labeling
function statistically independent to the labeling function of
the primary model, satisfying the main requirement for meta-
learning.

We first assess the best training scheme of the primary
model and use it as a baseline. We selected VGG-16 [19]
pretrained with ImageNet and adapted it for six different
datasets with and without iterative pseudo-labeling. We then
compared the best scheme against the original DeepFA [15]
and our conf-DeepFA using both fixed and adaptive thresholds
to select samples with the most confident labels. To emphasize
the potential of conf-DeepFA, we used only 1% of supervised
samples (i.e., just dozens of samples per class) and no valida-
tion set. Our results indicate that our method can significantly
outperform the original DeepFA and the baseline methods.

II. DEEP FEATURE ANNOTATION

As a semi-supervised method, DeepFA [20] iteratively
repeats three steps – deep feature learning, feature space
projection, and pseudo-labeling – as described next (see also
Fig. 1).

A. Deep Feature Learning

One may conceptually divide a classification deep neural
network into (a) layers for feature extraction, (b) fully con-
nected layers for feature space reduction and (c) a decision
layer for prediction, being (b-c) an MLP classifier. We are
interested in the features of the last convolutional layer of
VGG-16 (after max-pooling) that result from (a), where the
feature space is still high and sparse.

To minimize user effort for annotation, DeepFA uses the
ability of pre-trained CNNs to transfer knowledge between
scenarios – e.g., from natural to medical images – using few
supervised samples and few training epochs. To do this, in our
work, we fine-tune VGG-16 with ImageNet’s [21] pre-trained
weights using the few available supervised images. Finally, the
true-labeled images and pseudo-labeled ones by DeepFA are
used to retrain VGG-16 in the next iterations of our loop.

B. Feature Space Projection

The features of VGG-16’s last convolutional layer are pro-
jected by t-SNE [16] on a 2D embedded space. Rauber et al.
[22] showed that high classification accuracy relates to a good
separation of classes in a 2D projection of the samples’ feature
vectors. More exactly, they showed that, if a 2D projection (in
particular, t-SNE) presents good class separation, then a good
class separation can also be found in the data space. Benato
et al. [11], [15] showed that label propagation (using two
semi-supervised classifiers) in a 2D t-SNE projection space
leads to better classification results than label propagation in
the higher-dimensional latent feature space of an autoencoder.
Extending the above, Benato et al. [20] used label propagation

in a 2D projected space to create large training sets for deep
learning.

C. Pseudo-labeling

OPFSemi was used for pseudo-labeling on a 2D t-SNE
projection [11], [15], [20] and in the original high-dimensional
feature space [15], [18]. Although OPFSemi’s confidence
values have been used to improve pseudo-labeling for data
annotation, this was not analyzed within the iterative pseudo-
labeling loop in [20] to create large training sets for deep
learning.

OPFSemi maps supervised and unsupervised samples to
nodes of a graph and computes an optimum-path forest rooted
at supervised samples. Two types of cost values are calculated
to each unsupervised sample. Let L(u) ∈ 1, 2, ..., c be the
(pseudo) label assigned by OPFSemi to an unsupervised
sample u. The label L(u) is equal to the class λ(s) ∈ 1, 2, ..., c
of the supervised sample s, which has offered the optimum
path to u among paths offered from all supervised samples. Let
C(u) be the cost of that optimum path from s and C ′ > C(u)
be the second least path cost offered to u by a supervised sam-
ple p, whose class λ(p) is different to the class L(u) = λ(s).
Then the confidence value V (u) = C ′/(C(u) + C ′) ∈ [0, 1]
is assigned to the unsupervised sample u. Higher is C ′ more
confident OPFSemi is that L(u) is λ(s).

All labels assigned by OPFSemi with a confidence V above
a threshold τ are used for VGG-16’s training. In this work, we
explore different τ values and propose an adaptive approach
in which τ is increased along the conf-DeepFA iterations. In
contrast to [15], we do not ask the user to choose the τ
value, since we wish to validate a confidence-based sampling
based on OPFSemi during the DeepFA’s looping. While this
simplifies our approach by releasing the user from the effort
of choosing a (good) τ threshold, this also potentially removes
insights that users could use to select better τ values. Exploring
how our automatic method compares to the user-in-the-loop
approach is subject for future work.

III. EXPERIMENTS

A. Datasets

We choose six datasets to validate our proposed method.
The first one is the public MNIST [23] dataset. MNIST has 0
to 9 handwritten digits grayscale images of 28×28 pixels. We
use 5000 random samples from the original training dataset.

The subsequent five datasets come from a Parasite image
collection [24]. This collection has three main dataset types:
(i) Helminth larvae, (ii) Helminth eggs, and (iii) Protozoan
cysts. These datasets contain color microscopy images of
200 × 200 pixels of the most common species of human
intestinal parasites in Brazil, responsible for public health
problems in most tropical countries [24]. The datasets are
challenging since they are unbalanced and contain an impurity
class as the majority class, having samples very similar to
parasites, making classification hard (see Fig. 2). Table I shows
the number, type, and amount of samples per class for each of
the three datasets (i-iii) listed above. To these three datasets,



Fig. 1. Proposed conf-DeepFA method. A training dataset is split into (1) supervised and unsupervised sets. We consider only 1% of supervised samples
(images) to train a deep neural network (2). Using the network, we extract features from both supervised and unsupervised data (3) and project them in a
2D embedded space (4). In this space, we propagate labels from the supervised samples (5). However, we select only unsupervised samples with the most
confident labels, as assigned by the label propagation method (6), to retrain the deep neural network (7). The loop 3-4-5-6-7 repeats for a few iterations.
Finally, the classification results (8) are obtained from the fully-connected layers of the trained model. Our contribution extends DeepFA [20] by adding the
confidence-based sampling (red round shape in the red-dashed box).

we also add the Helminth eggs and Protozoan cysts datasets
without the impurity class, leading to a total of 5 datasets.

Fig. 2. Examples of species of H.Eggs (left) and similar images of impurities
(right).

TABLE I
THREE PARASITES DATASETS: NUMBER OF CLASSES, CLASS NAMES, AND

NUMBER OF SAMPLES PER CLASS.

dataset class # samples

(i) Helminth larvae
(2 classes)

S.stercoralis 446
impurities 3068
total 3,514

(ii) Helminth eggs
(9 classes)

H.nana 348
H.diminuta 80
Ancilostomideo 148
E.vermicularis 122
A.lumbricoides 337
T.trichiura 375
S.mansoni 122
Taenia 236
impurities 3,444
total 5,112

(iii) Protozoan cysts
(7 classes)

E.coli 719
E.histolytica 78
E.nana 724
Giardia 641
I.butschlii 1,501
B.hominis 189
impurities 5,716
total 9,568

B. Experimental Setup

To reproduce the scenario of few supervised samples, we
define a supervised training set S with only 1% of supervised
samples of an entire dataset D, assuming the unsupervised U

and test T sets with 69% and 30% of samples, respectively
(D = S ∪ U ∪ T ). A very small S simulates the real-
world scenario when one has a large D but manual effort
is needed to label samples to create S. We randomly divide
each dataset D into S, U , and T in a stratified manner and also
generate three distinct splits for each experiment for further
statistical analysis of our classification results. Table II shows
the number of supervised samples in S for each of the six
datasets introduced in Sec. III-A.

TABLE II
NUMBER OF SUPERVISED SAMPLES IN S FOR EACH CHOSEN DATASET.

MNIST H.eggs
(w/o imp)

P. cysts
(w/o imp) H. larvae H. eggs P. cysts

S 50 17 38 35 51 95
U 3450 1220 2658 2424 3527 6602

To evaluate our method, we get the probability of VGG-16’s
last fully-connected layer and compute accuracy and Cohen’s
κ, since we have unbalanced datasets. κ ∈ [−1, 1] gives the
agreement level between two distinct predictions, where κ ≤ 0
means no possibility and κ = 1 means the full possibility of
agreement occurring by chance, respectively. We also compute
the number of correct labels assigned in U for each proposed
experiment to evaluate the label propagation accuracy.

C. Implementation details

As stated before, our aim is using conf-DeepFA without an
additional validation set, whose creation, as explained, would
ask for more user supervision (i.e., effort in data annotation).
For this, we fix all pipeline’s parameters without any parameter
optimization step. Specifically: OPFSemi has no parameters;
for t-SNE, we used the default parameters in scikit-learn.

The VGG-16 architecture was implemented in Python using
Keras [25]. The original fully-connected layers were replaced
by two fully connected layers with 4096 neurons and rectified
linear activation, followed by a decision layer with c neurons,
where c equals the number of classes for each dataset (see



Tab. I), and softmax activation. The model is trained by
error backpropagation for a categorical cross-entropy function
and using stochastic gradient descent with a linearly decay-
ing learning rate initialized at 0.1 and momentum of 0.9,
respectively. We loaded ImageNet pre-trained weights and
used a linear decay of 1 × 10−6 over 15 epochs. The pre-
trained weights for convolutional layers were fixed for the
feature extraction experiments and unfrozen for fine-tuning,
respectively.

D. Proposed experiments

First, we evaluate the impact of VGG-16’s training with
and without fine-tuning the convolutional layers when loading
ImageNet pre-trained weights (Sec. III-C). We also evaluate
VGG-16 for label propagation, using pseudolabels produced
by VGG-16 to feed its training in the next iteration of the data
annotation looping (see Fig. 1). We executed four experiments,
as follows; in the next items, ft stands for fine-tuning and fe
stands for feature extraction, respectively:
• VGG-16ft: VGG-16 with pre-trained weights and convo-

lutional layers unfrozen trained on S and tested on T ;
• self-VGG-16ft: VGG-16 with pre-trained weights and

convolutional layers unfrozen trained on S. Pseudolabels
are obtained for all samples in U . S and the pseudola-
beled U are used to train VGG-16, and the network is
tested on T . Each one of the 5 iterations repeats this
process;

• VGG-16fe: VGG-16 with pre-trained weights and convo-
lutional layers frozen trained on S and tested on T ;

• self-VGG-16fe: VGG-16 with pre-trained weights and
convolutional layers frozen trained on S. Pseudolabels
are obtained for all samples in U . S and U are used to
train VGG-16, and the network is tested on T (each one
of the 5 iterations repeats this process).

We found out that self-VGG-16fe achieves better results
(Sec. III-E), so we defined this training procedure for the sub-
sequent experiments described below. We evaluate the impact
of OPFSemi’s confidence sample in the DeepFA looping by
the following experiments:
• DeepFA: VGG-16 is trained on S. Deep features for S∪U

from the last convolutional layer are projected in 2D with
t-SNE, and used next for OPFSemi pseudo labeling from
S to all samples in U . OPFSemi’s pseudolabels are used
to retrain VGG-16, and the network is tested on T (one
iteration of DeepFA looping out of five);

• conf-DeepFAτ=x: VGG-16 is trained on S. Deep features
for S ∪U from the last convolutional layer are projected
in 2D with t-SNE, and used for OPFSemi pseudo labeling
from S to Uτ , for samples with confidence above τ = x.
We choose x = {0.7, 0.8, 0.9}. OPFSemi’s pseudolabels
are used to retrain VGG-16, and the network is tested on
T (one iteration of conf-DeepFA looping out of five);

• conf-DeepFAτ=α: VGG-16 is trained on S. Deep features
for S ∪U from the last convolutional layer are projected
in 2D with t-SNE, and used for OPFSemi pseudo labeling

from S to Uτ for samples with confidence above τ . τ is
increased from 0.8 to 0.96 by 0.4 in each conf-DeepFA
looping iteration. OPFSemi’s pseudolabels are used to
retrain VGG-16, and the network is tested on T . The
looping has five iterations.

E. Experimental results

Table III shows the results of the experiments in Sec. III-D
that investigate the impact of the parameters’ fine-tuning in
a pre-trained VGG-16 deep architecture when using a small
amount of supervised samples to generate pseudo labels. We
show mean propagation accuracy, classification accuracy, κ,
and standard deviation of three different splits for VGG-16
trained only with S and tested on T with feature extraction
(VGG-16fe) and fine-tuning (VGG-16ft). Also, we present the
results for VGG-16 trained with its labeled samples on U
over five iterations (self-VGG-16fe and self-VGG-16ft). We
see first that both experiments – feature extraction and fine-
tuning – do not show relevant gain in propagation accuracy
or κ along with the iterations. The results are even worse
from VGG-16ft to self-VGG-16ft. In general, VGG’s feature
extraction results show an increase of almost 20% in accuracy
and κ for most datasets. This shows that the results in [20] can
get better when using feature extraction instead of fine-tuning,
even though we use fewer training epochs in our work.

A separate interesting question raised in [20] is: How to
improve the OPFSemi’s pseudo labeling over the iterations?
To answer this, we propose to use the confidence-based sam-
pling as stated before. Table IV shows the mean propagation
accuracy, classification accuracy, κ, and standard deviation of
the three splits for the proposed experiments, for the last of the
five executed iterations. For all datasets (except P.cysts), we see
that selecting the most confident samples by OPFSemi during
the DeepFA looping improves the pseudo-labeling results over
the iterations. When using τ = 0.8, MNIST, H.larvae, and
P.cysts obtained the best results. For H.eggs without impurities,
τ = 0.7 shows the best results. For P.cysts without impurities,
the results of τ = 0.9 and τ = α (adaptive) show the best
(and similar) results. The proposed confidence-based looping
annotation did not improve P.cysts with impurities. However,
this dataset is also the most challenging one: seven classes,
more samples, and almost 60% total samples are impurities.
We conclude that confidence-based sampling shows clear
added value in nearly all situations. However, we also note
that selecting τ may depend on the dataset and its difficulty.

IV. DISCUSSION

A. Does the confidence-based sampling improve the DeepFA
looping?

Figure 3 shows the average κ and propagation accuracy for
the DeepFA looping with fully-pseudo-labeling of all samples
(DeepFA), our proposed conf-DeepFA using OPFSemi’s con-
fidence sampling for pseudo labeling, with different ways of
selecting the confidence threshold τ , and the best result for
the VGG-16 experiments (self-VGGfe, see Sec. III-E), for all
six studied datasets. For datasets yielding higher κ values, we



TABLE III
RESULTS FOR VGG-16 CONSIDERING FEATURE EXTRACTION AND FINE-TUNING. BEST VALUES PER METRIC AND DATASET IN BOLD.

dataset metric VGG-16ft self-VGG-16ft VGG-16fe self-VGG-16fe

MNIST
prop. acc - 0.447238 ± 0.146 - 0.586000 ± 0.007
acc 0.629555 ± 0.037 0.441334 ± 0.149 0.614444 ± 0.015 0.592222 ± 0.020
kappa 0.588195 ± 0.041 0.378648 ± 0.166 0.571176 ± 0.017 0.546162 ± 0.023

H.eggs
(w/o imp)

prop. acc - 0.758825 ± 0.088 - 0.744004 ± 0.114
acc 0.790961 ± 0.050 0.779033 ± 0.095 0.738858 ± 0.054 0.774011 ± 0.131
kappa 0.752807 ± 0.060 0.735591 ± 0.113 0.693278 ± 0.060 0.734030 ± 0.153

P.cysts
(w/o imp)

prop. acc - 0.399481 ± 0.010 - 0.648739 ± 0.111
acc 0.561130 ± 0.093 0.400519 ± 0.011 0.736159 ± 0.027 0.650230 ± 0.101
kappa 0.324051 ± 0.175 0.020734 ± 0.021 0.626632 ± 0.039 0.483706 ± 0.170

H.larvae
prop. acc - 0.897384 ± 0.031 - 0.912837 ± 0.038
acc 0.874566 ± 0.001 0.886572 ± 0.017 0.893523 ± 0.017 0.908689 ± 0.040
kappa 0.021406 ± 0.019 0.174158 ± 0.208 0.256836 ± 0.203 0.385892 ± 0.402

H.eggs
prop. acc - 0.773803 ± 0.034 - 0.847308 ± 0.018
acc 0.858323 ± 0.013 0.775750 ± 0.034 0.848327 ± 0.017 0.850934 ± 0.014
kappa 0.734333 ± 0.019 0.519971 ± 0.114 0.713649 ± 0.030 0.714227 ± 0.038

P.cysts
prop. acc - 0.730327 ± 0.022 - 0.817978 ± 0.004
acc 0.758853 ± 0.077 0.734239 ± 0.028 0.818182 ± 0.004 0.824800 ± 0.011
kappa 0.542967 ± 0.218 0.492070 ± 0.107 0.697633 ± 0.009 0.705397 ± 0.022

TABLE IV
RESULTS FROM THE LAST ITERATION FOR PROPOSED EXPERIMENTS WITH FULLY LABEL PROPAGATION (DeepFA), AND CONFIDENCE-BASED LABEL

PROPAGATION (conf-DeepFA) WITH CONFIDENCE HIGHER THAN τ = 0.7, CONFIDENCE HIGHER THAN τ = 0.8, CONFIDENCE HIGHER THAN τ = 0.9, AND
ADAPTATIVE CONFIDENCE (FROM 0.80 TO 0.96 OVER 5 ITERATIONS). BEST VALUES PER DATASET IN BOLD.

dataset metric DeepFA conf-DeepFAτ=0.7 conf-DeepFA τ=0.8 conf-DeepFA τ=0.9 conf-DeepFA τ=α

MNIST
prop. acc 0.790000 ± 0.047 0.782286 ± 0.029 0.821714 ± 0.018 0.750000 ± 0.028 0.795429 ± 0.007
acc 0.797778 ± 0.049 0.788000 ± 0.030 0.822666 ± 0.022 0.740222 ± 0.032 0.651778 ± 0.062
kappa 0.775103 ± 0.054 0.764348 ± 0.034 0.802863 ± 0.024 0.710961 ± 0.036 0.612766 ± 0.069

H.eggs
(w/o imp)

prop. acc 0.983293 ± 0.004 0.983832 ± 0.002 0.974401 ± 0.020 0.981945 ± 0.003 0.983832 ± 0.004
acc 0.790961 ± 0.050 0.973007 ± 0.006 0.971123 ± 0.013 0.938481 ± 0.056 0.806654 ± 0.126
kappa 0.752807 ± 0.060 0.968042 ± 0.007 0.965848 ± 0.015 0.927708 ± 0.066 0.771216 ± 0.148

P.cysts
(w/o imp)

prop. acc 0.800569 ± 0.035 0.805143 ± 0.049 0.793274 ± 0.069 0.824060 ± 0.019 0.828141 ± 0.012
acc 0.819493 ± 0.041 0.826413 ± 0.039 0.814590 ± 0.060 0.842561 ± 0.004 0.824394 ± 0.033
kappa 0.756949 ± 0.054 0.764035 ± 0.052 0.747127 ± 0.086 0.785441 ± 0.006 0.762919 ± 0.041

H.larvae
prop. acc 0.954182 ± 0.008 0.964213 ± 0.017 0.964349 ± 0.012 0.941846 ± 0.039 0.951471 ± 0.014
acc 0.955450 ± 0.002 0.959558 ± 0.015 0.965561 ± 0.004 0.958926 ± 0.014 0.943128 ± 0.010
kappa 0.789743 ± 0.010 0.800052 ± 0.099 0.837948 ± 0.029 0.804689 ± 0.082 0.705475 ± 0.069

H.eggs
prop. acc 0.936743 ± 0.011 0.936091 ± 0.005 0.937209 ± 0.008 0.931806 ± 0.007 0.930967 ± 0.006
acc 0.942634 ± 0.016 0.943938 ± 0.003 0.942634 ± 0.009 0.908518 ± 0.022 0.853107 ± 0.025
kappa 0.899307 ± 0.027 0.901604 ± 0.006 0.898922 ± 0.015 0.831488 ± 0.043 0.719695 ± 0.054

P.cysts
prop. acc 0.732716 ± 0.056 0.769748 ± 0.026 0.780300 ± 0.018 0.748843 ± 0.048 0.744811 ± 0.068
acc 0.740973 ± 0.056 0.792755 ± 0.027 0.816905 ± 0.027 0.818066 ± 0.022 0.731104 ± 0.082
kappa 0.580626 ± 0.092 0.652254 ± 0.051 0.699603 ± 0.054 0.689325 ± 0.039 0.450283 ± 0.243

note that DeepFA obtained similar results compared with our
proposed conf-DeepFA modifications. However, we see a gain
of almost 5% in κ and propagation accuracy for the most
challenging datasets. For P.cysts with impurities, the gain is
actually higher than 10% in κ and 17% in propagation accu-
racy – for which DeepFA obtained worse results than VGG-
16. In short, our proposal of using DeepFA with OPFSemi’s
confidence sampling (conf-DeepFA) entries in Fig. 3) obtained
the best results for most tested datasets.

B. Does the confidence-based sampling improve DeepFA
along the iterations?

Figure 4 shows κ and propagation accuracy for one split
of MNIST along five iterations of the proposed experiments.
First, we see that all compared approaches yielded an increase
from the first to the second iteration, except self-VGG-16fe.
Also, we see that both κ and the propagation accuracy slightly
decrease after the third iteration. This may suggest that the
proposed method saturates, mainly by the higher decrease in
κ despite of propagation accuracy. The learned pseudo-labels
and the original images can be used as input for a better
(known) deep architecture. Figure 5 shows the plot for train
and validation loss and accuracy considering 20% (from the

S set) as validation set during one split of MNIST training.
The initial learning curve and the learning curves for each
iteration are also shown. The learning curves show that the
labeled samples can improve the network convergence along
the iterations. A different deep network can be tested at the
final stage. Also, some unsupervised quality measure can be
proposed to define the best feature space found at certain
iterations and, consequently, the best iteration of the method.

C. Choosing OPFSemi’s confidence threshold

The proposed adaptive selection of the confidence threshold
(conf-DeepFAτ=α) seems to be promising only for one of the
tested datasets. It shows a higher decreasing in κ, when com-
pared with the experiments without changing the confidence
threshold τ along the iterations. As outlined in Sec. III-E,
choosing OPFSemi’s confidence value may depend on the
dataset, its difficulty, number of samples, number of classes,
and class imbalance. This can also be seen in Fig. 3 where
it is not possible to define a single confidence threshold τ
for all chosen datasets. Although this fact has been already
noted in [15], it was not considered within a looping of data
annotation as we proposed in this work. Rather, in [15], the
authors proposed user interaction to define the best confidence



value based on the user analysis of the 2D space projection
guided by the data distribution and OPFSemi’s confidence
values (mapped to colors). We intend to follow the same
strategy to find the best confidence value for conf-DeepFA
looping.

D. Limitations

As discussed before, we intend to explore other deep
learning architectures to understand why and when the pro-
posed conf-DeepFA looping stagnates during network training.
Also, we validated our method for only six datasets, one
semi-supervised classifier, and one projection method. More
experiments involving additional datasets, classifiers, and 2D
projection techniques are needed to generalize our findings.

V. CONCLUSION

We proposed an approach for increasing the quality of
image classification and extracted feature spaces when using
very few supervised samples during the training process. We
evaluate the feature space generated by VGG-16 by feature
extraction and fine-tuning strategies when using the small
number of supervised images available. We use the best result-
ing feature space to let the OPFSemi propagation technique
label unsupervised samples on a 2D t-SNE projection of
the feature space in an iterative fashion. To improve label
propagation accuracies and classification results, we include
a confidence sampling strategy to OPFSemi’s pseudo labeling
to define the most confident samples for training VGG-16.

Our results show that the VGG-16 without fine-tuning, i.e.,
only being used for feature extraction, can improve accuracy
and κ with few supervised samples. Also, when considering
OPFSemi with the confidence sampling strategy, our results
show an improvement in propagation accuracy and κ for
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Fig. 3. Results of κ (top) and propagation accuracies (bottom) for the studied
datasets, considering self-VGG-16fe (best result) and DeepFA experiments.
Our confidence-based DeepFA variations proposed in this paper are marked
as DeepFAτ . The datasets are ordered by higher κ values in x axis (from left
to right).
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Fig. 4. Results of κ (top) and propagation accuracies (bottom) for the MNIST
dataset in one split over 5 iterations, considering self-VGG-16fe (best result),
DeepFA, and conf-DeepFA experiments.

Fig. 5. Plots for loss and accuracy for one split of MNIST dataset. The (a)
initial learning curves and the for each iteration (b, c, d, e, f) is presented.

most of the evaluated datasets. The small gain for some
chosen confidence thresholds τ and some datasets shows



that this choice may depend on the dataset. To solve this
dataset dependency, we plan next to include user knowledge
to provide a semi-automatic pseudo-labeling along the lines
in [15] but considering the proposed looping of the deep
feature annotation method. Additionally, we aim to explore
more datasets, as well as compare our proposed method with
recent semi-supervised strategies for creating pseudolabels.
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