
A Generative Approach for Face Mask Removal
Using Audio and Appearance

Luiz E. L. Coelho, Raphael Prates, William Robson Schwartz
Smart Sense Laboratory, Department of Computer Science, Universidade Federal de Minas Gerais, Brazil

luizduducoelho@ufmg.br, prates@dcc.ufmg.br, william@dcc.ufmg.br

Abstract—Since the COVID-19 pandemic, the use of facial
masks in public spaces or during people gatherings has become
common. Therefore, journalists, reporters, and interviewees fre-
quently use a mask, following the public health measures to
contain the pandemic. However, using a mask while speaking
or conducting a presentation can be uncomfortable for viewers.
Furthermore, the usage of a mask prevents lip reading, which
can harm the speech comprehension of people with hearing
impairment. Thus, this work aims at artificially removing masks
in videos while recovering the lip movements using the audio
and uncovered face features. We use the audio to infer the
lip movement in a way it matches with the uttered phrase.
From the audio, we estimate landmarks representing the mouth
structure. Finally, the landmarks (i.e. uncovered and estimated)
are the input in a generative adversarial network (GAN) that
reconstructs the full face image with the mouth in a correct
shape. We present quantitative results in the form of evaluation
metrics and qualitative results in the form of visual examples.

I. INTRODUCTION

Since the COVID-19 pandemic, the use of facial masks in
public and crowded spaces has become very common and
necessary. For instance, public health international agencies
such as World Health Organization (WHO) advises the use of
masks, as studies like Chu et al. [1] show that it significantly
reduces the risk of infection from the disease. In this scenario,
journalists, reporters and interviewees frequently must wear
a mask to follow public health norms. Nonetheless, mask
usage while speaking or giving a presentation can be uncom-
fortable for the viewers. Moreover, the presence of a facial
mask blocks lip reading, which is a relevant issue as the lip
reading is an important communication strategy for those with
hearing impairment, and can assist the speech comprehension
according to Dell’Aringa et al. [2]. As an example, Trecca
et al. [3] showed that impaired patients had mild to severe
communication difficulties when nursed by health personnel
wearing a mask due to the impossibility of lip reading.

Some works perform mask removal from images, like Din et
al. [4] that use a Generative Adversarial Network (GAN) based
model to complete the full face image. Li et al. [5] propose
a de-occlusion module to reconstruct the masked face aimed
at face recognition. But both approaches are suited to single
images and ignore the mouth movement during speaking.

Addressing the impossibility of lip reading, we aim at
designing a method that processes a video in which a subject
speaks while wearing a mask and uses the audio and uncovered
facial features to reconstruct the whole face image as if there
was no mask. The audio is used to infer the lip movement so

that they are coherent with the sentence being spoken. We use
landmarks as a representation of the mouth to be estimated
from the audio. To make the reconstruction realistic, we use
deep learning methods, in special GAN, with the landmarks
guiding the lip movements.

To remove masks from videos, the problem is divided
into three steps: mask segmentation; prediction of the mouth
landmarks using the audio; and the face image reconstruction
guided by the face landmarks. The segmentation step uses a
color based approach, the mouth landmarks prediction uses a
recurrent model and the face image reconstruction is achieved
using an image-to-image GAN guided by the landmarks.

The major contributions of this work are: (1) the proposed
method for mask removal in videos and (2) the use of more
robust metrics for lip sync accuracy assessment. Regarding
the first, there are similar works like [4] that remove masks
from still images. Nonetheless, they do not leverage the audio
information and can not be used to assist in lip reading.
Moreover, the better evaluation of generated images is a
seldom addressed issue in literature. In fact, works in face
inpainting [6] and talking faces generation [7] employ simple
mouth landmarks distance (MLD), which is very sensitive to
small variations, or user study metrics, which can be subjective
and hard to obtain.

We show experiments from both the mouth landmarks pre-
diction step and face reconstruction step. The former achieved
a value of 2.666 for the mean absolute error (MAE) of the
mouth landmarks. The latter achieved the value of 0.4536
for the intersection over union (IoU) of the parsing of the
mouth regions. We report further metrics for both models
and show ablation studies analysing the impact of different
implementation decisions.

II. RELATED WORKS

In this section we will briefly review some important works
regarding generative adversarial networks followed by an
overview of image reconstruction and then we will discuss
works regarding face reconstruction specifically.

A. Generative Adversarial Networks

Since Goodfelow proposed the GAN [8], many improve-
ments on the initial model came up, such as the Deep
Convolutional Generative Adversarial Networks (DCGAN)
[9] and conditional GAN [10]. And more elaborate models



Fig. 1. Face reconstruction diagram. This diagram shows the process of face reconstruction of a video by using the audio information. First, we consider
synchronized segments of audio and frames to extract the MFCC features and the facial landmarks (except for the mouth), respectively. These two inputs are
arranged in temporal sequences and used to estimate the mouth landmarks with a recurrent model. Then, we employ the predicted facial landmarks to guide
the mouth reconstruction with a generative model that also receives a reference image (the same for the whole video) to preserve the subject’s appearance.

emerged, performing image-to-image translation as [11], [12],
[13] where they use GANs to somehow modify an image.

B. Image Reconstruction

Image reconstruction or image inpainting are methods that
attempt to complete missing regions in an image. An initial
work [14] employed a traditional DCGAN to try to generate
a similar image as the input, and then applied blending and
superposition operations to complete the image, but this ap-
proach is limited. Most studies use image-to-image translation
for image reconstruction, being able to tackle the problem
more robustly. Iizuka et al. [15] proposed the use of both
a global discriminator and a local discriminator for image
completion. Yu et al. [16] have an architecture similar to [15],
but using a two step approach, with a “coarse” generator and
a “fine” generator to improve the completion quality.

C. Face Reconstruction

Some reconstruction methods have been specialized in face
reconstruction. Yang et al. [17] present a face reconstruc-
tion method guided by facial landmarks. They propose a
face landmark detector trained in degraded images, and a
conditional DCGAN that uses the landmarks as a guide for
the facial reconstruction. Koumparoulis et al. [6] use the
audio information to reconstruct talking faces keeping the
lip movement coherent. They process the degraded image
and the audio Mel-Frequency Cepstral Coefficients (MFCC)
features through separate encoders and then concatenate the
embeddings and pass it through a decoder to recover the image
dimensions. They also use a binary classification discriminator
to assist the completion of the face.

In contrast with other existing methods, we leverage the
audio to estimate the mouth landmarks in a video, and then
use the estimated landmarks to model the mouth movements.

III. METHODOLOGY

For a given video of a subject talking while wearing a face
mask, the desired output of the method is the same face region

Fig. 2. Mouth Landmarks Prediction Model architecture. The numbers in each
layer show the output dimension of the layer. Inputs and outputs are shown
in blue, the bidirectional LSTM in purple and the dense layer in yellow.

reconstructed as if the subject was not wearing the mask. Fur-
thermore, the lip movement should match the uttered sentence,
to enable lip reading. A diagram showing the overview of the
method in shown in Figure 1. To accomplish our goal, we can
split the task into three steps: Mask Segmentation, Prediction
of Mouth Landmarks and Face Reconstruction. We present
them in the following subsections.

A. Mask Segmentation

The mask segmentation step consists in finding the pixels
corresponding to the mask in the image. To accomplish that,
we employ a simple color-based approach that works as
follows. First, we apply a face detector on the image to
localize the face region and then a facial landmark detector
to spotlight keypoints in the face. Then, we select landmarks
that are positioned inside and outside (i.e. image border) the
mask region. Finally, we consider these two sets of landmarks
as different seeds in a watershed-based color segmentation
algorithm that discriminates between mask and non-mask
regions. To make the segmentation easier, we employ the
YCbCr color space in this step, which separates the brightness
(Y) component from the color components.

B. Prediction of Mouth Landmarks

In this section, we describe the proposed method for pre-
dicting the landmarks for the mask-covered mouth region.



It is an important stage as these landmarks guide the face
reconstruction process and, therefore, must be in sync with the
audio. To achieve that, we employ the audio and the uncovered
facial landmarks as input in a recurrent architecture that
models the temporal correlation between inputs and outputs.
A good choice of architecture for this type of problems are
recurrent neural networks such as Long Short-Term Memory
(LSTM) [18]. An improvement on the vanilla LSTM is the
bidirectional LSTM [19] that considers both directions in time
(i.e. direct and reverse) as input.

The first step in the proposed mouth landmarks prediction
consists in computing the audio and uncovered face features
using a temporal sliding window. In this work, we repre-
sent the audio using the MFCC - a widely used feature in
speech recognition and talking faces generation [20] - and
the uncovered face features using the 48 landmarks outside
the mouth region. Finally, we compute low-dimensional latent
representations that decorrelates both features using Principal
Component Analysis (PCA).

Specifically, we consider audio segments of 350ms, tem-
porally centered according to each frame from the video.
Then, we compute 12 MFCC coefficients in windows of
20ms with a 10ms overlap, resulting in an audio feature with
dimension 12x35. Similarly, we compute the 96-dimensional
representation using the both coordinates for landmarks in the
corresponding video frame. Then, we obtain 127 and five PCA
coefficients from MFCC and landmarks, respectively. These
features are employed as input in the following model.

To predict the mouth landmarks, we devise a network with
two layers where the first is the bidirectional LSTM with 128
units and the second is a fully connected layer with linear
activation that maps to the seven PCA coefficients of the mouth
landmarks. The model architecture is shown in Figure 2. The
model operates on temporal sequences of n sequential frames
in a video. The fully connected layer shares the same weights
for all the positions in the sequence. We adopt a stride of
one frame for the sequences in a video. The loss function
used is the MSE for the mouth landmarks PCA coefficients.
Finally, we obtain the mouth landmarks using the PCA inverse
transformation of the predicted PCA coefficients.

C. Face Reconstruction

The Face Reconstruction model receives an image with
the mask region extracted along with the face landmarks and
a reference image to produce the output of a reconstructed
face with no mask. The mouth generation is guided by the
landmarks, since we want to emulate the lips movement.
Therefore, the quality of the reconstructed mouth is dependent
on the quality of the estimated mouth landmarks, in a way that
they represent a good approximation of the lips movement
while speaking.

1) Architecture: The architecture used is the conditional
DCGAN proposed by [17]. The main difference is that Yang
et al. [17] train a landmark detector for degraded images,
while we use a recurrent model to estimate the landmarks of
a sequence of frames using the audio. Besides, we propose a

new input to the model, the reference image, an image with the
subject without mask in order to help the model to reconstruct
the mask region while preserving the facial appearance. We
use the procrustes [21] transformation in the facial landmarks
(excluding the ones from the mouth) to align the reference
image to the image to be reconstructed. The generator archi-
tecture is based on the U-Net [22], which was designed to
image to image translation networks. The network is made of
three downsampling blocks followed by seven residual Resnet
[23] blocks, followed by upsampling blocks, to recover the
original dimensions of the image. The discriminator has a
PatchGan [11] architecture with five convolutional layers. The
final image is obtained by replacing the pixels from the mask
region for the equivalent pixels in the image generated by the
face reconstruction model. Doing so, pixels outside the mask
region are preserved.

2) Training: To train the model, besides the adversarial
losses we employ four other loss functions, defined in Equa-
tions 1, 2, 3 and 4.

Lpixel :=
1

Nm
||Î − I||1 (1)

The pixel difference loss, defined in Equation 1, is a
straightforward similarity metric between two images. Here, ‖
· ‖1 is the L1-norm. I is the ground truth image, Î is the output
reconstructed image. Nm is the mask region size in pixels. The
loss is adjusted by the mask size because we expect a smaller
occlusion to be easier to reconstruct.

Lperc :=
∑
p

||φp(Î)− φp(I)||1
NpHpWp

(2)

The perceptual loss [24], defined in Equation 2, compares
feature maps extracted from pre-trained deep neural networks.
We used VGG-19 [25] trained in the ImageNet [26] dataset.
φ(·) are the Np feature maps from layer p. Hp and Wp are
respectively the height and width of the feature maps from
layer p.

Lstyle :=
∑
p

1

NpNp
||Gp(Î ◦M)−Gp(I ◦M)

NpHpWp
||1 (3)

The style loss function [27], defined in Equation 3, en-
courages the texture of output and ground images to be
similar. As well as the perceptual loss, the style loss compares
intermediate activations from a pre-trained network. We also
use VGG-19 here. M is the mask region, ◦ the Hadamard
product and Gp the Gram matrix for the feature maps. The
Gram matrix is defined as: Gp(x) = φp(x)

Tφp(x).

Ltv :=
1

NI
||∇Î||1 (4)

The total variation loss [28], defined in Equation 4, is based
on the homonym regularization, used for image denoising. The
loss helps to smooth the checkerboard patterns in images, that
can appear in convolutional networks generated images. NI



is the number of pixels in image I and ∇ is the first order
derivative, containing the vertical and horizontal derivatives.

LadvG := E[(D(GP (I
M , L), Lgt)− 1)2] (5)

LadvD := E[D(Î , Lgt)
2] + E[(D(I, Lgt)− 1)2] (6)

The adversarial loss functions in Equations 5 e 6 are
proposed in LSGAN [29]. They showed better stability during
training and better visual quality for the generated images.
L are the landmarks estimated by the mouth landmarks pre-
diction model, Lgt are the ground truth landmarks, extracted
by the detector. GP (·) is the generator output and D(·) the
discriminator output. We define that IM := I ◦M and E[·] is
the expected value operator.

According to LSGAN [29], during the training we want
to minimize the discriminator loss function, LadvD and the
generator loss function, that is a weighted sum as:

LG := Lpixel + λpercLperc + λstyleLstyle+

λtvLtv + λadvLadvG

(7)

The total loss function for the generator is presented in
Equation 7. The values used are λperc = 0.1, λstyle = 250,
λtv = 0.1 and λadv = 0.01, as suggested in [17].

3) Mask Projection: To train the face reconstruction model,
we need videos of subjects uttering a phrase while wearing
a mask and the same videos without the mask, to be the
ground truth. To obtain this data and enable the training of
the model, we can project masks in the videos of a dataset.
The mask projection applies the region from a segmented mask
in another image. First we need to segment a mask from some
source image, like in samples of a masked people dataset [30].
Then we extract the facial landmarks (except the ones from
mouth) from both the source image and the target image in
which we want to project the mask.

We use the procrustes [21] transformation in the landmarks
to align the source image with the target image, since the
procrustes finds the translation, rotation and scale factor that
best fit a set of points (such as landmarks). We do not use the
mouth landmarks because they do not influence the alignment
of the mask to the face, and could introduce noise in the
superposition. With the mask projected in the target images,
they can be used as input to the model during training.

IV. EVALUATION METRICS

In this section, we present the metrics employed to evaluate
the obtained experimental results for the landmarks prediction
(Section IV-A) and the face reconstruction (Section IV-B).

Works in talking face inpainting like [6] usually adopt
Mouth Landmarks Distance (MLD) as a metric for assessing
the quality of the mouth movements. But using the mouth
landmarks distance alone is not ideal, because it is very
sensitive to translations and can be very noisy. Therefore, we
propose two novel metrics, disparity and parsing IoU (PIoU).

Since disparity is robust in relation to translation, rotation and
scale factor, it is better suited to assess the mouth shape and
relative positions of the landmarks. On the other hand, parsing
IoU captures the mouth regions instead of only the landmarks,
which is a richer information and a better way to evaluate
position and scale factor of the mouth. In that sense, disparity
and IoU parsing work well together.

A. Metrics to Evaluate Mouth Landmarks

In the following paragraphs, we describe the different met-
rics used in the mouth landmarks prediction model (MLPM).
For each frame in the test partition videos, the model estimates
the mouth landmarks. The predicted landmarks can be com-
pared with the ground truth landmarks, which were obtained
from the landmark detector.

In this work, we define P
(t)
q as the mouth landmark q,

predicted from the frame t. On the other hand G(t)
q stands for

the ground truth landmark q, from the frame t. Furthermore,
we set Nflm as the number of mouth landmarks in each
face, which is 20 for the landmark detector used in the
experiments, and Nt as the total number of frames in the test
dataset.

1) Mean Absolute Error: A simple way to measure their
proximity is to calculate the MAE as:

MAE =
1

Nt

1

Nflm

Nt∑
t=1

Nflm∑
q=1

|P (t)
q −G(t)

q | (8)

2) Procrustes projection residual error (Disparity): To
calculate this metric, we apply the procrustes transformation
between the predicted facial landmarks of a given frame and
its respective ground truth landmarks. The disparity measures
the error of the transformation. It is the mean quadratic
pointwise difference of the fiducial landmarks from the test
set. The benefit of using this metric is due to the robustness
to translation and scale factor. MAE is very sensitive to
such variations. However, disparity, defined in Equation 9,
is a good alternative to assessing similarity in the shape and
arrangement of the facial landmarks, since it leverages the
procrustes transformation.

Disparity =
1

Nt

Nt∑
t=1

Nflm∑
q=1

(PP (t)
q −G(t)

q )2, (9)

where PP (t)
q stands for the mouth landmark q, predicted for

the frame t, after the procrustes transformation.

B. Metrics to Evaluate Face Reconstruction

We define the following metrics for the face reconstruction
model evaluation.



1) Face Parsing IoU: Face parsing is the segmentation of
the face parts, such as eyes, nose, mouth and even accessories
such as glasses and hat. With this information one can use the
mouth region to estimate the quality of a reconstructed face
based on how similar it is to the ground truth face. We used
an implementation of face parsing based on the architecture
of Yu et al. [31]. For the metric, we consider only three of the
segmented region, all derived from the mouth. The regions
are upper lip, interior mouth and lower lip. The parsing is
extracted for both the generated image and ground truth image
and the IoU is computed for the three regions. The final metric
is the mean IoU for the three regions from all the test set
frames.

ParsingIoU =
1

Nt

1

Nr

Nt∑
t=1

Nr∑
r=1

BP
(t)
r ∩BG(t)

r

BP
(t)
r ∪BG(t)

r

(10)

Equation 10 is the definition of the parsing IoU metric. BP
is the parsing of the reconstructed image, BG is the parsing of
the ground truth image, r is the parsing region in the frame t
and Nr is the number of parsing regions used, which is equal
to three in this case.

2) Mouth Landmarks Distance: This metric is a simple
method of measuring how similar the reconstructed mouth is
with the ground truth image. The metric is the mean distance
from the mouth landmarks of both images.

MLD =
1

Nt

1

Nflm

Nt∑
t=1

Nflm∑
q=1

|IP (t)
q − IG(t)

q |, (11)

in Equation 11, IP are the mouth landmarks from the gener-
ated image and IG the landmarks of the ground truth image.

3) Disparity: As in the method of Section IV-A, we extract
the facial landmarks from the images and then apply the
disparity metric.

Disparity =
1

Nt

Nt∑
t=1

Nflm∑
q=1

(IPP (t)
q − IG(t)

q )2, (12)

Equation 12 shows the metric definition. IPP are the mouth
landmarks from the generated image, after being projected by
the procrustes transformation.

4) Structural Similarity Index Measure: SSIM [32] is a well
known metric of similarity between two images. We use it as a
way of assessing the quality of the generated image as a whole,
instead of just looking at the mouth region. It considers the
structural information of the image and the inter-dependency
of adjacent pixels. The metric is a number between zero and
one. Values near one mean a high similarity between the
images.

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)(
µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2

) , (13)

in Equation 13, x and y are windows of size 11x11 of the
image generated by the face reconstruction and ground truth

image, respectively. Also µx is the average of x, µy is the
average of y, σ2

x is the variance of x, σ2
y is the variance of y,

σxy is the covariance of x and y, C1 is equal to (k1L)
2, C2 is

equal to (k2L)
2, L is the dynamic range of the pixel values,

k1 = 0.01 and k2 = 0.03.
5) Peak Signal-to-Noise Ratio: PSNR is also a metric of

similarity between two images. But it takes in consideration
the absolute difference between pixels.

PSNR =
1

Nt

Nt∑
t=1

10 log10 (
MAX2

MSE
), (14)

Equation 14 shows the PSNR definition in which MAX is the
maximum possible value of the pixels (255 in this case). MSE
is the mean squared error between the two images.

6) L1 Distance: L1 is a straightforward distance measure-
ment that can be applied in images. Its equation is shown in
15.

L1 =
1

Nt

1

Np

Nt∑
t=1

Np∑
p=1

|V P (t)
p − V G(t)

p |, (15)

where V Pp is the pixel p of image V P generated by the face
reconstruction model. V Gp is the pixel p of the ground truth
image. Np is the total count of pixels in the mask region.

V. EXPERIMENTAL RESULTS

In this section, we evaluate both the mouth landmarks
prediction model and the face reconstruction model. We
also show how much the error of the former influences the
performance of the latter. Ablation experiments show the
impact of different architecture aspects in the models. For the
experiments, the face detector employed is the one available in
Dlib toolkit [33], that is based on the Histogram of Oriented
Gradients (HOG) [34] combined with a linear classifier and a
sliding window detection scheme. The landmark detector used
was also from Dlib tookit, with an implementation based on
the work of Sullivan and Kazemi [35]. The segmentation used
was the OpenCV implementation of watershed [36] algorithm.

A. Dataset

The dataset used in the experimental evaluation is TCD-
TIMIT [37], which is widely used in the field of talking face
generation [7] and talking face image inpainting [6]. It was
designed to address automatic speech recognition using audio-
visual approaches. It is composed of 62 speakers saying a total
of 6913 short sentences in English. The videos are high quality,
with 1920x1080 pixels, and audio frequency of 48KHz. The
videos were recorded simultaneously in a frontal view and in
side view of 30º, but only the frontal videos were used in our
experiments.

B. Training Protocol

The dataset TCD-TIMIT suggests an experimental protocol
for partitioning training and test sets by subject. The same
protocol is used by [6] and many related works. The partition



TABLE I
COMPARISON ON THE EFFECT OF SEQUENCE SIZE IN THE EVALUATION

METRICS.

Model Metrics
Name MAE↓ Disp ∗102 ↓

MLPM seq=3 2.689 1.589
MLPM seq=7 2.677 1.566
MLPM seq=11 2.666 1.533
MLPM seq=15 2.667 1.557
MLPM seq=19 2.667 1.544

TABLE II
COMPARING METRICS WITH A TWO LAYERS FULLY CONNECTED BASELINE

AND A UNIDIRECTIONAL AND BIDERECTIONAL LSTM.

Model Metrics
Name MAE↓ Disp ∗102 ↓

Bi-LSTM 2.666 1.533
LSTM 2.724 1.650

Fully connected 2.772 1.616

splits 39 subjects for training and 17 for test, without subject
overlap between partitions.

The aforementioned division was used for the training and
evaluation of both mouth landmarks prediction model and face
reconstruction model.

C. Mouth Landmarks Experimental Results

In this section, we present the experimental results on
the MLPM using the metrics defined previously. We show
an experiment evaluating the effect of the sequence size in
the metrics, one evaluating the recurrent model used and an
ablation study with the model inputs.

1) Sequence Size: The recurrent models used have the
sequence size as a hyperparameter. Table I shows the results
regarding the sequence size. A range with the following values
was chosen: 3, 7, 11, 15 e 19. The experiments show that the
sequence size has a minor impact in the metrics, with small
variations. The chosen size was 11, which presented the best
metrics. This size was fixed for the next experiments.

2) Recurrent Model: Table II shows the evaluation of the
recurrent model. We compare it with a simpler architecture,
a two layers fully connected network, with the hidden layer
of the same size as the output of the LSTM, 128. We also
compare the same architecture, replacing the bidirectional
LSTM with a unidirectional one. According to the results, the
bidirectional recurrent model performs better than the fully
connected and the simple LSTM, which is evidence that the
data is temporally dependent in both directions. Therefore,

TABLE III
METRICS OF ORIGINAL MODEL AND OF THE MODEL USING ONLY ONE

INPUT AT A TIME.

Model Metrics
Name MAE↓ Disp ∗102 ↓

MLPM 2.666 1.533
MLPM w/o landmarks 6.191 1.692

MLPM w/o audio 2.831 2.146

TABLE IV
METRICS OF THE FACE GENERATIVE MODEL WITH GROUND TRUTH
MOUTH LANDMARKS AND AUDIO ESTIMATED MOUTH LANDMARKS.

Model Metrics
Name PIoU↑ Disp ↓ MLD↓ SSIM↑ PSNR↑ L1↓
GTFL 0.7592 0.00351 1.39 0.9289 31.18 14.01
EFL 0.4536 0.01147 10.99 0.9102 29.77 16.12

TABLE V
ABLATION STUDY WITH MODEL LOSSES.

Model Metrics
Name PIoU↑ Disp ↓ MLD↓ SSIM↑ PSNR↑ L1↓
EFL 0.4536 0.01147 10.99 0.9102 29.77 16.12

EFL w/o
Discri-
minator

0.4499 0.01248 11.51 0.9129 29.67 16.34

EFL w/o
Style Loss 0.4495 0.01258 11.82 0.9159 29.65 16.61

EFL w/o
Perceptual

Loss
0.4503 0.01261 11.90 0.9122 29.71 16.12

EFL w/o
TV Loss 0.4508 0.01231 11.75 0.9118 28.69 17.74

frames that are near in time help in the estimation of the
current mouth landmarks.

3) Ablation Study: The audio to sequence model receives
two inputs, the facial landmarks other than the mouth and
the audio MFCC features. To assess the influence of each
of them, the model was trained with only one of the inputs
to obtain the metrics. According to Table III, the model
trained only with the audio information had a high MAE
but a reasonable disparity, which indicates that the format
and arrangement of the mouth landmarks were close to the
expected but the coordinates were far from the ground truth.
This occurs because without the remaining facial landmarks it
is hard to position and scale the mouth landmarks accordingly.

Using only the facial landmarks as input, we see the
opposite behaviour. The MAE was reasonable, meaning that
the predicted mouth landmarks coordinates were close to the
ground truth. But the disparity was high, showing difficulty
in adjusting the relative position of the landmarks and its
movements. This suggests that both inputs are complementary,
since they provide different information to the model.

D. Face Reconstruction Experimental Results

In this section, we present the experimental results regarding
the face reconstruction generative model in a quantitative
manner, using the metrics defined and in a qualitative manner
through the example figures. We use the ground truth mouth
landmarks for training and the mouth landmarks predicted by
the MLPM for testing.

1) Quantitative Results: Table IV, shows metrics compar-
ing the model trained with the ground truth facial landmarks
(GTFL) as input, with the model trained with the estimated
facial landmarks (EFL) obtained from the MLPM. While the
first three metrics, Parsing IoU, Disparity and Mouth Landarks
Distance evaluate the quality of the generated mouth, the



TABLE VI
MODELS TRAINED WITH AND WITHOUT THE REFERENCE IMAGE AS AN

INPUT.

Model Metrics
Name PIoU↑ Disp ↓ MLD↓ SSIM↑ PSNR↑ L1↓
EFL 0.4536 0.01147 10.99 0.9102 29.77 16.12
EFL

w/o ref
image

0.4348 0.01438 14.96 0.8927 28.06 20.53

other metrics, SSIM, PSNR and L1 evaluate the image as a
whole. According to results, the GTFL model shows mouth
reconstruction metrics far superior than the EFL model, which
hints that the face generative model could benefit from more
accurate mouth landmarks and shape estimators. It is still an
open problem for research.

Table V shows the ablation study regarding the loss func-
tions used during training. Among the studied configurations,
we can see that the best performance is the model with all the
losses. There is a slight drop in performance generally speak-
ing, when removing one of the loss functions. Nevertheless,
the absence of one of them does not seem to significantly harm
the model quality, showing some robustness with respect to it.

One of the EFL inputs is the reference image, but the
model can also be trained without it. The compromise is
that without the reference image, the model reconstructs the
image face generically, while the reference image provides
prior information about the subject face. In Table VI we
compare the model trained with and without the reference
image (using it accordingly in the test set). From the metrics,
we can see that both the mouth quality and image quality
metrics drop when removing the reference image. The MLD
increases from 10.99 to 14.96 while parsing IoU only drops
from 0.4526 to 0.4348. We can see that classical metrics
such as landmark distance suffer more without the mouth
appearance information. Moreover, there are scenarios where it
is not practicable to collect a reference image from the subject,
hence the importance of having a model trained without this
kind of input.

2) Qualitative Results: Figure 3 shows a visual result from
the method for some frames of a random subject from the test
partition. Each column refers to a different frame. The first two
rows are the model inputs, the reference image and the image
to be reconstructed guided by the facial landmarks. Third row
shows the result of the face reconstruction. And the fourth row
shows the ground truth image. According to the figures, the
mouth shape resembles the ground truth image, even though
they are not exactly identical. Since the model has no previous
information regarding the subject teeth (usually not visible in
the reference image), it tries to fill in the space generically.

Figure 4 compares the model trained with a reference image
and the model trained without the reference image. First row
shows the reference image, second row the input image to be
reconstructed, third row the image reconstructed by the model
using the reference image, fourth row the image reconstructed
by the model without the reference image and finally the fifth

Fig. 3. Model results. Column index the example frame and rows the kind of
image. The row represent, respectively, the reference image, input image with
masked projected, image generated by the face generative model and ground
truth. This subject belongs to the test partition.

Fig. 4. Comparing the results with the generative model trained with and
without the reference image as an input. The rows represent, respectively,
the reference image, input image with masked projected, image generated by
the face generative model with the reference image, image generated by the
model without the reference image and ground truth. This subject belongs to
the test partition.

row exhibits the ground truth image. According to the images,
one can see that without the reference image some facial
features are reconstructed in a general way, which alters the
subject appearance. Since in Figure 4, the generated image
without the reference changed the nose and beard from the
subject, which did not happen to the reconstructed image using
the reference.



VI. CONCLUSIONS

In this paper we proposed a method to remove facial
masks in videos of a talking subject. The method explores
the temporal correlation of the audio and mouth movements,
describing the mouth shape with landmarks that guide the face
reconstruction model to generate a coherent mouth. By doing
so, we intend to enable lip reading. We adopted metrics used
in the literature and proposed others more robust. Using them,
we explored different aspects of the models’ architecture and
how they affect the results. The mapping between the audio
domain and the landmark coordinates domain showed up as a
hard task to obtain precise predictions. A direction for future
work is to develop models that improve the accuracy regarding
the mouth landmarks prediction model.
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