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Abstract—The Master’s Thesis presented an image-based ap-
proach to estimate the speed of moving vessels from their traces
on the water surface. Vessels moving at constant heading and
speed display a familiar V-shaped pattern which only differs from
one to another by the wavelength of their transverse and diver-
gent components. Such wavelength is related to vessel speed. We
use planar homography and natural constraints on the geometry
of ships’ wake troughs to compute vessel speed from single optical
images acquired by conventional cameras. Experiments show
that our approach produces compelling results, which are in
accordance with true data available for the observed vessels.

I. INTRODUCTION

One of the most important technological advances in the
maritime industry is electronic navigation [1]. These systems
keep the pilot informed of the location and speed of nearby
vessel’s, as long as they are under system monitoring. Unfor-
tunately, many vessels are not equipped with such systems. As
a result, visual contact still plays an important role in decision
making, especially at close range.

The importance of visual contact must be taken into account
while commercial, military, and recreational navigation move
toward the self-sailing ships era. The problem is that radars and
other sensors may fail to detect stealth ships and non-metallic
targets, because they reflect a very low amount of radiation.
As a result, computer vision techniques for estimating ships’
relative location and speed from visual clues will probably be
an important component of self-sailing systems.

In Jose’s Master’s Thesis, we present a method for com-
puting the speed of vessels directly from single perspective
projection images acquired by conventional cameras (Fig. 1).
Our approach is based on projective geometry and estimates
the ship speed using the structure of Kelvin waves [2]. Our
key observation is that navigating vessels (even stealth ones)
leave traces of their motion in the form of wake patterns on
the water surface. In 1887, Lord Kelvin demonstrated how to
model those features as a function of speed [2].

The advantages of the proposed approach are twofold. First,
the use of single images allows the estimation of the speed of
nearby vessels from each frame of a video sequence indepen-
dently. Estimate speed from motion in video sequences, on
the other hand, would be a challenging task due to the natural
movement of both reference and target ships as a result of
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wave action. Second, ship wakes are more distinct than the
hulls and can be observed in optical images.

The main contribution of this work is a technique for
computing vessel speed as an inverse Kelvin wake problem
using data extracted from single optical images. We have
performed experiments on images of different moving vessels.
Results comparing the velocities estimated by our approach
with truth data from passenger vessels on a service route across
the Guanabara Bay show the accuracy of our technique.

II. RELATED WORK

Vessel detection and tracking using computer vision-
based systems are convenient solutions for measuring vessel
speed [3]. A large number of algorithms estimate the ves-
sel speed by analyzing the traces left by the vessel using
Synthetic-Aperture Radar (SAR) imagery. For example, Pan-
ico et al. [4] contributed in the task of recovering the vessel
speed through wake analysis. They developed a method for
estimating calm sea speed and applied it to seven X-band SAR
images. In their work, they exploit the well-known relationship
between the wavelength that make up the Kelvin pattern and
the vessel speed.

Other techniques estimate speed using image sequences
taken with a digital camera. Broggi et al. [5] describes a
method of detecting, measuring speed, and extracting statistics
for vessels moving over a wide water surface using images
stream taken from a gray–scale camera. They demonstrated
stable vessel detection even with sea waves and strong light
reflections. The speed was estimated by the pixel/frame
measurement, while our method estimates speed in real-world
units like knots and meters per second using a single image.

SAR-based methods use data collected by airborne sensors,
while the video-based techniques require fixed cameras to
estimate speed from relative motion. The proposed approach
does not have those issues because it uses a single image that
could be taken by a lighthouse, a vessel or a drone.

III. COMPUTING VESSEL SPEED

We assume that the camera was mounted at a given height
h above sea level, in such a way that the target ship and the
traces left by it can be observed (Fig. 1). The orientation of
the camera in world space is estimated during the process. For
each image acquired, the processing steps include: (i) estimate
the vanishing line of the mean water plane; (ii) define the
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Fig. 1. We find the vanishing line l of the mean water plane ΠΠΠ using the input color image. From l, camera height h, point x1 and vessel direction ~u in
image space, we estimate the vessel direction ~U and corners Xi of the Region of Interest (ROI) in world space, and their projections xi. We use the edge
image of the ROI in image space to find the wave arms of the traces left by the vessel. In the rectified ROI, we compute the wavelength and vessel speed
from the Euclidean distance of the troughs of the smooth curve that approximates the wave arm closest to the camera centre C. We intentionally flip the
rectified ROI image to make the vessel go to the left.

corners of the Region of Interest (ROI) including the ship
wake; (iii) find the wave arms and troughs present in the ROI;
and (iv) estimate the vessel speed using the wavelength.

A. Vanishing line estimation
We use the Horizon Line in the Wild (HLW) algorithm [6]

to detect the vanishing line of the water body automatically.
The HLW algorithm estimates the left and right endpoints of
the vanishing line of the most prominent plane observed in
the input color image I. In our equations, we represented
the endpoints by homogeneous coordinates as vectors pl =
(0, ypl

, 1)T and pr = (W − 1, ypr , 1)T , where W is the
width of I and ypl

and ypr are the vertical coordinates of the
points returned by HLW. The vector l = (A,B,C)T encoding
the vanishing line of the mean water plane in homogeneous
coordinates can be computed as the cross product of vectors
pl and pr [7].

B. Definition of the corners of the ROI
The ROI must include the ship wake. It is defined in

the input image I as the quadrilateral resulting from the
projection of a rectangular region on the water surface (see
Fig. 1). We find the set of corners {xk}4k=1 of the ROI
in I from the reference corner x1 = (xx1

, yx1
, 1)T , the di-

rection ~u = (x~u, y~u, 0)T of the vessel in this image, the
vanishing line l, the camera calibration matrix K, the ROI
size WROI ×HROI (in meters) in 3D-space, and the camera
height h above sea level. We manually choose x1 and ~u in
image space in our experiments. However, automatic object
detection techniques could be used in practical aplication of
our technique. In this work, we extracted metadata from the
image files to compute K. WROI and HROI are constant
values defined by the user.

The camera height h (in meters) is given by construction
and is defined in meters as the distance between the camera

and the mean water plane. We assume that the origin O of the
world coordinate system (see Fig. 1) lies on the orthogonal
projection of the camera centre C to the mean water plane
ΠΠΠ, the X and Y axes span ΠΠΠ and the Z-axis is parallel
to the vector ~N normal to ΠΠΠ. We set C = (0, 0, h, 1)T and
compute its orientation with respect to the world’s frame from
the vanishing line l. If the camera is mounted on a vessel’s
mast, its height h can be calculated from of the mast’s height
and its relative orientation to the normal vector ~N (computed
from the vanishing line). For drones, the vehicle needs to be
able to determine its altitude. In our experiments, the camera
was mounted on a tripod in a building. In this case, the
camera height above the sea level is calculated as the sum
of the heights hg , hf , ht, and hs representing, respectively,
the ground height, the floor height, the tripod height, and the
tide height h = hg + δhf + ht − hs, where δ is the floor
number where the camera was mounted.

1) Finding the set of corners of the ROI: Let {Xk}4k=1 be
the set of corners of the ROI lying on plane ΠΠΠ. The corner
X1 = (XX1

, YX1
, 0, 1)T is computed by tracing a ray from

the camera to ΠΠΠ through point x1:

X1 =
(
−hX~D/Z~D,−hY~D/Z~D, 0, 1

)T
, (1)

where ~D = (X~D, Y~D, Z~D)T = M−1x1 is the direction of the
traced ray, M = KR, and R is a rotation matrix whose
columns correspond to the X , Y , and Z axes of the camera
in world frame of reference (respectively, the red, green,
and blue segments leaving C in Fig. 1). The columns of
R are ~R1 = ~R3 × ~R2, ~R2 = unit((1, 0, 0)T × ~R3), and
~R3 = unit(up(KT l)). The unit function normalizes the
vector to have unit length and the up function changes the
orientation of ~R3 if its Y~R3

coordinate is negative. That
operation is necessary to correct the hand of the camera
coordinate system by forcing the ~R2 vector to point upward,
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Fig. 2. The Kelvin wake structure, indicating the transverse and divergent
components, and the crests and troughs of the wave arms.

like the normal vector ~N of the mean water plane and the
Z-axis of the world frame of reference (see Fig 1), while ~R1

and ~R3 point to the right and front, respectively.
X2, X3, and X4 are computed by translating X1 by WROI

and HROI in directions ~U = unit(A~E) and ~V = B~U on
plane ΠΠΠ:

X2 = X1 −WROI
~U, (2a)

X3 = X1 −HROI
~V, (2b)

X4 = X1 −WROI
~U−HROI

~V, (2c)

where ~U is the direction of the vessel in world coordinates, and
~V is a perpendicular direction computed by rotating ~U in ΠΠΠ
through an angle of π/2. Thus, B is a constant rotation matrix.
Here, ~E = (X~E, Y~E, Z~E)T = M−1~u is the back-projection of
~u (an improper point) to world coordinates, and A encodes
the orthogonal projection on ΠΠΠ.

Finally, the corners of the ROI in I are computed as:

xk = PXk, (3)

where k ∈ {2, 3, 4}, P = M
(
I | −C̃

)
is the 3× 4 camera

matrix, I is a 3× 3 identity matrix, and C̃ = (0, 0, h)T .

C. Finding the wave arms and troughs

We use the edge image B of the color image I to find the
wave arms. The Richer Convolutional Features algorithm [8]
was used to compute the edge image. To avoid processing
the whole image or working with a non-rectangular ROI, the
procedure for finding the wave arms considers a small portion
of B defined as the axis-aligned bounding box of the ROI.

Next, we binarize the small portion of the edge image B.
Subsequently, we use k-means, k = 2, to divide and group
each portion vertically of the binary image with a sliding win-
dow ∆, and discriminate the wave arms. In our experiments,
we set ∆ to 5 pixels. According to our experience, the results
of the curve fitting process that follows do not differ when
choosing ∆ between 3 and 9 pixels. We choose the wave-
arm closest to the camera, because is the least affected by the
turbulence inside the wake. In addition, its troughs are less
affected by errors when we perform the rectification of the
ROI. The objective of the ROI rectification is to eliminate from
the image of the mean water plane the projective distortion

introduced by the camera, simulating an aerial view of the
ROI. For that, we use the line at infinity l∞ of the water plane
to remove affine distortion, and the camera height h above sea
level to eliminate projective ambiguity.

After rectifying the ROI image of the chosen wave arm, the
discrete set of points obtained in may be corrupted by noise,
which makes it challenging to find the troughs of the wave. We
use the LOcally WEighted Scatter-plot Smoother (LOWESS)
algorithm [9] to smooth the digital curve.

One finds a set of crests or a set of troughs as the curve
maximum or minimum, depending on the direction of the
vessel with respect to the camera. Since we have the curve
that corresponds to the arm closest in the V-shaped pattern,
we can find the crests and troughs as follows:
• When the vessel goes to the right in the input image I, the

curve maximum and minimum correspond, respectively,
to the wave arm’s troughs and crests;

• When the vessel goes to the left in the input image I,
the curve maximum and minimum correspond to the wave
arm crests and troughs.

We avoid the identification of noisy troughs (or crests) by
imposing a minimum horizontal distance of ψ = 20 meters
between valid consecutive troughs (or crests), and by ex-
tracting only the two minimums/maximums (depending on
the case). The value of ψ was empirically defined based on
the observation that with a wavelength of approximately 20
meters, the speed is close to 10 knots and, most vessels that
leave visible tracks move at higher speeds.

D. Vessel speed estimation

To solve the inverse Kelvin wake problem, we need to cal-
culate the Euclidean distance in the world coordinate system
between at least two consecutive troughs or crests. The two
consecutive troughs or crests are found in Section III-C.

Once the two wave troughs (or crests) are found, the
vessel speed can be estimated using the wavelength of the
transverse components of the Kelvin wake structure (Fig 2).
The wavelength can be estimated using the distance between
successive troughs (or crests), and from the wavelength one
can estimate vessel’s speed [4]. We compute the wavelength
λ by replacing D in λ =

√
3
2 D, where D is the Euclidean

distance (in meters) between the location of troughs (or crests).
Finally, the speed (in knots) of the vessel is:

U = 1.944

√
g

2π
λ, (4)

where g ≈ 9.80665 m/s2 is the acceleration of gravity. Since
knot is the unit of measurement of speed used for maritime
navigation, one has to multiply by 1.944 to convert from
meters per second to knots.

IV. EXPERIMENTS AND RESULTS

In the experiments, images of moving vessels were acquired
under natural lighting and different weather conditions. A
total of 40 images was obtained, where 23 of them were
used to analyze the results (Figure 4 shows some samples).



(a) Unfavorable weather condition (b) Low natural lighting

(c) An slow merchant ship (d) Low natural lighting
Fig. 3. Cropped version of some images were our approach could not detect
wave arms having at least two well defined troughs in the edge image.

The remaining 17 out of the original 40 images were not
considered because they were taken under unfavorable weather
conditions (Fig. 3 (a)) and low natural lighting (Fig. 3 (b)
and (d)) that prevented our approach from being successful on
detecting the troughs. Besides, some vessels on those images
were merchant ships (Fig. 3 (c)). As such, their speed must be
low because they were close to a port area. In all those cases,
the traces left by the vessels or at least two troughs cannot
be distinguished even by human observers. The procedures
described in Section III were implemented in Python 2.

The images were taken using a Nikon D3300 camera with
24.2 megapixels and encoded in JPG format file. The lens
model used was an AF-S DX NIKKOR, with 18 ∼ 55 mm
focal length. The captured images’ resolution is 6000× 4000
pixels. The ROI size lying on plane ΠΠΠ was intentionally set to
WROI ×HROI = 180× 90 meters to cover the wave arms.
The camera was mounted in two places. The camera height
was h = 27.79 and h = 23.88 meters approximately. A radar
designed to monitor vessels was used as a resource to validate
the proposed method. The radar is a FAR − 21 × 7 series of
X and S-band, with a 19-inch LCD screen. The radar screen
includes the name and knot speed of the tracked vessel.

Table I shows the identification of the vessel (column
Model), the weather condition at which the pictures were
taken (column Weather) and the speed measured by the radar
(column U ). Of the 23 images used, 22 are of two different
passenger vessels (models HSC and MC25) and one is a
tugboat (image i7, Fig. 4 (d)).

Considering that the data used as input (e.g., the y-
coordinate of the endpoints of the vanishing line, camera
height, the reference corner of the ROI and direction of the
vessel in image space) are subject to errors, it is expected that
the estimated speeds also have uncertainty. By comparing the

TABLE I
INFORMATION PER CAPTURED IMAGE, WHERE U DENOTES THE SPEED

MEASURED BY A RADAR (GROUND TRUTH), Û IS THE SPEED ESTIMATED
BY OUR APPROACH USING THE WAVE ARMS TROUGHS, AND εa AND εr

ARE, RESPECTIVELY, THE ABSOLUTE AND RELATIVE ERRORS OF
ESTIMATIONS.

Image Vessel
Model Weather Speed (knots) Error

U Û εa εr
i1 HSC Cloudy 18.2 18.339 0.139 0.008
i2 MC25 Cloudy 20.6 21.533 0.933 0.045
i3 MC25 Cloudy 20.5 20.609 0.109 0.005
i4 MC25 Cloudy 19.2 19.434 0.234 0.012
i5 MC25 Cloudy 17.3 16.683 0.617 0.036
i6 MC25 Cloudy 17.1 16.530 0.570 0.033
i7 Other Cloudy 9.2 19.262 10.062 1.094
i8 MC25 Cloudy 19.5 19.288 0.212 0.011
i9 HSC Cloudy 15.6 15.984 0.384 0.025
i10 HSC Cloudy 16.5 16.611 0.111 0.007
i11 MC25 Cloudy 20.4 20.771 0.371 0.018
i12 MC25 Cloudy 20.4 20.543 0.143 0.007
i13 MC25 Cloudy 17.3 16.846 0.454 0.026
i14 MC25 Cloudy 19.6 20.533 0.933 0.048
i15 MC25 Cloudy 19.1 19.861 0.761 0.040
i16 MC25 Cloudy 20.2 22.120 1.920 0.095
i17 MC25 Cloudy 20.3 20.638 0.338 0.017
i18 MC25 Scattered storm 18.9 19.617 0.717 0.038
i19 MC25 Partly cloudy 17.5 17.342 0.158 0.009
i20 MC25 Partly cloudy 17.6 17.808 0.208 0.012
i21 MC25 Partly cloudy 17.8 18.947 1.147 0.064
i22 MC25 Partly cloudy 20.3 16.490 3.810 0.188
i23 MC25 Partly cloudy 16.8 16.084 0.716 0.043

computed values and the speeds measured by the radar, it is
possible to have an idea of the developed technique’s accuracy
and precision. In Section IV-A, we analyze the relative error of
our estimations. Sections IV-B and IV-C present the analysis of
confidence intervals computed using sampling and first-order
error propagation.

A. Analysis of relative error

Relative error εr = εa/U indicates the proportion of the
absolute error εa = |Û − U | of an estimated value Û
concerning the true value U . We have used εr to determine
the accuracy of our approach. In Table I, the absolute error
is given in knots. Û is calculated by applying the proposed
method, while U is the measurement made by the radar.

We use the troughs of the closest wave arms to estimate
the Û values presented in Table I. Those troughs are the least
affected by the noise introduced by the vessel’s turbulence and
the distortion of rectified elements that are not in the actual
mean water plane. According to Table I, relative errors are
below 2% for ten images, in the [2%, 4%] interval in six cases,
in the (4%, 5%] range in three images, and between 5% and
10% in three cases. Only image i7 (Fig. 4 (d)) had a relative
error that surpassed the true measure (109%). The explanation
for this behavior is that the trace left by the tugboat was weak
because it was at 9.2 knots speed, and we have set the ψ
parameter for the minimum horizontal distance between valid
consecutive trough to 20 meters, limiting estimated speeds to a
minimum of 10 knots. The mean and median relative errors in
Table I are, respectively, 8.18% and 2.60%. The mean relative
error was clearly affected by the result in image i7. Observing



(a) Image i1, U = 18.2 knots,
Û = 18.34 knots

(b) Image i2, U = 20.6 knots,
Û = 21.53 knots

(c) Image i5, U = 17.3 knots,
Û = 16.68 knots

(d) Image i7, U = 9.2 knots,
Û = 19.26 knots

(e) Image i13, U = 17.3 knots,
Û = 16.85 knots

(f) Image i16, U = 20.2 knots,
Û = 22.12 knots

(g) Image i18, U = 18.9 knots,
Û = 19.62 knots

(h) Image i22, U = 20.3 knots,
Û = 16.49 knots

Fig. 4. Cropped version of some images used in the experiments. Image i1
shows HSC passenger vessels. Images i2, i5, i13, i16, i18, and i22 show MC25
passenger vessels. Image i7 shows another vessel model. Where U denotes
the speed measured by a radar (ground truth), Û is the speed estimated by
our approach using the wave arms troughs

the robust statistics provided by the median, we conclude that
the proposed method is accurate.

B. Analysis of confidence intervals estimated from samples

In practice, each image presented in Table I provides one
sample on which we can estimate speed. One way to assess the
accuracy of the technique is by analyzing the variation in speed
estimates obtained for the same vessel considering as input a

set of images captured under similar conditions. Unfortunately,
we couldn’t capture enough images of each vessel at the same
time to produce confidence intervals to analyze the accuracy of
our approach. To simulate several image captures of the same
ship, we have introduced small variations in the input variables
that are considered sources of uncertainty in each captured
image. We produce n = 100 Gaussian-distributed variations
of the original set of input values of each image in Table I,
generating samples from which we compute speeds and their
confidence intervals:

CI(γ) =

[
Ū − tγ

sU√
n
, Ū + tγ

sU√
n

]
, (5)

where Ū is the sample mean speed, sU is the sample standard
deviation, tγ is a t-Student variable with n− 1 degrees of
freedom, and γ is the confidence level.

Fig. 5 (top) shows the confidence intervals with γ = 99.8%
calculated for the vessels using sampling (Table I). For most
of them, mean speed Ū is close to the true speed U , which
is included in the respective confidence interval. For some
cases where the true speed is outside the confidence interval
(images i6, i11, i14, and i21) the distance to interval’s limits
is negligible, ranging from 0.05 to 0.50 knots. The narrowest
confidence intervals are for images i10 and i3, respectively,
with 0.30 and 0.50 knots wide. The cases with most consider-
able distances between U and Ū and whose confidence interval
does not include the true speed are images i7, i16, and i22.
The problem with image i7 was discussed in Section IV-A.
For image i16, the location of the troughs was affected by
weather conditions. For image i22, low natural lighting made
the trail of the vessel very blurred.

Including all cases presented in Fig. 5 (top), the largest
confidence intervals are 2.86 and 1.78 knots for images i16
(Fig. 4 (f)) and i22 (Fig. 4 (h)), respectively. The median size
is only 0.3 knots. The variations of values reported by the
radar for three consecutive speed measurements for vessels
images i19 to i21, images i4 to i6 and images i11 to i13
are, respectively, 0.3, 2.1 and 3.1 knots. Thus, we concluded
that the proposed approach is accurate. But we cannot make
a strong statement in this regard because each interval was
calculated using samples generated from one image.

C. Analysis of confidence intervals estimated using error
propagation

We analyze the confidence intervals produced by the first-
order error propagation approach and compare them to the
intervals produces by sampling.

First-order error propagation may give the correct Gaussian
uncertainty for the resulting estimations whether the uncer-
tainty on input variables follows Gaussian distributions and the
process for computing the resulting values is linear. Otherwise,
it provides the first-order approximation of the error [10].

To verify which is the case of our approach, we have used
the Shapiro-Wilk [11] test to check whether the resulting
samples produced in Section IV-B fits Gaussian distributions.
Images i7, i16, i19, i22, and i23 did not pass the test.
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Fig. 5. Confidence intervals (γ = 99.8%) computed using sampling (top)
and first-order error propagation (bottom). Images sorted by vessel speed.

The ratio r = sU/σÛ between the standard deviations com-
puted from sampling and propagation shows that the first-
order error propagation approach is equivalent to and slightly
more conservative than the sampling-based approach. The only
exceptions were r > 1 are images i1, i22, and i23. In 16 cases,
0.4 ≤ r ≤ 1. This reflects in the result presented in Fig. 5
(bottom), where only two confidence intervals clearly do not
include the true speeds (images i7 and i22), and four almost
include them (images i2, i6, i9, and i21). Notice that images i7,
i22, and i23 did not pass the normality test.

The narrowest intervals in Fig. 5 (bottom) have 0.80 and
0.86 knots length, while the widest are for images i17,
3.38 knots, and i15, 3.76 knots. Using first order error
propagation, the mean size of the confidence intervals was
0.942 knots, and the median size was 0.46 knots.

With the help of error propagation, it is easy to detect
cases where more considerable uncertainty is included in
the calculated speeds because this approach does not require
several samples.

V. CONCLUSION

We presented a method for estimating vessel speed from
single perspective projection images. The approach uses ge-
ometric constraints to remove perspective distortion from
images of traces of a moving vessel, curve fitting and peak
detection to identify troughs in the cusp wave arms and natural
constraints on components of Kelvin wakes to compute vessel
speed. Statistical methods were used in the verification of
the accuracy and precision of the proposed approach and the
theory of propagation of errors was used to give a notion
of quality in the estimated speeds from a single observation.
We believe that our algorithm can be used for maritime
surveillance, using drones and smart lighthouses.

To be able to consider the use of our technique in real
situations, it is necessary to draw some recommendations:

1) Lighting conditions affect edge detection and, conse-
quently, the detection of wave arms. In our experiments,
we had no problems in daylight, but it was not always
possible to process images captured at dawn or dusk,
and, indeed, our solution cannot be applied at night. The
same applies to rain and fog.

2) Due to geographical restrictions in our experiments, we
used images of the vessel port and starboard, going to the
left and right direction of the camera, moving at a linear
course, and (supposedly) constant speed. However, we
believe that our approach is robust to variations in
camera orientation since it is possible to see the troughs
at the wake envelope, even at grazing angles.

3) As demonstrated in our experiments, well-defined cap-
illary wakes due to wind and, possibly, generated by
nearby vessels may affect the Kelvin wake structure.
However, we believe that this is a problem that can be
overcome by detecting wakes crossing.

4) Since the method is applied to a single image, the use
of video could provide dozens of independent measure-
ments per second, which could be combined to reduce
error or eliminate spurious estimates.

5) Although we did not try in our experiments, pre-
processing the image to, for example, increase contrast,
could help in the detection of traces.

The complete work is described in [12], and it has led to
two articles so far:
• The first presented at the 2019 IEEE International Con-

ference on Image Processing (Qualis A1) [13]; and
• The second is under review in the Patterns Recognition

journal (Qualis A1) [14].
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