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Abstract—Deep learning (DL) has been the primary approach
used in various computer vision tasks due to its relevant results
achieved on many tasks. However, on real-world scenarios with
partially or no labeled data, DL methods are also prone to
the well-known domain shift problem. Multi-source unsupervised
domain adaptation (MSDA) aims at learning a predictor for an
unlabeled domain by assigning weak knowledge from a bag of
source models. However, most works conduct domain adaptation
leveraging only the extracted features and reducing their domain
shift from the perspective of loss function designs. In this paper,
we argue that it is not sufficient to handle domain shift only
based on domain-level features, but it is also essential to align
such information on the feature space. Unlike previous works, we
focus on the network design and propose to embed Multi-Source
version of DomaIn Alignment Layers (MS-DIAL) at different
levels of the predictor. These layers are designed to match the
feature distributions between different domains and can be easily
applied to various MSDA methods. To show the robustness of
our approach, we conducted an extensive experimental evaluation
considering two challenging scenarios: digit recognition and
object classification. The experimental results indicated that our
approach can improve state-of-the-art MSDA methods, yielding
relative gains of up to +30.64% on their classification accuracies.

I. INTRODUCTION

Machine learning algorithms, mainly the ones based on
deep learning (DL), have been the first approach to tackle a
wide variety of problems, for they have achieved outstanding
results and demonstrated a high generalization capacity on
well-known benchmarks [1]–[6]. However, when applied to
non-controlled environments, usually faced with real-world
problems, DL methods can have their performance degraded
to some extent. The first issue is that many real-world appli-
cations have no or few labeled data available in real-time [1],
[7], [8]. The most logical but naive approach concerns using
similar sets of annotated data as a source to train the predictor
for further inferring the unlabeled target data. However, even
similar data can be drawn from different underlying distri-
butions, i.e., they are obtained under different circumstances,
exhibiting a phenomenon called domain shift [1], [7], [9].

The aforementioned shortcomings have been firstly tackled
by the unsupervised domain adaptation (UDA) paradigm to

adapt a single source domain to a single target domain on
shallow machine learning methods, later extended to DL
methods [2], [9]. UDA approaches, in general, can be divided
into two main groups: (i) methods that try to learn domain
invariant features and (ii) methods that minimize domain
discrepancy, in a way that regularization terms are added to
the loss function [3]. However, often it is possible to find
more than one correlated dataset to the target task (e.g., digit
recognition) [2], [9]. Additionally, it is necessary to consider
the fact that data are not usually extracted from a single source
of information, and can present as many as possible domains
even within a same dataset, the so-called latent domains [10].
A common strategy to deal with more than one domain is to
group them into a single source domain [2], [11], which does
not always hold effective results, once distinct domains may
contribute in different ways to the transfer of knowledge.

The multi-source unsupervised domain adaptation (MSDA)
has been proposed to mitigate the weakness of UDA methods
by adapting a finite number of source domains to a single
target domain. Indeed, this goal is more challenging, since we
must deal with a shift between the source distributions. Each
source domain can contribute with complementary information
to fashion the knowledge about the target domain. Typically,
they do not share the same label space [2]. To reduce domain
shift, most MSDA methods try to learn domain-invariant rep-
resentations by introducing appropriate loss terms to penalize
the discrepancy of features across domains [2], [8], [9], [11].

Although such methods are quite effective, we argue that
it is not enough to deal with domain shift only based on
the loss function and feature alignment at different levels of
the network is also an indispensable part of domain adapta-
tion. Different from previous works based on designing loss
functions solely, we focus on improving the transferability of
the network by redesigning its architectural components. For
this, we propose to embed Multi-Source version of DomaIn
Alignment Layers (MS-DIAL) [12] at different levels of any
given DL model. These layers are designed to match the
feature distributions between different domains and can be
easily applied to various MSDA methods.



Experiments were conducted on two challenging tasks us-
ing six popular benchmarks widely-used to evaluate MSDA
methods: (i) digit recognition using MNIST [13], MNIST-
M [14], SVHN [15], and Synthetic Digits [16] datasets; and (ii)
object classification on Office-31 [17] and Office-Home [18]
datasets. We evaluated five different state-of-the-art MSDA
methods and compared their results with and without using
MS-DIAL. The obtained results indicated that our approach
yields significant effectiveness gains, reaching up to +30.64%
of relative gains on classification accuracies of the state-of-
the-art MSDA methods. In addition, a visual analysis was
conducted in order to highlight the benefits of our approach.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III describes our
approach and shows how it can be used for improving the
transferability of any MSDA model. Section IV presents the
experimental setup and reports our results. Finally, we offer
our conclusions and directions for future work in Section V.

II. RELATED WORK

UDA paradigm aims to transfer knowledge from a labeled
source domain to an unlabeled target domain in order to
learn a model well-performing on the target distribution. Early
UDA works have focused on shallow machine learning (ML)
methods but later they have shifted to DL methods [2]. On
shallow methods, the main approaches rely on minimizing the
discrepancy between the target domain and the source domain
in order to obtain domain-invariant features, like the Transfer
Component Analysis (TCA) [19] and Distribution-Matching
Embeddings (DME) [20].

A common approach for DL methods consists in exploiting
adversarial training to either transform source samples towards
target samples or to overpower the feature extractor to fool the
classifier by outputting features that are closer to the target do-
main, like Domain-Adversarial Neural Networks (DANN) [16]
and Weighted Maximum Mean Discrepancy (WMMD) [21].
Other methods try to align feature distributions by embedding
domain-specific normalization layers into a neural network,
such as DIAL [3] and AutoDIAL [22].

The aforementioned UDA methods try to reduce the domain
shift from a single-source to a single-target. MSDA methods,
on the other hand, face a challenging scenario of adopting
more than one source domain to predict a single target domain.
In the last years, many different MSDA approaches have
been proposed in the literature, such as Moment Matching
for Multi-Source Domain Adaptation (M3SDA) [9], Deep
CockTail Network (DCTN) [2], Multiple Domain Matching
Network (MDMN) [23], Multi-Source Domain Adversarial
Networks (MDAN) [24] and Domain Aggregation Networks
(DARN) [11], Adversarial Domain Aggregation Networks
(MADAN) [1], MultiDIAL [7], and MS-DIAL [12].

Except for these last two approaches, all the other MSDA
works employ a multi-stream network, usually with one stream
for each domain, some with different parameters for each
stream and, in this case, each domain has an independent
feature extractor and classifier; and others with parameters

shared among the streams, usually by feature extractors from
all domains, but each having its own classifier. Usually, one
stream is used to represent the task model and the others are
used to align the target and source domains. In this way, a
traditional task loss based on the labeled data and another
alignment loss to tackle the domain shift problem are jointly
optimized during the training phase.

In this paper, we demonstrate that most of those MSDA
methods can be improved by not just optimizing additional
loss terms but also aligning feature distributions at different
levels of the network. For this, we use MS-DIAL [12], an
extended version of DIAL [3] for MSDA.

III. DIAL: DOMAIN ALIGNMENT LAYERS

Let S = {S1,S2, . . . ,SM} be a finite set of labeled
source domains sharing the same set Y of categories with
an unlabeled target domain T . Each source domain Si =
{(xj

i ,y
j
i )}

Ni
j=1 refers to a set of tuples composed of Ni samples

xj
i and their respective labels yj

i . Since we do not know the
labels of the target domain beforehand, the set T = {xj

T }
NT
j=1

comprises the target samples only.
The source and target samples are drawn from distinct

distributions. The distribution of the source domains can be
estimated from the set of source samples and their labels.
On the other hand, such information is unknown concerning
the target domain. The final goal is to learn a function
f(xT ; θ) defined by a set of parameters θ, whose input are
the target samples xT ∈ T . Such a function is expected to
approximate the unknown target distribution and better classify
samples in T . This definition also holds to the single-source to
single-target UDA problem by limiting the number of source
domains, i.e., M = 1.

To solve this problem for a single source domain (i.e.,
M = 1), Carlucci et al. [3] proposed to align feature
distributions at different levels of a neural network through
DomaIn Alignment Layers (DIAL). DIAL require one model
only, shared across all domains, where each layer tries to bring
all domain distributions to a canonical superposed one and,
subsequently, to make few minor adjustments by performing
a jointly linear transformation on all distributions. In this work,
we adopt an extended version of DIAL that generalizes it for
multiple source domains (i.e., M > 1), called MS-DIAL [12].

MS-DIAL are based on Batch Normalization (BN) [25]
layers, which normalizes batches based on the estimation of
their first and second order statistics (i.e., mean and variance).
BN layers also use additional parameters to linearly transform
the normalized features and let the model restore the batch
representation. MS-DIAL aligns all domain distributions to
a canonical distribution, forwarding samples through a re-
spective BN layer that is individual to each domain without
performing the affine transformation. Finally, after the normal-
ization process, MS-DIAL performs an affine transformation.

Note that MS-DIAL act in different ways on the training
step and in the inference mode. We need to ensure that batches
will comprise samples from all domains organized in the same
order for training purposes. Concerning the inference mode,



as we are interested in classifying samples from the target
domain only, they are forwarded to their respective BN layer,
driving MS-DIAL to use BN simply.

During training, source (and labeled) domain samples
jointly with target (unlabeled) domain samples are fed to the
neural network. The loss function of our model is a weighted
sum of a classification term (Equation 1) and a distribution
alignment term (Equation 2). The classification term refers to
the well-known cross-entropy loss function between the source
predictions and their labels, as follows:

LS(θ) = −
M∑
i=1

Ni∑
k=1

yk
i log fi(x

k
i ; θ), (1)

where fi(x
k
i ; θ) denotes the prediction function concerning

source domain Si.
The distribution alignment term minimizes the entropy of

target samples in order to force the model to decide more
confidently and is given by:

LT (θ) = −
NT∑
k=1

fT (x
k
T ; θ) log fT (x

k
T ; θ), (2)

in which fT (xk
T ; θ) denotes the prediction function for the

target domain. The final loss function is computed as follows:

L(θ) = LS(θ) + λLT (θ), (3)

where λ weights the distribution alignment term.
We follow different strategies to include MS-DIAL on off-

the-shelf methods: if the model has BN layers, we replace
them by MS-DIAL and transfer their parameters to the new
BN layers inside MS-DIAL; otherwise, if the model has no
BN layers, we embed MS-DIAL after each convolutional and
fully-connected layer to perform the feature alignment on each
new representation, except on its final classification layer. This
process is better described in Algorithm 1.

IV. EXPERIMENTS AND RESULTS

In this section, we provide details about the experimental
setup adopted in order to evaluate the proposed method as well
as we report the obtained results. A rigorous and extensive
experimental evaluation was conducted on both small and
large-scale datasets and the performance of state-of-the-art ap-
proaches was compared with and without using our approach.

A. Datasets

The digit recognition was carried out on four different
datasets, each of them related to a distinct domain, namely
MNIST [13], MNIST-M [14], SVHN [15], and Synth [16].
MNIST contains 70,000 grayscale images of handwritten dig-
its with a resolution of 28x28 pixels, of which 60,000 are for
training and 10,000 for testing. MNIST-M [14] is composed
by 59,001 training and 9,001 testing images with a resolu-
tion of 32x32 pixels obtained by modifying MNIST images
with colored patches randomly extracted from the BSDS500
dataset [28]. The Street View House Number (SVHN) [15]

Algorithm 1: Automatic MS-DIAL Insertion
Input: DL model without MS-DIAL
Output: DL model with MS-DIAL

/* The loop below iterates through
all layers to verify if they
contain BN layers. */

if backbone model has BN layers then
foreach layer l of the backbone model do

if l is BN Layer then
Replace it by MS-DIAL;

end
end

else
foreach layer l of the backbone model do

if l is a convolutional layer then
Replace it by a building block formed by
the same convolutional layer but now
followed by MS-DIAL;

end
else if l is a fully-connected layer then

Replace it by a building block formed by
the same fully-connected layer but now
followed by MS-DIAL;

end
end

end
/* The affine parameters of the

original BN layers, if present,
are copied to MS-DIAL. */

dataset contains 73,257 training and 26,032 testing images,
in RGB color and size 32x32, of house numbers collected
from Google Street View. Synthetic Digits (Synth) [16] is a
collection of 479,400 training and 9,553 testing images with
size 32x32 generated from Windows fonts by varying position,
orientation and background. All these datasets contain 10
categories related to digits from ’0’ to ’9’.

The object classification was conducted on the Office-
31 [17] and Office-Home [18] datasets. Office-31 [17] is a
standard benchmark in the MSDA literature. This dataset is
composed of 4,652 images collected from Amazon.com or
taken from an office environment using a Webcam or a DSLR
camera and with varying lighting and pose changes. Those
images comprise 31 classes from three different domains:
Amazon, DSRL, and Webcam. Office-Home [18] is a large-
scale benchmark widely-used for testing MSDA methods.
This dataset is composed of 15,500 images collected from
several search engines and online image directories. They are
distributed among 65 object categories and divided into 4
distinct domains: Art, Clipart, Product, and Real World.

B. Experimental Protocol

An essential point concerning DL works is their repro-
ducibility, since most methods are highly affected by non-
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Fig. 1. Deep learning models used for each task, that are: (a) digit recognition, which, rvexcept for the M3SDA, is composed by a feature extractor with
three convolutional layers and a classifier with three fully-connected (FC) layers; and (b) object classification, where pre-computed features are extracted by
a ResNet-50 [26] model pre-trained on the ImageNet [27] dataset and passed through four FC layers, in which the first three are for feature learning and
the last is a classifier. After feature extraction, the network is splitted into R + 1 branches, where one performs classification and the others are for feature
alignment. The number C of neurons in the output layer of the branch used for classification denotes the number of classes, which is 10 for digit recognition,
65 for object classification on the Office-Home dataset or 31 on the Office-31 dataset. The number R of branches used for feature alignment is the number of
source domains (M ) for DARN and MDAN; or 1 for DANN, MDMN, and M3SDA. The number H of neurons in the hidden layer of such branches is 2048
for DARN, MDAN, DANN, and MDMN; or 1024 for M3SDA. The number O of neurons in the output layer of such branches is the number of domains
(M + 1) for MDMN; the number classes (C) for M3SDA; or 1 for DARN, MDAN, and DANN. Except for the output layers of all the branches, dropout is
applied before each convolutional or FC layer, which are followed by ReLU activation.

deterministic factors [4]. A good practice is to re-run the
source code with the parameters presented on the paper and
compare its results with those obtained by the authors.

For reproducibility purposes, our approach was imple-
mented in PyTorch (version 1.4.0) upon the DARN [11] imple-
mentation1, whose source code is publicly available along with
re-implementations of four state-of-the-art MSDA methods:
DANN [16], MDAN [24], M3SDA [9], and MDMN [23].
Since our intent is to evaluate whether or not aligning domains
on feature space may benefit existing MSDA methods, we first
ran the original code and performed all its experiments, as
suggested by Bucci et al. [4]. Next, we modified the original
code with as minimum changes as possible in order to embed
MS-DIAL into all the aforesaid methods2. Last but not least,
we evaluated the use of MS-DIAL for MSDA on two different
tasks: (i) digit recognition and (ii) object classification.

For a fair comparison, we adopt the same experimental
protocol used by DARN [11]. In each experiment, one domain
was chosen as the target and the rest was used as source
domains. This process was repeated several times, each time
with a different domain as the target. Twenty replications were
performed for each experiment in order to ensure statistically
sound results. The reported results refer to the mean and
standard error of the classification accuracies measured at the
end of each experiment for all the replications.

We evaluated five different state-of-the-art MSDA methods,

1https://github.com/junfengwen/DARN (As of July, 2021)
2Our code is available at https://github.com/LucasFernando-aes/MS-DIAL

namely: DANN [16], M3SDA [9], MDAN [24], MDMN [23],
and DARN [11]. The purpose of our experiments is to compare
their results with and without using MS-DIAL. For reference,
we report the results obtained using only MS-DIAL [12].
Also, two additional baselines were considered: SRC, where
a model was trained on a large set formed by merging all the
source domains; and TAR, where a model was trained only
on the target domain but having access to its true labels. They
can be seen as lower (SRC) and upper (TAR) bounds for the
results that can be achieved by MSDA methods.

For digit recognition, we randomly chose 20000 training
samples as the training set and 9000 testing samples as the
testing set for each domain. The network architecture used in
such experiments is shown in Figure 1a. Roughly speaking,
it is a Convolutional Neural Network (CNN) with three
convolutional layers as a feature extractor on top of which
is stacked a classifier with three fully-connected (FC) layers,
whose the output layer has 10 neurons, each corresponding to
a particular digit. In addition to the classifier, three streams
are used for feature alignment by DARN and MDAN; or only
one stream in the case of DANN, MDMN, and M3SDA. These
streams have a different amount of neurons depending on the
MSDA method used, with 2048 neurons in the hidden layer
and 1 in the output layer in the case of DANN, MDAN, and
DARN; 2048 neurons in the hidden layer and 4 in the output
layer for MDMN; and 1024 neurons in the hidden layer and
10 in the output layer for M3SDA.

For object classification, pre-computed features were first
extracted by a ResNet-50 [26] model pre-trained on the Ima-

https://github.com/junfengwen/DARN
https://github.com/LucasFernando-aes/MS-DIAL


geNet [27] dataset. For this, we follow the same preprocessing
step performed by He et al. [26] to feed ResNet-50 models.
During training, each image was resized to 256 pixels on its
shortest side, and then a 224x224 crop was randomly sampled
from the resulting image or its horizontal flip, normalizing it
to the mean and standard deviation of the ImageNet dataset.
In the inference mode, we first rescaled the image such that its
shorter side was of length 256, then cropped out the central
224x224 patch from the resulting image and normalized it
to the mean and standard deviation of the ImageNet dataset.
The preprocessed images were passed through the network
and 2048-dimensional feature vectors were extracted from
its average pooling layer. These feature vectors were passed
through four FC layers, as shown in Figure 1b. The first three
FC layers are for feature learning and have 1000, 500, and
100 neurons, respectively. The last layer is a classifier and
has 31 output logits in the case of the Office-31 dataset and
65 for the Office-Home dataset. For feature alignment, three
streams were used by DARN and MDAN; or only one stream
in the case of DANN, MDMN, and M3SDA. Each stream
corresponds to single FC layer whose size is 1 for DARN,
MDAN, and DANN; 4 for MDMN; and the number of classes
for M3SDA (i.e., 31 for Office-31 or 65 for Office-Home).

Except for the output layers, dropout is applied before
each convolutional or FC layer, which are followed by ReLU
activation. All the models were trained from scratch for 50
epochs using the Adadelta [29] optimizer with a learning rate
of 1.0. We used a mini-batch size of 128 for digit recognition
and 32 for object classification. The hyper-parameters adopted
for each MSDA method are the same as described in [11].

C. Ablation Study

The key advantage of MS-DIAL is to align feature distri-
butions. To improve the model’s confidence on unsupervised
target samples, an entropy penalty is included in the loss
function. If the entropy penalty is significant, the model may
learn to make wrong predictions in order to minimize errors.

A critical part of MS-DIAL is to set the λ hyper-parameter
in order to balance entropy penalties with classification errors.
The former leads to more confident predictions for target sam-
ples whereas the latter takes knowledge from source domains.

To assess the impact of the λ hyper-parameter, we tested
DARN with MS-DIAL on digit recognition task using
five different values for the λ hyper-parameter (i.e., λ =
{0.001, 0.005, 0.01, 0.05, 0.1}) and compared its average ac-
curacy for all the target domains, as shown in Figure 2. Notice
that small values for the λ hyper-parameter are better and, for
this reason, we used λ = 0.001 in the next experiments.

D. Quantitative Results

Table I presents the results obtained for digit recognition.
When MNIST and Synth are used as target domain, probably
the former by its simplicity (gray-scale images) and the latter
because it is synthetically generated, we can observe a slight
gain of performance between the original and MS-DIAL ver-
sion, showing that the evaluated methods already can achieve

Fig. 2. Average accuracy results for different values of the λ hyper-parameter.

good results for these adaptation tasks. On the other hand, it
does not hold for more difficult domains, presenting a bigger
domain shift between them, like MNIST-M and SVHN, which
have random patterns and colors and digit images coming from
real world data, respectively. When MS-DIAL are used, we
can clearly see a gain of performance, even for DANN, which
is a single-source to single-target UDA method.

Tables II and III present the results obtained for object
classification on the Office-31 and Office-Home datasets,
respectively. For Office-31, the results obtained for the DSLR
and Webcam domains were better than those for the Amazon
domain. However, in all cases, the use of MS-DIAL improved
the performance of all the MSDA methods by a consistent
margin, reaching, on average, +3% of relative gains on the
classification accuracy. For Office-Home, as expected, the
Clipart domain is the most difficult to be adapted from the
other source domains, because it usually is a mix of digital
artistic concepts with simplistic elements, making its results
the worst among all the domains. However, we can also
see improvements of almost +13% for DANN and 11% for
M3SDA with Clipart as target domain, and of almost +16% for
DANN and +15% for M3SDA with Product as target domain,
just by embedding MS-DIAL. As we can observe, the use
of MS-DIAL for aligning feature distributions can improve
all the MSDA methods by a large margin, specially single-
source to single-target UDA methods, like DANN, for which
was obtained a relative gain of, on average, +30.64% on its
classification accuracy.

Finally, we can clearly notice that MS-DIAL is complemen-
tary to all the other MSDA methods, since for all the evaluated
tasks its combination yielded superior results to those obtained
by each method in isolation. For digit recognition, for instance,
we can see improvements of, on average, +3% in the results of
M3SDA w/ MS-DIAL in relation to those of only MS-DIAL.

E. Visualization Analysis

In order to enrich the discussion about the proposed ap-
proach, we employed dimensionality reduction methods to rep-
resent the impact of the proposed method on a 2-D projection



TABLE I
CLASSIFICATION ACCURACY (%) FOR DIGIT RECOGNITION.

Methods Domains Average Relative Gain
MNIST MNIST-M SVHN Synth

SRC 96.48 ± 0.12 60.44 ± 0.41 68.32 ± 1.20 83.73 ± 0.31 77.24 ± 0.29 -

DANN [16] w/o MS-DIAL 96.70 ± 0.11 61.36 ± 0.37 67.42 ± 1.80 84.08 ± 0.32 77.39 ± 0.52 +5.71%w/ MS-DIAL 97.65 ± 0.08 64.85 ± 0.14 80.57 ± 0.37 84.15 ± 0.15 81.81 ± 0.11

M3SDA [9] w/o MS-DIAL 96.44 ± 0.09 65.13 ± 0.29 76.96 ± 0.62 81.78 ± 0.26 80.08 ± 0.02 +7.07%w/ MS-DIAL 98.43 ± 0.03 72.58 ± 0.15 84.71 ± 0.29 88.98 ± 0.13 86.17 ± 0.08

MDAN [24] w/o MS-DIAL 97.27 ± 0.09 64.83 ± 0.30 76.51 ± 0.73 85.72 ± 0.14 81.03 ± 0.21 +3.04%w/ MS-DIAL 98.06 ± 0.07 69.03 ± 0.12 80.82 ± 0.40 86.04 ± 0.13 83.49 ± 0.10

MDMN [23] w/o MS-DIAL 97.21 ± 0.09 63.14 ± 0.33 76.74 ± 0.67 85.78 ± 0.17 80.72 ± 0.21 +4.14%w/ MS-DIAL 98.47 ± 0.04 68.48 ± 0.19 82.01 ± 0.70 87.29 ± 0.12 84.06 ± 0.20

DARN [11] w/o MS-DIAL 97.96 ± 0.03 67.97 ± 0.20 78.37 ± 0.34 86.61 ± 0.19 82.73 ± 0.12 +0.58%w/ MS-DIAL 97.94 ± 0.05 69.26 ± 0.33 79.21 ± 0.79 86.41 ± 0.12 83.21 ± 0.23

MS-DIAL [12] 98.45 ± 0.03 68.32 ± 0.19 81.82 ± 0.54 87.13 ± 0.08 83.93 ± 0.13 -

TAR 99.04 ± 0.02 94.83 ± 0.08 87.48 ± 0.20 97.01 ± 0.06 94.59 ± 0.05 -

TABLE II
CLASSIFICATION ACCURACY (%) FOR OBJECT CLASSIFICATION ON THE OFFICE-31 DATASET.

Methods Domains Average Relative Gain
Amazon DSLR Webcam

SRC 65.50 ± 0.23 93.92 ± 0.55 92.22 ± 0.28 83.88 ± 0.21 -

DANN [16] w/o MS-DIAL 66.02 ± 0.22 92.27 ± 0.62 93.06 ± 0.21 83.79 ± 0.21 +2.37%w/ MS-DIAL 67.00 ± 0.21 95.85 ± 0.45 94.48 ± 0.20 85.78 ± 0.19

M3SDA [9] w/o MS-DIAL 65.34 ± 0.23 91.02 ± 0.69 91.06 ± 0.34 82.48 ± 0.28 +4.54%w/ MS-DIAL 67.01 ± 0.19 96.93 ± 0.43 94.74 ± 0.26 86.23 ± 0.18

MDAN [24] w/o MS-DIAL 66.53 ± 0.23 92.84 ± 0.55 92.17 ± 0.37 83.85 ± 0.25 +2.39%w/ MS-DIAL 67.37 ± 0.20 95.57 ± 0.49 94.62 ± 0.23 85.85 ± 0.22

MDMN [23] w/o MS-DIAL 63.03 ± 0.22 93.64 ± 0.52 92.84 ± 0.33 84.17 ± 0.24 +2.69%w/ MS-DIAL 67.94 ± 0.14 96.76 ± 0.50 94.60 ± 0.19 86.43 ± 0.18

DARN [11] w/o MS-DIAL 65.82 ± 0.33 93.69 ± 0.54 93.26 ± 0.30 84.26 ± 0.21 +2.59%w/ MS-DIAL 67.72 ± 0.18 96.93 ± 0.39 94.66 ± 0.26 86.44 ± 0.16

MS-DIAL [12] 67.64 ± 0.18 96.08 ± 0.49 94.64 ± 0.25 86.12 ± 0.18 -

TAR 73.64 ± 0.32 95.34 ± 0.46 91.73 ± 0.46 86.90 ± 0.22 -

of feature space. The analysis was performed on all the digits
datasets, using the well-known UMAP [30] algorithm. Due
to space limitations, we chose to report the results only for
MDMN, comparing the projections produced with and without
using MS-DIAL. However, similar results were observed for
all the MSDA methods.

Figure 3 presents the visualizations of the application of
UMAP on the digits datasets. In most situations, an evident
increase in the separability among classes can be observed.
We can highlight the results for MNIST, presented in the first
row, where the class representations are clearly apart when
using the proposed approach.

V. CONCLUSIONS

In this paper, we focused on improving the transferability
of DL models with simple and efficient network layers easily
pluggable into the network backbones of existing MSDA

methods. More specifically, we proposed to embed MS-
DIAL [12] at different levels of any given DL model. The main
contribution of MS-DIAL is to perform the feature alignment
on each new representation generated along the network.

Our approach was validated on digit recognition and object
classification tasks. Six popular benchmarks widely-used to
evaluate MSDA methods and five different state-of-the-art
MSDA methods were considered in our experiments. Exten-
sive experimental results demonstrated that MS-DIAL signif-
icantly boosts existing MSDA methods, leading to relative
gains of up to +30.64% on their classification accuracies.

As future work, we intend to evaluate the use of MS-
DIAL with other MSDA methods. Also, we want to augment
MS-DIAL by exploring latent domain discovery strategies. In
addition, we also plan to extend our ideas to other types of
domain adaptation problems, like domain generalization.



TABLE III
CLASSIFICATION ACCURACY (%) FOR OBJECT CLASSIFICATION ON THE OFFICE-HOME DATASET.

Methods Domains Average Relative Gain
Art Clipart Product Real World

SRC 42.53 ± 0.53 29.53 ± 0.21 55.85 ± 0.36 63.43 ± 0.23 47.84 ± 0.15 -

DANN [16] w/o MS-DIAL 42.68 ± 0.48 30.08 ± 0.38 55.68 ± 0.44 63.33 ± 0.33 47.94 ± 0.14 +30.64%w/ MS-DIAL 60.68 ± 0.47 43.83 ± 0.22 71.46 ± 0.21 74.54 ± 0.26 62.63 ± 0.14

M3SDA [9] w/o MS-DIAL 48.22 ± 0.48 33.90 ± 0.17 57.14 ± 0.43 63.27 ± 0.28 50.63 ± 0.16 +25.81%w/ MS-DIAL 62.11 ± 0.79 44.42 ± 0.19 72.65 ± 0.16 75.60 ± 0.15 63.70 ± 0.20

MDAN [24] w/o MS-DIAL 55.92 ± 0.56 38.65 ± 0.22 66.48 ± 0.19 71.28 ± 0.21 58.08 ± 0.17 +7.49%w/ MS-DIAL 60.75 ± 0.44 44.28 ± 0.22 70.66 ± 0.18 74.03 ± 0.16 62.43 ± 0.12

MDMN [23] w/o MS-DIAL 57.49 ± 0.43 38.66 ± 0.25 68.34 ± 0.28 72.52 ± 0.22 59.25 ± 0.17 +7.20%w/ MS-DIAL 62.76 ± 0.55 44.46 ± 0.20 71.91 ± 0.18 74.91 ± 0.14 63.51 ± 0.16

DARN [11] w/o MS-DIAL 57.59 ± 0.55 40.21 ± 0.23 69.40 ± 0.22 73.56 ± 0.24 60.19 ± 0.16 +4.84%w/ MS-DIAL 61.17 ± 0.38 42.84 ± 0.14 73.02 ± 0.16 75.38 ± 0.16 63.10 ± 0.12

MS-DIAL [12] 62.25 ± 0.47 44.28 ± 0.15 72.27 ± 0.18 74.90 ± 0.21 63.42 ± 0.15 -

TAR 57.68 ± 0.54 42.39 ± 0.31 79.54 ± 0.26 73.58 ± 0.22 63.29 ± 0.23 -
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Automatic domain alignment layers,” in ICCV, 2017, pp. 5077–5085.

[23] Y. Li, M. Murias, G. Dawson, and D. E. Carlson, “Extracting relation-
ships by multi-domain matching,” in NeurIPS, 2018, pp. 6799–6810.

[24] H. Zhao, S. Zhang, G. Wu, J. M. F. Moura, J. P. Costeira, and G. J.
Gordon, “Adversarial multiple source domain adaptation,” in NeurIPS,
2018, pp. 8568–8579.

[25] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015,
pp. 448–456.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and
F.-F. Li, “Imagenet large scale visual recognition challenge,” IJCV, vol.
115, no. 3, pp. 211–252, 2015.

[28] P. Arbelaez, M. Maire, C. C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” TPAMI, vol. 33, no. 5, pp. 898–
916, 2011.

[29] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR,
vol. abs/1212.5701, 2012.

[30] L. McInnes and J. Healy, “UMAP: uniform manifold approximation and
projection for dimension reduction,” CoRR, vol. abs/1802.03426, 2018.



M
NI

ST

w/o MS-DIAL w/ MS-DIAL

M
NI

ST
-M

SV
HN

Sy
nt

h

0 1 2 3 4 5 6 7 8 9

Fig. 3. UMAP [30] dimensional reduction of input features in final classification layers (100-dimensional vectors) to 2-dimensional vectors. Columns refer
to, respectively, MDMN original method and MDMN adapted with MS-DIAL, on digit recognition task, with each row indicating the target domain.
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