ConformallLayers: A non-linear sequential neural

network with associative layers
— Supplementary Material —

Eduardo Vera Sousa, Leandro A. F. Fernandes, Cristina Nader Vasconcelos
Instituto de Computacdo, Universidade Federal Fluminense (UFF)
Niterdi, Rio de Janeiro, Brazil — ZIP 24210-346
Email: {eduardovera, laffernandes, crisnv}@ic.uff.br

The Supplementary Material is structured as follows. In Section I, we present the algebraic manipulation that takes the
ReSPro function from its formulation using the geometric algebra of the conformal model for Euclidean geometry [1] to
tensor algebra. Section II shows the matrix representation of typical linear layers and other operations in CNNs. The algebraic
manipulation that expands a sequence of calls to £ functions, for I € {1,2,--- ,k}, to produce the tensor representation
of the ConformalLayers is presented in Section III. The hyperparameter values selected for each CNN and dataset used in
Experiments I and II is presented in Section IV. Sections V and VI present the hyperparameter sweep. Please refer to the
paper for details about the experiments and discussion on the results.

I. RESPRO: FROM GEOMETRIC ALGEBRA TO TENSORS

We represent the discrete input data as a point x = (1,29, -+ ,24) € R%. We include an extra dimension in R? and embed
R4t in a (d + 3)-dimensional space with basis vectors {e1, s, -+ , €411, €0, €0} and metric matrix:
. €1 €2 -+ €441 €p €
el 1 0 --- 0 0 0
€ o 1 --- 0 0 0
eqiy1 | 0 0 - 1 0 0
€o o o0 --- 0 0 -1
e |0 O -~ 0 -1 0

where - denotes the vector inner product. In other words, we assume the conformal model for Euclidean geometry to work
with our data. In this model, the finite point x is represented by the vector:

;) d

xo
V =2xler + xhes + - + Theq + e, — ?;(mi)%o@, (1)
where x; = x/x), for i € {1,2,--- ,d+ 1}, and), # 0. By definition, we set x44+1 = 0. The extra dimensions e, and e

are geometrically interpretable as the point at the origin and the point at infinity, respectively.

We construct a geometric algebra over the conformal space. This allows operations on the base space, including reflections,
rotations, and translations to be represented using versors of the geometric algebra [1]. Therefore, from now on, the mathematical
expressions will be written using geometric algebra. The terms in the expressions that follow represent blades or versors
encoded as multivectors in the multivector space /\ R%*3. The half-space denotes the geometric product, while A and | denote,
respectively, the outer (wedge) product and the left contraction.

Let V'’ be a 2-blade encoding a planar point compute from V' and e, using the outer product:

V' =V New = (The1 +Thea + -+ + Theq + Theo + Thooo) A€o

!/ !/ /! /
= (xfe1 + xhes + -+ xheqg + xle,) N e

2
=V A€o + T, (€0 A oo) @
= (v+x)eo) N €oos

where v = zie1 + Thes + -+ - + ajeq, and = —%’ le(xi)z.
The reflection of V’ in a hypersphere with center ¢ = (0,0,--- ,) € R**! and radius «, for o > 0, followed by isotropic

scaling by a factor of 2/« is done by applying the 3-versor 7" to V', which leads to the 2-blade V" encoding a pair of points

where the second point of the pair corresponds to the center of the hypersphere properly transformed by scaling. The versor
T is given by:

1 2 . 1 2
T = (cosh <2 log a) + sinh (2 log a) (eo A eoo)> (aedqt1 +€o), 3)

1 1 1 2 1 2
Tl =(=eqr1 + —eo cosh [—log—) —sinh [—log —) (s AN exo) | - (G))
! a? 2 o) 2 !

The resulting pair of points V" is computed using the versor product of V' by T
V'=TV'T ' =T (VAes) T}
-1 -1

whose inverse is:

2 1 2
:a(v/\ed+1)+a(v/\eo)+a(v/\eoo)—xi)(ed+1/\eo)+x’o(eo/\eoo).

By contracting e, on V' one gets the dual of the perpendicular bisector of the pair of point V"

2 1 2
H=¢€x|V"=¢x| <(v/\6d+1)+(v/\eo)+(v/\eoo)x;(ed+1Aeo)+zg(eerm)>
a a a ©)

/ /
= av — Tpld+1 — Tploo-

The bisector can be used as a “mirror” to reflect the known point of the pair to find the unknown point. The computed
point is finite and represents the input point transformed by spherical projection followed by scaling. We use the versor
product to compute where the point at infinity (i.e., the known point in the original pair V') was mapped by T. Next we
use an up-to-scaling versor product to find V""" as the reflection of the transformed point at infinity. The outer product of
the resulting point with e., simplifies the expression by computing the flat point at the same location. Finally, the point is
projected orthographically to e; Aeg A--- AegAey:

V" = PROJECT ((—H (-Tex T™") H) Newo)

2 1 2
= PROJECT (<H (ed+1 + —e, + eoo> H> A eoo>
[0 (0% «

2z 2(v- 1 . ! 2(v-
= PROJECT (<— Loy ¥€d+l - = <(UU)I" + a:f) €o — (v U)eoo> A 6<>O>
(6% (0%

a2 2 s (7)
= PROJECT (ng’ (VA ex)— 2 (Z?; v) (ed+1 N eso) — <W’ + gf) (eo A eoo)>
:—2(;? (VA es)— (W’—&-f) (e0 N €co) -
The resulting flat point Y is computed by multiplying V"’ by —a?/ (22) to simplify the expression:
2
vy
:_20;2; <_2ax2i’ (VA ex) — (W}—&-af) (eo/\eoo)> "

(VA eso) + <('”2'a“) + O‘;”) (€0 A €oo)

— (U + ((UQJ) + 042%) eo) A €so.

Recall that the interpretation of V' as a flat point at location y is unchanged if its coefficients are multiplied by a common
factor different than zero.

Finally, the flat point Y, in (8), can be written using tensors to represent the point y resulting from applying ReSPro to x:

Yy zy 10 - 00 0 0 -~ 0 0 z,
Ys h 01 -~ 0 0 0 0 -~ 0 0 o
y=|:]= : =+ -~ oo+ :)
Ya Ty 00 -~ 1 0 0 0 0 0 z
Yo S, + 5 oo (7)? 00 -0 3 SO S Ty
= (Fy + FrX) X. (10)

II. LINEAR CNN LAYERS AND OTHER OPERATIONS AS MATRICES

Each paragraph that follows models a typical linear operation or configuration in CNNs in matrix form. Without loss of
generality, we assume that the discrete signals transformed by these matrices are one-dimensional and have a single channel.
The presentation of the multidimensional and multi-channel version of these expressions is out of scope of this Supplementary
Material.

a) Data: The data is modeled as vectors in Ré=*1 where d, is the size of the data and T denotes matrix transposition:

X = (af, b, 2l 2l)". (11)

o

b) Weights: The weights are modeled as vectors in R%» 1, where d,, is the size of the kernel:
W = (wy,ws, - ,wa,,)T. (12)
¢) Padding of Zeros: The matrix P = (p;;) is a constant (d, + 2dp + 1) X (d, + 1) matrix that models zero padding of
dp units, where dp is the number of zeros inserted at each end of the signal represented as a vector in R%*+1:
o {1 ,for ((i —6p) = j and i < Proys and j < Pagts) 0f (i = Prows and j = Pry),
ij =

. (13)
0 , otherwise.

d) Dilation: The matrix D = (d;;) is a constant (d,, + 1) X ((dw — 1)dp + 2) matrix that models dilation with dilation
rate dp:

i {1 ,for ((i —1)6p + 1 =7 and i < Dyoys and j < Deots) 0F (i = Diyows and j = Degs) 14
ij =

0 , otherwise.

e) Stride: The matrix S = (s;;) is a constant (Vd”%‘t’_&;;(dw_l)_lw +2) x (dy — (dy — 1)dp + 26p + 1) matrix that
model stride with displacement dg:

{1 ,for ((i —1)ds =7 — 1 and i < Sions and j < Seors) O (i = Spows and j = Scols),
Sij =

. (15)
0 , otherwise.

f) Convolution: The matrix M that models convolution is computed as a composition of weights, dilation, valid cross-
correlation, stride, and padding:

M=S(WDC)P=W (S(DC)" P)", (16)

where the constant rank-3 tensor C' = (¢;;), of size ((dy — 1)dp +2) X (dy — (dy — 1)dp + 20p + 1) X (dy + 25p + 1),
models the valid cross-correlation:
doir — 1 , for (’L =k —74+1 and ¢ < Cyimi andj < Cgimz and k < Cdim3) or (Z = C4im and j= C4imz and k = CdimS),
Wk 0 , otherwise.
(17)
g) Average Pooling: The constant matrix A modeling average pooling is computed as a composition of constant weights,
valid cross-correlation, stride, and padding:

A=S(WC)P=W (SCTP)T, (18)

T
where W = (di, di, cee, 2 ,1) € R4+ is a constant vector of weights and d,, is the size of the kernel.

7 dyw
h) Dropout: The (d; + 1) x (dg + 1) diagonal matrix R = (r; ;) encodes the dropout operation. Its entries are:

1 , for i = j and RAND() > IR,
Tij{ or i =j an () >dr (19)

0 , otherwise.

Here, RAND() is a function that generates random values uniformly distributed on the interval [0, 1], and ég is the probability
of an element to be zeroed.

III. CONFORMALLAYERS: FROM SUCCESSIVE EVALUATION OF £() FUNCTIONS TO TENSORS

For the sake o clarity, we first show the algebraic manipulation that turns:

v = £ (pG=D(£E=2) (. Y)) (20)
into
yk) (LE(}’ I L‘T’“)X) X (21)

for £ = 3, and then define the case for any & by induction.
Let k = 3. Equation (20) expands to:

3) _ (3 (£<2> (£<1>(X)>>
= FPU® (FRU@ FPuWx + (FPU® (0T R 1>) X)X + ((U“)TU(”TF%”TU(”U(l))T x) x)
n ((U<3>TF;3>TU<3>> (Fg)U(z)F](V})U(l)X + (Fﬁ)U@) (Uu)TF;l)TU(l))TX) X
+ ((vorv@rERTreUr®m) x) X))
(FPU@FPUOX + (FPU® (U“)TF}”TU(U)T X) x
i ((U(UTU(Q)TFZ(?)TU(Q)U(1)>TX) X)
_ PO ER @ o x
+ (FPUOFPue (vorpPTom) x) X
N (FA(;’)U@) (U<1>TU<2>TF<2>TU<2>U<1>)T X) X
+ ((U(3)TFF}3)TU(3)> FAy@pD U(1>X> FAy@pOym x
FOU® p @ ppo x
(F(3>U<3)F(2>U<2> (Uu)TF 1)TU(1)) X) X
+ (FPU® (vory@rpTueum) x) x

+ ((Uu)TU<2)TU(3)TF(3>TU(3>U(2>U(1)) X) X

— (F(3)U(3)F(2)U U(1)+
3
T
(Z (FOUSFDy@ ... pleb(l+1>> (Uu)TU(z)T L gOTEDTO) L U(2>U(1>)) X) X
=1
= (L5 + LX) x,
(22)
where, by induction:
LW = FP 0 ph-Dye-1 . pOya) 23)
and .
ng) _ Z (FJ(\;)U(k)FJ(VI;_l)U(kil) o Fﬁ+1)U(l+l)) (U(l)TU(z)T . U(l)TFj(f)TU(l) . U(Q)U(l))T . 24)

=1

Here, T denotes the transposition of the first two dimensions of tensors and matrix transposition.

IV. SELECTED HYPERPARAMETER VALUES

The hyperparameter values selected for each CNN and dataset are presented in Table 1. These values provided higher accuracy
during the validation step. The search space is presented in Table II.

TABLE I: The hyperparameter values selected for each CNN and dataset using a Bayesian implemented by the Weights and
Biases toolset (https://www.wandb.com/). For the LeNet and LeNetCL networks, the number of epochs was set to
200 in training, as the range of values shown in Table II was proved insufficient to adjust the models.

BaseLinearNet MNIST Fashion-MNIST CIFAR-10

Batch size 2868 3111 2198
Epochs 44 15 41
Learning rate 0.02039 0.05305 0.09827
Optimizer Adam Adam Adam
BaseReLUNet MNIST Fashion-MNIST CIFAR-10
Batch size 2838 3277 3677
Epochs 50 48 21
Learning rate 0.090331 0.08607 0.01
Optimizer Adam Adam RMSprop
BaseReSProNet MNIST Fashion-MNIST CIFAR-10
Batch size 2429 2339 3056
Epochs 50 45 19
Learning rate 0.7699 0.5601 0.4542
Optimizer Adam Adam Adam
LeNet MNIST Fashion-MNIST CIFAR-10
Batch size 2979 2444 2317
Epochs’ 200 200 200
Learning rate 0.004722 0.012 0.00159
Optimizer RMSprop Adam RMSprop
LeNetCL MNIST Fashion-MNIST CIFAR-10
Batch size 2088 2763 3595
Epochst 200 200 200
Learning rate 0.02 0.02302 0.01991
Optimizer Adam Adam Adam

TABLE II: Search space for hyperparameters used in the experiments.

Lower Bound Upper Bound Type
Batch size 2048 4096 Discrete uniform distribution
Epochs 10 50 Discrete uniform distribution
Learning rate 0.001 1.0 Continuous uniform distribution

Optimizer {Adam, RMSprop} Categorical distribution

V. BASELINE HYPERPARAMETER SWEEP

Figs. 1, 2, and 3 present smooth parallel coordinate plots indicating the hyperparameter values selected for the top-10 vali-
dation accuracy achieved by BaseLinearNet, BaseReLUNet, and BaseReSProNet during training using, respectively,
the MNIST [2], Fashion-MNIST [3], and CIFAR-10 [4] datasets.

batch_size epochs learning_rate optimizer val_accuracy

3,800 484 1.0 0.922
3,600 . \ 0.920
3,400 ' .
3,200 . /
3,000 . ‘ /
2,800 . \
2,600 ' . \
2,400 .
2,200 - . .

(a) BaseLinearNet

batch_size epochs learning_rate optimizer val_accuracy
4,200 1.0 0.975

4000 . N
3,800
3,600
3,400

3,200

2,400 - 0.0-

(b) BaseReLUNet

batch_size epochs learning_rate optimizer val_accuracy

3,800 50— 1.00 rmsprop, 0.9430
3,600 '

. 0.9425
3,400

. 0.9420
3,200
3,000 - /
2,800 .
2,600 :
2,400 .
2,200 X
2,000 - ada =

(c) BaseReSProNet

Fig. 1: Selected hyperparameters for the top-10 validation accuracy of CNNs used in Experiment I on the MNIST dataset.

batch_size
3,600 —

batch_size
4,200

4,000
3,800
3,600
3,400
3,200
3,000
2,800
2,600

2,400

2,200 -

batch_size
3,800

3,600

3,200

3,000

2,800

2,600

2,400 -

Fig. 2: Selected hyperparameters for the top-10 validation accuracy of CNNs used in Experiment I on the Fashion-MNIST.

epo
50

chs learning_rate optimizer

| i
0.0-

10-

epol

(a) BaseLinearNet

chs learning_rate optimizer

epol
484

(b) BaseReLUNet

chs learning_rate optimizer

rmsprop -

\

(c) BaseReSProNet

val_accuracy

val_accuracy
0.86

val_accuracy
0.841

0.840

0.839

batch_size epochs learning_rate optimizer val_accuracy
4,200 45 4 1.0 4

4,000 0.
3,800
3,600
3,400
3,200
3,000
2,800
2,600
2,400 |
2,200

N

2,000~ 0.0~ ada

(a) BaseLinearNet

batch_size epochs learning_rate optimizer val_accuracy

50 4 0.104 rmspro,

0.01-

(b) BaseReLUNet

batch_size epochs learning_rate optimizer val_accuracy
3,200 rmsprop — 0.4190
3,150 |) 0.4185
3,100 0.4180
3,050 4 0.4175
3,000+ 0.4170
2,950
2,900 -
2,850 - 0.45
2,800 0.40 +
2,750 0.354
2,700 - —/0.3(;

(c) BaseReSProNet

Fig. 3: Selected hyperparameters for the top-10 validation accuracy of CNNs used in Experiment I on the CIFAR-10 dataset.

VI. LENET HYPERPARAMETER SWEEP

Figs. 4, 5, and 6 present smooth parallel coordinate plots indicating the hyperparameter values selected for the top-10
validation accuracy achieved by LeNet and LeNetCL during training using, respectively, the MNIST [2], Fashion-MNIST [3],
and CIFAR-10 [4] datasets. After this initial parameter selection, we have trained each CNN/dataset pair using 200 epochs.

batch_size epochs learning_rate optimizer val_accuracy

3,800 27— 0.0304 rmsprop, 0.980
0.028
3,600 0.026 - .
3,400
3,200} : 7 ‘
3,000 . '
2,800 . 9
2,600 | ' g
2,400 | .
2,200 - 1 N adam g .
(a) LeNet
batch_size epochs learning_rate optimizer val_accuracy

3,800 rmsprop — 0.956

0.954
0.952
0.950
0,948
0.946 A

(b) LeNetCL

3,600]
3,400 |
3,200
3,000 |
2,800
2,600 -
2,400

2,200

2,000 -

Fig. 4: Selected hyperparameters for the top-10 validation accuracy of CNNs based on the LeNet-5 [5], used in Experiment II
on the MNIST dataset.

batch_size epochs learning_rate optimizer val_accuracy
3,600 50 4 0.023 4 rmsprop - 0.8980

0.8975

3,400
0.8970
3,200
3,000
2,800
2,600

2,400]

2,200

2,000 -

(a) LeNet

batch_size epochs learning_rate optimizer val_accuracy
3,100 rmsprop = 0.848
3,000 0.846
2,900
0.844 -
2,800 —
2,700
2,600 —

2,500

(b) LeNetCL

Fig. 5: Selected hyperparameters for the top-10 validation accuracy of CNNs based on the LeNet-5 [5], used in Experiment II
on the Fashion-MNIST dataset.

batch_size epochs learning_rate optimizer val_accuracy
2,450 4 50 0.0045 rmsprop . 0.586

2,400

2,350

2,300

2,250 |

2,200

2,150

2,100

2,050 -

(a) LeNet

batch_size epochs learning_rate optimizer val_accuracy

4,000 0 0.050 rmsprop = 0.485

3,800 > 0.045 -] 0.480
3,600 ' 0.040
48- 0.475

3,400
0.470

3,200

0.465

3,000

2,800

2,600

2,400 -

(b) LeNetCL

Fig. 6: Selected hyperparameters for the top-10 validation accuracy of CNNs based on the LeNet-5 [5], used in Experiment II
on the CIFAR-10 dataset.

REFERENCES

[1] L. Dorst, D. Fontijne, and S. Mann, Geometric algebra for computer science: an object-oriented approach to geometry. Elsevier, 2010.

[2] Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten digit database,” ATT Labs, 2010. [Online]. Available: http://yann.lecun.com/exdb/mnist
[3] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms,” arXiv: 1708.07747, 2017.
[4] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of Toronto, Tech. Rep., 2009.

[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324,
1998.

