
A New Focus+Context Visualization Technique for
Inspecting Black Oil Reservoir Models

Luiz Felipe Netto, Waldemar Celes

Tecgraf/PUC-Rio Institute
Computer Science Department

Pontifical Catholic University of Rio de Janeiro, Brazil
{netto,celes}@tecgraf.puc-rio.br

Abstract—In this paper, we propose a new visualization tech-
nique to inspect simulated black oil reservoir models. Numerical
reservoir simulation is widely used in the oil & gas industry to
predict and plan the exploration of petroleum fields. Of particular
interest, it is crucial to understand the physical phenomena
around injector and producer wells: how is the distribution
of pressure, how oil/gas/water saturation varies over time, and
others. Traditional visualization techniques only provide local
insights, being hard to understand the three-dimension physical
behavior. Another challenge is to handle today’s massive models.
We propose an efficient and effective focus+context visualization
technique employing a cutaway approach, having the wells as
objects of interest. We explore cone-shaped and box-shaped view-
dependent cutting surfaces. We also allow the user to control
the cutting surface aperture freely and to freeze the cut to
gain motion parallax depth cues during model exploration. The
proposed rendering algorithm runs on GPU, delivering real-time
frame rate even for large reservoir models.

I. INTRODUCTION

Numerical black oil reservoir simulation is primarily em-
ployed in the oil & gas industry to plan and predict field
exploration. The reservoir domain is discretized in a set
of irregular hexahedral cells. These cells are organized in
a topological grid with discontinuities, modeling geological
faults. Initial properties such as permeability and porosity are
set to these cells to characterize the reservoir. Injector and
producer wells are also placed, and reservoir simulation reports
the expected production and the future state of the domain
regarding saturation and pressure distributions. Typically, a
reservoir engineer tries different well arrangements and ex-
ploration strategies to maximize oil & gas recovery.

A simulated reservoir model inspection is crucial to under-
stand the physical phenomena and better plan the exploration.
Therefore, appropriate and innovative graphics tools to better
analyze simulation results are still a necessity. The simulation
outputs expected well productions and predicts how domain
properties, such as pressure and oil, gas, and water saturation,
evolve. Of particular interest, it is crucial to understand the
reservoir behavior in the vicinity of wells.

Traditionally, cutting views are used to analyze the well
regions. Figure 1a illustrates the classical fence diagram view.
The user traces the fence near the wells of interest. Reser-
voir scalar fields are mapped onto the fence, allowing the
engineer to visualize the well trajectories with the cutting

fence. Another useful tool is illustrated in Figure 1b. Here,
the cylindrical geometrical well representations are used as
cutting surfaces. One can then observe scalar field distribu-
tions along well trajectories. Still, another helpful tool allows
plotting dynamic profiles along well trajectories together with
predicted production rate, as illustrated in Figure 1c. The user
can observe how to scalar field evolves along well trajectories,
helping to understate production variations.

However, all these techniques provide a limited understating
of the physical behavior in the vicinity of wells; all these tech-
niques only partially show the three-dimensional scalar field
variation. To improve the interpretation of physical phenomena
around wells, we propose a new focus+context visualization
technique, cutting away the cells to reveal the well trajectories
while preserving the scalar field mapping in their vicinities.
Figure 1d illustrates the achieved results. The scalar field
variation around the well is revealed from different points of
view. Note how informative the visualization is; it immediately
discloses the water reaching the frontmost well.

The main contributions of this work are:

• A cutaway visualization technique to inspect the vicinity
of wells in simulated black oil reservoir models.

• A new efficient algorithm to render cone-shaped cutting
surfaces based on a point location procedure [1], capable
of handling objects of interest of any shape.

• A new box-shaped cutting surface construction algorithm
using a reservoir layer as the bottom wall.

• An efficient view-independent cutting surface construc-
tion based on the relief mapping algorithm [2].

The rest of the paper is organized as follows. Section II
reviews some techniques related to this work. The following
three sections describe the proposed visualization technique
and detail the rendering algorithm to accomplish it. In Sec-
tion III, we present an overview of the proposed algorithm.
Section IV describes the way view-dependent cutaways are
achieved, including box-shaped cutaways. Section V explains
how we built view-independent cutaways. Section VI presents
an analysis of performance and a discussion of achieved
visual results. In Section VII, we draw conclusions about the
proposed technique.



(a)

(b)

(c) (d)

Fig. 1. A comparison among traditional visualization techniques and the proposed one to inspect black oil reservoir model in the vicinity of wells: (a) fence
diagram in the proximity of wells; (b) reservoir scalar field mapped along well trajectories; (c) numerical profile along well trajectories over simulation time;
(d) proposed focus+context technique.

II. RELATED WORKS

Different focus+context visualization techniques have been
proposed. These visualizations are often inspired by scientific
and technical illustrations, where some classic examples in-
clude Lenses [3], Exploded Views [4], and Cutaways [5], [6].
We have drawn our attention to cutaway visualization, which
provides a way to select parts of the model that are of greater
interest to the user, and reveals it by removing other parts that
obstruct its view while preserving the context.

Feiner and Seligmann [5] introduced cutaway and ghosting
algorithms on a z-buffer based system to cut models and reveal
the objects of interest. Diepstraten et al. [7] developed an
interactive rendering pipeline to generate cutaway illustrations
automatically while maintaining interactivity. The cutaways
were classified as break-away, a narrow cut that reveals the
object of interest, and cutout, a broader cut in front of the
object of interest that reveals more context. In both cases, a
set of rules is derived for placing the cuts automatically. Auto-
matic view-dependent cutaway for volume data was addressed
by Viola et al. [8], using two different approaches: Maximum
Importance Projection and Average Importance Compositing,
requiring that the volume data to be previously segmented
with importance associated with it. Bruckner and Groller [9]
made an interactive direct volume rendering application to
generate static illustrations, with the combination of cutaway
and ghosting, which resemble those found in technical books.
Coffin and Hollerer [10] advocated the use of cutaway as
an x-ray tool to see through 3D geometric objects. The user
defines the cutaway shape, and the rendering is performed

cutting through the object with CSG operations using the
stencil buffer.

Li et al. [6] reviewed and analyzed the shape and position
of cutaways in traditional illustration literature. They observed
the use of simple cutting shape geometries to obtain the
cutaway, like boxes or tubes, and developed an automated sys-
tem to explore and create cutaway illustrations from complex
geometric models, where the user choose the cutting shape
and define the object of interest. Sigg et al. [11] generated
view-dependent cutaway with a box or sphere shape by only
requiring the specification of importance to the geometry
or volume data, arguing that less interaction is better when
placing an object to cut the model.

View-dependent cutaway of complex and dynamic polygo-
nal scenes was performed in interactive frame rates by Burns
and Finkelstein [12]. They represented the cutting surface as
a depth map computed in a modified distance transform in
GPU using the Jump Flooding Algorithm [13], where the
depth footprint from objects of interest are taken as seeds.
The final model is rendered while discarding fragments that
are between the camera and the cutting surface. This approach
has been applied to compute the cutting surface from blood-
flow vessels [14] and to clip objects from molecular models
[15]. A 2D distance field has also been used to obtain a terrain
cutaway to visualize sewer networks [16].

Lidal et al. [17] derived a set of design principles applied
to geological models to obtain cutaway visualizations. Their
geological models consist of layers represented by surfaces,
where it is possible to find sand-bodies, water, oil, gas, and
structural bodies. By following these principles, they produced



a frustum-shaped cutaway, revealing the feature in focus in
a view-dependent manner. Furthermore, their proposal allows
to freeze the cutaway view and observe it from a different
position, gaining motion parallax depth cues in the process.
Finally, they limited the cutaway shape state to a fixed camera
threshold, allowing the users to see the objects always in focus.

To our knowledge, cutaway applied to reservoir models
was first reported by Martins et al. [18], where the objects
of interest, reservoir cells, are chosen by the user. To reveal
the selected cells, they did a simple ray cast procedure. If the
rays intersect non-chosen cells, the cells are removed from
the view. In a more elaborated work, de Carvalho et al. [19]
took the design choices of previous works [6], [11], [17], and
extended them to reservoir models. The union of all frustums
formed by the bounding boxes of selected cells forms the
cutting surface. Their proposal also allows the user to freeze
the cutaway generation to visualize it from other positions
and applies screen-space effects, such as ambient occlusion,
to enhance the context. The main drawback of their work is
the requirement to render all the reservoir cells to apply the
cut. For large models with millions of cells, the rendering of
all cells may severely impact performance. Also, the union of
frustums may not suit the focus on wells, especially those with
curved trajectories.

Our proposed visualization technique builds upon previous
works to provide a new efficient cutaway algorithm for reser-
voir model visualization. We explore the GPU capabilities,
which allow the proposed algorithm to render large reservoir
models while keeping in mind that a critical component in the
reservoir analysis is the interaction, exploration, and inspection
of the model by experts.

We choose to primarily compute the cutaway surface as
done by Burns et al. [12]; it fits tightly the objects of interest,
mainly producer and injector wells. We also explored the use
of box-shaped cutting surfaces. Similar to Lidal et al. [17], we
also allow the user to freeze the cutaway generation, although
we do not change the cutaway even if the objects of interest
are occluded. In our case, we want to emphasize the liberty
to explore the model since the context surrounding the objects
of interest is most important. To avoid the rendering of all
reservoir cells, we use the point location algorithm as proposed
by Franceschin et al. [1]. Besides the cutting surface, we draw
the reservoir hull, composed of external cell faces.

III. ALGORITHM OVERVIEW

Today’s reservoir models reach millions of active cells;
therefore, an efficient reservoir model rendering algorithm is
crucial. Rendering all the active cells of a reservoir model can
be unnecessarily expensive. For instance, for an external point
of view, it suffices to render the model hull represented by the
external faces of the model. External faces are present at the
model’s boundary and at the adjacency of inactive cells. Of
particular interest is the analysis of the model around injector
and producer wells.

There are two main types of reservoir well geometries:
vertical and horizontal. Vertical wells present straight vertical

trajectories while horizontal ones start vertical and then bend
approximately 90◦ to increase reservoir-well contact, thereby
improving reservoir productivity. The proposed visualization
technique aims to inspect the scalar field along well trajecto-
ries, despite their shapes. The user can interactively change
the selected wells (objects of interest), control the cutaway
aperture, and manipulate the model to analyze the property
(scalar field) variation.

To render the cutting surface, we employ the point location
algorithm proposed by Franceschin et al. [1], which requires
the storage of the reservoir model in the GPU. Such repre-
sentation is sent to the GPU in a pre-processing stage. In the
rendering stage, the proposed visualization algorithm performs
the following steps:

1) The cutting surface is computed as a depth map based
on the depth footprint of the objects of interest with the
Jump Flooding Algorithm [12].

2) The intersection map is computed employing the effi-
cient point location algorithm presented in [1].

3) The rendering is performed by two steps: the external
reservoir faces are rendered, being cut away by the
cutting surface; the intersection map is used to render
the cutaway surface.

4) Finally, the objects of interest are rendered, being en-
tirely revealed.

Figure 2 illustrates the algorithm overview. In the following
sections, we describe the algorithm in detail.

IV. VIEW-DEPENDENT CUTAWAY

We first describe the view-dependent cutaway. In this sce-
nario, the cutting surface always faces the observer. At each
frame, a cutting surface is computed and rendered.

A. Cutting surface computation

To compute a cone-shaped cutting surface, we follow the
work of Burns and Finkelstein [12]. Given a set of objects of
interest, we draw their back-faces storing their depth values
in a separate texture memory (Figure 2b). Using this texture
as input, we compute the cutting surface applying the Jump
Flooding Algorithm (JFA) [13]. We proceed with JFA in an
interleaved read and write manner with two texture buffers,
where the writing is done through render-to-texture. The
distance function used in the JFA is defined by:

d(p) = max
q∈I

(z(p)−m(p) ‖q − p‖) (1)

where p is the position of the current fragment, z(p) is
its associated depth, and q is the position of the neighbor
fragment being evaluated. The parameter m(p) is a perspective
compensation factor [12] to maintain the cutaway surface
aperture θ constant under perspective projection, which is
defined by:

m(p) =
−(PMsz + z(p))

tan (θ)
(2)

with PMsz being the z-scaling factor of the projection matrix.
The JFA is finished after log n passes, where n is the greater



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Overview of proposed algorithm: (a) conventional external view of reservoir model; (b) back-face rendering of objects of interest on the depth buffer;
(c) depth map built using the JFA algorithm; (d) colored intersection map according to the scalar field of intersected reservoir cells; (e) drawing of reservoir
hull cutaway by the cutting surface; (f) drawing of objects of interest (reservoir wells).

dimension of the framebuffer. As a result, we obtain a cone-
shaped view-dependent cutting surface represented as a depth
map with the size of the assigned framebuffer, as illustrated
in Figure 2c.

B. Cutting surface intersection

Given the computed depth map, the surface that intersects
the reservoir volume can be obtained. A quadrilateral with the
size of the framebuffer is drawn writing to textures. For each
pc = (x, y, zc), where pc is the position of the cutting surface’s
fragment in screen space (x and y are screen coordinates,
and zc is the associated depth), we transform it to the object
space to obtain po. We evaluate the intersection of po with the
reservoir model using the point location algorithm as proposed
in [1]. If the intersection occurs, i.e., po is inside a cell of the
reservoir, we output the position po and the associated property
color of the cell. The result is called the intersection map, as
illustrated in Figure 2d.

C. Cutaway reservoir rendering

The cutaway reservoir model is rendered with the following
approach in a fragment shader. First, for each fragment of the
model hull, its depth is compared against the depth of the
computed cutting surface. If the fragment depth is greater than
the cutting surface depth (i.e., is behind), the model’s position,
normal, and color are assigned to the fragment. Otherwise, we
access the intersection map generated in the previous pass to
check if the fragment is part of the cutting surface. In this
case, the computed cutaway surface intersection position and
color from the previous pass are assigned to the fragment. The
fragment is discarded if it is not part of the cutting surface (the
cutting surface may present holes due to inactive cells inside
the model). The result is illustrated in Figure 2e.

D. Shading

Two light sources are used to enhance the visual perception
of the cutaway surface. We set one at the camera position
and one high above the model. The fragments that lay on
the cutaway surface have normals derived by looking up the
neighbor’s position on the depth map. Fragments along the
intersection of the reservoir surface and the cutting surface
are rendered black to enhance perception. The wells (objects
of interest) are drawn in the last phase, ultimately revealed in
the final image, as illustrated in Figure 2f.

E. Point location threshold

The cells of a reservoir model are non-regular hexahedra,
being quite common to present non-planar faces. The point
location algorithm [1] correctly considers such non-planarities;
however, when drawing the reservoir hull, the surface is
represented by a triangle mesh, leading to differences between
the clipped cell face and the cutting surface border.

To solve this issue, we employ a threshold. We modified
the point location algorithm to return the closest cell for a
point outside the model. We then compute the distance from
the point to this cell; if the distance is less than a pre-defined
threshold α, the point is considered inside the closest cell. It
works as we had inflated the cutting surface.

F. Wireframe drawing

For inspecting the reservoir model, it is sometimes essential
to render the mesh wireframe. The engineers need to evaluate
the mesh quality for a better understanding of the simulation
results. However, because the cutting surfaces are curved and
oblique, drawing the cell’s borders results in a polluted image.
Therefore, we have opted to modify the original wireframe
drawing, as described in [1], to only preserve the drawing of
lines representing borders of geological layers; that is, only



the lines corresponding to the top and bottom faces of each
cell are drawn. The achieved result is illustrated in Figure 1d.

G. Discussion

The texture used to store the cutting surface depth map (and
the corresponding cutting surface intersection map) can have
dimensions different from the visualization screen. The use of
maps with smaller resolutions may speed up the time needed
to render each frame, slightly impacting the image quality at
the surface ridges.

Also, for the view-dependent cutting surface, explicitly
computing the intersection map is unnecessary. The surface
color could be computed while drawing the reservoir hull:
for each fragment with depth less than the map depth, we
could project it on the cutting surface and then check its
intersection with the reservoir cells, assigning the appropriate
scalar field color. We have opted for explicitly computing the
intersection map because this speeds up the computation for
view-independent cutaway, as we shall discuss.

H. Box-shaped cutaway

Lidal et al. [17] suggested the use of box-shaped cutaways
for geological models. The reason is to maintain the natural
alignment of such models, where the horizontal surfaces
represent natural geological layers.

To achieve this goal, we substitute the depth map built by
the Jump Flooding Algorithm (JFA) with a depth map obtained
by drawing a box-shaped cutting surface. Given the object of
interest, we compute a view-dependent, aligned bounding box
in the following manner:
• The vertical back wall is always facing the viewer.
• The horizontal reservoir layer, immediately below the

object of interest, defines the bottom wall.
• A user-defined aperture angle controls the side walls.
As we want the bottom wall to be defined by a model layer,

we incorporate the faces of such a layer as part of the external
model hull. The result is illustrated in Figure 3a.

V. VIEW-INDEPENDENT CUTAWAY

Lidal et al. [17] advise using an oblique viewpoint to
observe the cutaway region. Although a cutaway region facing
the viewer better reveals the objects of interest, it does not
enhance depth perception. To overcome such a drawback, we
allow the user to freeze the cutting surface; a strategy also
observed in [19]. Thus, we call it a view-independent cutaway.

Anytime, the user can freeze the cutting surface (despite it is
a cone or box-shaped cut) and move the camera. Subsequent
frames are rendered with the following modifications in the
initial algorithm:

1) The depth and intersection maps are no longer computed
at each frame. Instead, the maps from the last view-
dependent cutaway frame are used.

2) The model-view and projection matrices used to com-
pute the last view-dependent cutaway are stored; we call
it the reference camera.

3) When the reservoir is rendered, every fragment is trans-
formed to the reference camera to compare its depth
with the one stored in the depth map.

4) We render the cutaway surface approximating its posi-
tion by ray casting into the depth map.

Steps 3 and 4 are described here in details. Let pw be
the position of a reservoir fragment in the current screen
space during the rendering of the reservoir model hull. Before
writing the fragment to the framebuffer, we need to know
if it is discarded by the cutting surface. The position pw is
transformed to the cutting surface system with the following
procedures:
• pw is mapped to the current clip space:

pw → pclip (3)

• pclip is transformed to the reference clip space:

prclip =
(
Mrp ×Mrv

)(
M−1v ×M−1p

)
pclip (4)

where Mv , Mp, Mrv, and Mrp, are the model-view
and projection matrices from the current camera and the
reference camera, respectively.

• If prclip components are enclosed in the interval [−1, 1],
we map it to the reference screen space:

prclip → prw = (x, y, z) (5)

• With the computed (x, y), the cutting surface depth map
is sampled to obtain zc. If z > zc, the reservoir fragment
is drawn; otherwise, we compute the intersection of the
viewing ray with the cutting surface to obtain its color,
accessing the intersection map generated with the last
view-dependent cutaway.

To compute the intersection of the viewing ray with the
cutting surface, the straight projection of the fragment position
on the surface, prw, is used as the entry point to the employed
relief map algorithm [2], considering the reference depth map.
The computation of the ray-surface intersection is challenging
because our proposal handles an arbitrary number of objects of
interest with arbitrary shapes; therefore, the resulting cutting
surface is concave and complex. If a valid point of intersection
is found, the intersection map is sampled to retrieve the
fragment color. Finally, the normal vector associated with the
fragment is computed in the reference camera system and
transformed back to the viewing camera. The achieved result
is illustrated in Figure 3b.

VI. RESULTS

We run a set of computational experiments to evaluate
the proposed technique. All the experiments were run on a
computer with a 2.90GHz Intel i5-9400F processor, 16GB
RAM, and the NVIDIA GeForce RTX 2060 graphic card with
6GB of dedicated memory. The proposed visualization was
implemented in C++, OpenGL, and GLSL. We use five actual
reservoir models, identified here from A to E1. Table I shows
the characteristics of these models.

1Model E is a refined version of model A



(a) (b)

Fig. 3. Box-shaped cutting surface using the reservoir layer as bottom wall: (a) view-dependent; (b) view-independent.

TABLE I
ACTUAL RESERVOIR MODELS USED IN THE COMPUTATIONAL

EXPERIMENTS.

Model # active cells # triangles of hull
A 31,498 36,240
B 36,425 47,216
C 338,453 711,644
D 6,245,219 635,012
E 16,126,976 1,400,832

TABLE II
PERFORMANCE, EXPRESSED IN FRAMES PER SECOND (FPS), FOR

RENDERING DIFFERENT FLAVORS OF CUTTING SURFACE FOR DIFFERENT
RESERVOIR MODELS.

Model View-dependent View-independent
cone-shaped box-shaped cone-shaped box-shaped

A 148 541 952 947
B 142 387 790 671
C 100 229 341 386
D 108 153 252 156
E 81 87 215 200

We first conduct an experiment to evaluate the general
performance of the proposed rendering algorithm. We specify
wells of interest for each model and applied the different
flavors of cuts supported by our approach. Table II reveals the
achieved frame rate. In all the experiments, the performance
was measured with a fullscreen resolution of 1920× 1080.

Note that the construction of the depth map is expensive,
even though the JFA delivers real-time rendering. With the
box-shaped cutting surface, the performance is increased.
This performance improvement also increases for the view-
independent cutaway because we re-use the depth and inter-
secting maps. The ray intersection procedure based on the
relief mapping algorithm is fast and does not compromise
performance.

A critical aspect of our proposal is the memory require-
ment and performance related to the point location algorithm

employed [1]. In this technique, the entire reservoir model
is compactly stored in the GPU. In our experiments, the
largest model (model E) takes a total of 584.5 MB of GPU
memory. A regular grid accelerates the point location query
in the fragment shader; however, it runs slower when the
model has more inactive cells and discontinuities. That is
the case with model C, which has a lower performance than
model D in the view-dependent mode, as shown in Table II,
despite the significant difference in cell count (Table I). As
expected, model C performs better when the computation of
the intersection map is not required. We kindly suggest the
reader check out the work from Franceschin et al. [1] for a
more detailed discussion.

We then examined model D, currently a typical large model
employed in the industry, and run a detailed performance anal-
ysis, measuring the time take by each phase of the algorithm.
We tried different sizes of the cutting surface because its
rendering cost is directly proportional to the number of pixels
it occupies on the screen. Table III shows the achieved result
and Figure 4 shows examples of cutaway surfaces that cover
8%, 22%, and 51% of the screen, respectively.

(a) (b) (c)

Fig. 4. Examples of cutting surfaces used to evaluate performance in Table
III with different ratio (screen size by pixel count): (a) 8%, (b) 22%, and (c)
51%.

We observe that the construction of the depth map is the
most expensive phase. Note also that its construction is not
affected by the actual size of the cutting surface because
the map is always built for the entire screen since we do
not know in advance its actual intersection with the reservoir
model. On the other hand, as expected, the construction of the
intersection map does vary with the actual cutting surface size.



TABLE III
PERFORMANCE FOR VIEW-DEPENDENT CUTAWAYS, MEASURED IN MILLISECONDS (MS), FOR EACH PHASE OF THE ALGORITHM, CONSIDERING

DIFFERENT SIZES OF THE CUTTING SURFACE.

Cutting Surface Pixel Count 95105 174497 452588 666834 1062888 1407543 1965969
Ratio (Screensize/PixelCount) 5% 8% 22% 32% 51% 68% 95%
Depth Map (ms) 5.24 5.24 5.25 5.28 5.31 5.40 5.43
Intersection Map (ms) 1.00 1.38 2.52 3.13 4.00 4.47 4.83
Reservoir Drawing (ms) 1.61 1.60 1.61 1.63 1.71 1.72 1.75
Total (ms) 7.86 8.21 9.38 10.05 11.01 11.59 12.02

Although all fragments of the covering quadrilateral are tested
for intersection with the reservoir model, distant fragments are
quickly discarded from the intersection by the efficient point
location algorithm proposed by Franceschin et al. [1], while
close fragments require the complete intersection computation.
The reservoir drawing is only slightly affected by the size of
the cutting surface.

To summarize the features of the proposed technique, Fig-
ure 5 illustrates different configurations to inspect a selected
well. Note the flexibility to choose between cone and box-
shaped cutting surface and the ability to freeze the cut to gain
motion parallax depth insights. Furthermore, as illustrated in
Figure 1d, we are not limited to select only one well.

Although our initial goal was to present a visualization
technique to inspect the vicinity of wells, due to the varying
shape of the wells, especially the horizontal ones, we ended
up with a more general visualization technique. Our proposal
handle objects of interest with any shape. The use of JFA gives
this flexibility. We only need to input the JFA with the back-
face depth-values of the desired objects of interest to compute
the depth map. We explore this flexibility to define a block
of cells as the object of interest, as in [19]. Figure 6 shows a
block of cells as the object of interest in a view-independent
cutaway. The cells were selected by defining a sub-region with
topological range coordinates [i0 : i1, j0 : j1, k0 : k1].

A. Limitations

Because the depth and intersection maps are built in image
space, the proposed procedure presents the following limita-
tions:
• The objects of interest must be inside the viewing frus-

tum.
• The view-independent cutting surface quality depends on

the view-dependent map resolution. Activating the view-
independent mode using a camera far away from the
objects of interest, and getting close to it afterward, will
result in a blurred cut.

• If view-independent mode is activated when a view-
dependent cutting surface exceeds the screen limits, it
will result in a cutting surface that ends abruptly.

VII. CONCLUSION

In this paper, we propose a new visualization technique
to inspect black oil reservoir simulation results. Of particular
interest, we aim to achieve an adequate technique to review

the physical phenomena around injector and producer wells
over the simulation. Traditional visualization techniques only
provide local information, being hard to understand the three-
dimensional physical behavior. Our proposal employs the
cutaway approach allowing the user to observe the well tra-
jectories while viewing the scalar field variation in its vicinity.
We propose a general method capable of handling any shape
of objects of interest, using the Jump Flood Algorithm (JFA).
We also explored an engaging box-shaped cutting surface,
using the underneath reservoir layer as the bottom wall. Our
technique allows the user to freeze the cut to take advantage
of motion parallax while interacting with the model.

As future work, we plan to control the reference camera
from the view-independent cutaway mode, modifying the
cutting surface without leaving the current view. We also plan
to explore other objects of interest, such as a set of streamlines
drawn inside the model according to the fluid flow velocity.

ACKNOWLEDGMENT

Tecgraf/PUC-Rio is a research institute mainly funded by
Petrobras, the Brazilian oil company.

REFERENCES

[1] B. Franceschin, F. Abraham, L. F. Netto, and W. Celes, “Gpu-based
rendering of arbitrarily complex cutting surfaces for black oil reservoir
models,” in 2019 32nd SIBGRAPI Conference on Graphics, Patterns
and Images (SIBGRAPI), 2019, pp. 131–138.

[2] F. Policarpo, M. M. Oliveira, and J. a. L. D. Comba, “Real-time
relief mapping on arbitrary polygonal surfaces,” in Proceedings of the
2005 Symposium on Interactive 3D Graphics and Games, ser. I3D ’05.
New York, NY, USA: Association for Computing Machinery, 2005, p.
155–162. [Online]. Available: https://doi.org/10.1145/1053427.1053453

[3] C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann,
“Interactive lenses for visualization: An extended survey,” Computer
Graphics Forum, vol. 36, no. 6, pp. 173–200, 2017.

[4] S. Bruckner and M. E. Groller, “Exploded views for volume data,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 5,
pp. 1077–1084, Sep. 2006.

[5] S. K. Feiner and D. D. Seligmann, “Cutaways and ghosting: satisfying
visibility constraints in dynamic 3d illustrations,” The Visual Computer,
vol. 8, no. 5, pp. 292–302, Sep 1992.

[6] W. Li, L. Ritter, M. Agrawala, B. Curless, and D. Salesin, “Interactive
cutaway illustrations of complex 3d models,” ACM Trans. Graph.,
vol. 26, no. 3, Jul. 2007.

[7] J. Diepstraten, D. Weiskopf, and T. Ertl, “Interactive cutaway illustra-
tions,” Computer Graphics Forum, vol. 22, no. 3, pp. 523–532, 2003.

[8] I. Viola, A. Kanitsar, and M. E. Groller, “Importance-driven volume
rendering,” in IEEE Visualization 2004, Oct 2004, pp. 139–145.

[9] S. Bruckner and M. E. Groller, “Volumeshop: an interactive system for
direct volume illustration,” in VIS 05. IEEE Visualization, 2005., Oct
2005, pp. 671–678.



(a) (b)

(c) (d)

Fig. 5. The reservoir model D with 6 million active cells (a). View-dependent cutaway (b) applied to a selected well, and the same cutaway from a different
camera position rendered in view-independent mode (c). A box-shaped cutaway (d) applied to the selected well. Reservoir wireframe is enabled with low
intensity due the high density of cells, and horizontal line drawing is enabled in the cutting surface.

Fig. 6. A view-independent cutaway applied to the reservoir model D using
a block of cells as the object of interest.

[10] C. Coffin and T. Hollerer, “Interactive perspective cut-away views for
general 3d scenes,” in 3D User Interfaces (3DUI’06), March 2006, pp.
25–28.

[11] S. Sigg, R. Fuchs, R. Carnecky, and R. Peikert, “Intelligent cutaway
illustrations,” in 2012 IEEE Pacific Visualization Symposium, Feb 2012,
pp. 185–192.

[12] M. Burns and A. Finkelstein, “Adaptive cutaways for comprehensible

rendering of polygonal scenes,” ACM Trans. Graph., vol. 27, no. 5, pp.
154:1–154:7, Dec. 2008.

[13] G. Rong and T.-S. Tan, “Jump flooding in gpu with applications to
voronoi diagram and distance transform,” in Proceedings of the 2006
Symposium on Interactive 3D Graphics and Games, ser. I3D ’06. New
York, NY, USA: ACM, 2006, pp. 109–116.

[14] K. Lawonn, S. Glaßer, A. Vilanova, B. Preim, and T. Isenberg,
“Occlusion-free blood flow animation with wall thickness visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 22,
no. 1, pp. 728–737, Jan 2016.

[15] M. Le Muzic, P. Mindek, J. Sorger, L. Autin, D. S. Goodsell, and I. Vi-
ola, “Visibility equalizer cutaway visualization of mesoscopic biological
models,” Computer Graphics Forum, vol. 35, no. 3, pp. 161–170, 2016.

[16] A. Konev, M. Matusich, I. Viola, H. Schulze, D. Cornel, and
J. Waser, “Fast cutaway visualization of sub-terrain tubular networks,”
Computers & Graphics, vol. 75, pp. 25 – 35, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0097849318301031

[17] E. M. Lidal, H. Hauser, and I. Viola, “Design principles for cutaway
visualization of geological models,” in Proceedings of the 28th Spring
Conference on Computer Graphics, ser. SCCG ’12. New York, NY,
USA: ACM, 2012, pp. 47–54.

[18] Z. Martins Filho, E. V. Brazil, M. C. Sousa, F. D. Carvalho,
and R. Marroquim, “Cutaway Applied to Corner Point Models,”
in Workshop on Industry Applications (WGARI) in SIBGRAPI 2012
(XXV Conference on Graphics, Patterns and Images), S. J. F. G.
A. V. Saúde, Ed., Ouro Preto, MG, Brazil, august 2012. [Online].
Available: http://www.decom.ufop.br/sibgrapi2012/index.php/call/wgari

[19] F. M. de Carvalho, E. V. Brazil, R. G. Marroquim, M. C. Sousa, and
A. Oliveira, “Interactive cutaways of oil reservoirs,” Graphical Models,
vol. 84, pp. 1 – 14, 2016.


