Simplifying Horizon Picking Using Single-Class
Semantic Segmentation Networks

Danilo Calhes*, Felipe K. Kobayashif, Andrea Britto Mattos*, Maysa M. G. Macedo! and Dario A. B Oliveira’
*IBM
Rua Tutoia, 1157, Sao Paulo, Brazil
Email:danilo.calhes @ibm.com
Federal University of ABC
Avenida dos Estados, 5001, Santo André, Brazil
Email:felipe.k @aluno.ufabc.edu.br
1IBM Research
Rua Tutoia, 1157, Sao Paulo, Brazil
Email:abritto,mmacedo,dariobo@br.ibm.com

Abstract—Seismic image processing plays a significant role in
geological exploration as it conditions much of the interpreta-
tion performance. The interpretation process comprises several
tasks, and Horizon Picking is one of the most time-consuming.
Thereat, several works proposed methods for picking horizons
automatically, mostly focusing on increasing the accuracy of
data-driven approaches, by employing, for instance, semantic
segmentation networks. However, these works often rely on a
training process that requires several annotated samples, which
are known to be scarce in the seismic domain, due to the
overwhelming effort associated with manually picking several
horizons in a seismic cube. This paper aims to evaluate the
simplification of the labeling process required for training, by
using training samples composed of disconnected horizons tokens,
therefore relaxing the requirement of annotating the full set of
horizons from each training sample, as commonly observed in
previous works employing semantic segmentation networks. We
assessed two state-of-art neural networks for general-purpose
domains (PSP-Net and Deeplab V3+) using public seismic data
(Netherlands F3 Block dataset). Our results report a minor
impact in the performance using our proposed incomplete token
training scheme compared to the complete one, moreover, we
report that these networks outperform the current state-of-art
for horizon picking from small training sets. Thus, our approach
proves to be advantageous for the interpreter, given that using
partial results instead of providing a full annotation can reduce
the user effort during the labeling process required for training
the models.

I. INTRODUCTION

'"Machine Learning has been employed successfully in sev-
eral industries and specifically for geophysical image analysis,
where automatic approaches can support data acquisition, pro-
cessing, and interpretation tasks. The delineation of geological
structures and potential reservoirs is an essential step for
seismic image analysis, in a process called Horizon Picking,
and several works previously approached it from different
perspectives.

First efforts to support horizon picking emerged many years
ago, ranging from classic tracking approaches [1] to more
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sophisticated ones, for instance, using Kalman filter [2]. How-
ever, because most of those methods struggle at discontinuous
structures (such as faults) [3], recent works employ deep
learning-based alternatives and report good-quality results.
Among noticeable achievements, Wu and Zhang [4] proposed
a convolutional encoder-decoder neural network to handle
horizon picking as a semantic segmentation problem, and
Chevitarese et. al [5] proposed an optimized architecture for
obtaining horizons in a similar schema.

In current industry practice, accurate horizon picking can
take weeks or even months [6], and therefore many works
focus on speeding up the manual picking process. Conversely,
conventional deep learning models require a high amount of
training data, adding a significant charge for labeling images
in the seismic domain. In this context, recent works focused
on horizon picking from small training sets. Peters et. al [7]
started to focus on delineating geological features (such as
horizons and geological units) using data with a small subset
of pixels with known labels and investigated strategies for
choosing new meaningful pixels to be labeled. Tschannen e¢
.al [8] proposed a method that requires the experts to label
only a few lines through the survey to yield good initial
results, and offer ways to how interpreters can progressively
improve the predictions by fine-tuning the network training.
Shi et. al [9] proposed an unsupervised approach using a
deep convolutional autoencoder network based on waveform
patterns. Mattos et. al [10] described a post-processing method
using 3D geometrical information that greatly reduced the
required amount of training data with little loss on the outcome
quality. This process was named mesh optimization.

In this work, we build on this literature and propose a flexi-
ble methodology that improves the efficiency of target horizons
labeling for horizon picking based on semantic segmentation
networks. Additionally, we report results overcoming the state-
of-art for horizon picking using small training sets.
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Fig. 1. Pipeline of the performed experiments, consisting of four main steps, demonstrating the differences between the multi-class approach (performed in

previous works), and our single-class approach (described in this paper). The inner blocks represented in dashed lines describe the operations of the multi-label
experiment while the inner blocks with contours as solid lines indicate our approach, based on binary labels. In this paper, both experiments were performed

for comparing the obtained results.

II. METHOD

The acquisition of seismic data is made by placing receivers
on the surface of the Earth or seafloor, and using a source
(such as a dynamite shot or an air gun) to generate vibrations
that travel into the Earth. The signal passes through strata
with different seismic responses and returns to the surface,
where it is recorded by the receivers as seismic volume. In
the geophysics context, an inline is a seismic line within a
3D survey parallel to the direction in which the data were
acquired, while a crossline is perpendicular to the direction in
which the data were acquired [11].

The proposed method receives as input a set of inline
(or crossline) images and outputs the corresponding horizon
coordinates for all detected horizons. It consists of four distinct
steps, depicted in Figure 1, which also displays the comparison
of our pipeline based on a conventional multi-label approach
(described in dashed lines) with our approach using binary
labels (represented in solid lines).

The first task of each experiment is to build the training
dataset (see Step 1 in the diagram). Unlike the conventional
semantic segmentation multi-label approach, where all hori-
zons coordinates from the same inline image must be fully
annotated, our strategy creates the training set comprising
binary tiles of individual horizons, where pixels above a
horizon are labeled as 1 and pixels below the horizon are
labeled as 0. Therefore, for N target horizons, we input IV sets
of tiles with binary labels. These tiles not necessarily need to
cover the entire horizon coordinates, like the previous method
does, and may be generated from discontinuous regions of the
image, as well as extracted from random areas of the cube,
allowing a much flexible training annotation.

In Step 2, we train the semantic segmentation network for
the seismic data. Whereas the multi-label approach generates
a single trained model, we train N networks (one per horizon)

using tiles of seismic images, deriving an individual trained
model for each horizon considered. Then, we test the whole
seismic cube using the previously trained models.

In Step 3, the resulting images after the horizon prediction
are subject to a contour detection process. Following the same
experimental pipeline for both scenarios, for the multi-label
case in particular, each segmented output must be first split
into binary images before detecting the individual horizon
contours.

Last, in Step 4, we post-process the derived concatenated
contours by applying the mesh optimization process from
Mattos et. al [10] mentioned earlier, and obtain the final picked
horizons. The same post-processing methods are applied for
both multi-class and single-class outputs (i.e., contour detec-
tion and mesh optimization). Each of these steps are detailed
in the following subsections.

A. Training sets creation

For creating the training sets used for all the experiments
described in this paper, we follow the same sampling scheme
adopted by Mattos et. al [10], and select every labeled inline
at each 20 inlines from the seismic cube. To address both of
our experimental designs, we created two different training
sets: one with all target horizons annotated to implement the
conventional semantic segmentation pipeline, and the other
training set comprising tiles from binary images for each
horizon, to validate our proposed approach. It is important to
notice that, in the second scheme, each horizon data disregards
completely the information of neighbouring horizons, which
means that the network trained with samples of a single input
horizon will simply learn to identify the upper and lower
regions of that given horizon.



B. Semantic segmentation networks training

We explored two different state-of-art neural networks
to segment the input inlines and derive the corresponding
horizons. In all our experiments, the semantic segmentation
networks indirectly identify the horizons by classifying pixels
between horizons into different classes. The proposed single-
class approach labels a given inline targeting a single horizon,
where pixels above the detected region are labeled as 1, and
pixels below as 0. For the baseline multi-class method, the
selected inlines are fully labeled and assume values between
1 and 7 for the tested dataset (which contains 7 labelled
horizons) and zero for the background.

For testing the whole seismic cube, i.e., the remaining un-
labeled inlines, we extract the tiles, submit them to the trained
model and concatenate the results following the original shape
structure. To avoid border effects, we used a stride strategy
conserving the 64 x 64 kernel of predicted tiles, as depicted
in Figure 2.

Mirrored Image Predicted Image

Fig. 2. Stride strategy to avoid border effects in the prediction. In dark gray,
the original inline image, and in red the 64 x 64 kernel used in the final
composition. Padding is represented by the lighter gray area.

C. Post-processing

For the multi-label experiment, because the trained network
outputs a multi-class labeled image, we had to introduce an
intermediate step so both experiments could follow the same
pipeline. This step, denominated Split to binary, creates K
binary images by merely identifying the respective K labels
in the multi-class labeled image.

Since the semantic neural networks used in our experiments
(for both single-class and multi-class scenarios) do not im-
plement any horizon geometrical constraint, we expect their
outcomes to deliver segmentation results that are not always
consistent with the expected output, eventually presenting
holes, discontinuities, and unrealistic connections between
different horizons. To fix some of these inconsistencies, we
propose simple image processing steps, presented in Figure 3,
that enable finding the most likely interface points between

the different predicted regions, and therefore derive the best
possible horizon for that segmentation result.

We start by computing the contours for all the predicted
images (i.e., all inlines of the seismic cube) using a marching
squares algorithm. Next, we select those results where a full
contour is found and do not form the trivial straight-line
marching squares solution. Then, we compute these contours’
average height values and use them as a parameter for finding
the most likely contour points in the other incomplete or
ambiguous contours.

With a set of contour candidates, we discard those with
more than 50% of its points in the same latitude to exclude
the marching squares trivial solution. Then, we select the
most elongate segments and check those with the closest
average height compared to the previously estimated height
value. Then, we finally derive a point cloud consisting of
inline, crossline, and depth coordinates to be used in the mesh
optimization step [10] for eliminating spurious geometrical
noise.

III. EXPERIMENTS

As described in Section II, we conducted our experiments
considering two state-of-art semantic segmentation networks
and two different training sets: a multi-class set with fully an-
notated target horizons, and a single-class set with annotation
of independent individual horizons.

We used the Netherlands F3 dataset through all our exper-
iments, carried out in the North Sea, Netherlands offshore.
The data is publicly available and contains post-stack data,
horizons, and well logs annotated by an expert [12]. For this
work, we used 7 horizons in total, and the seismic cube has a
total of 651 inlines. Figure 4 display one annotated inline of
the Netherlands F3 dataset.

We removed mute trace regions, i.e., regions where no valid
signal is observed, using a simple pre-processing based on the
mute region characteristic percentile. We enhanced the seismic
cube contrast by mapping linearly the amplitude values from
the [2¢", 98!"] range to [0,1].

We selected 32 inlines and labeled images and sampled a
total of 750 tiles of 256x256 pixels at random per inline,
comprising a total of 24.000 training samples. These 32 inlines
were used for predicting the horizons at the remaining 651
inlines of the seismic cube. Considering that we had a total of
7 horizons, our single-class training set consisted of 7 training
sets with binary annotations for each horizon, that derived
each one a trained model to be used for testing the whole
seismic cube. For the fully annotated training set, the total
number of the training set was 7x750 per inline to enable a fair
comparison, comprising a total of 168.000 training samples for
this model. We further split each selected data into training,
validation, and testing sets, with the proportion of 70%, 15%,
and 15%, respectively.

For running the semantic segmentation task, we used
two state-of-art semantic segmentation networks for general-
domain purposes: PSP-Net [13] and Deeplab V3+ [14]. Al-
though our initial goal was to address single-class versus
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Fig. 3. Method for horizon contour detection. After a pre-selection of inlines without faults, the average height of the horizon is calculated and the marching
squares method is performed to identify contour points. Then, the contour points which have the greatest coverage in the x-axis are selected and the contour
points that have more than 50% of the found points in the same line are discarded. Finally, we sort the available contours by their average height, selecting
the one that has the closest average height compared to the previously stored value. The colors of the contour points represent different contour detections.
After each step, the rejected predictions are represented in dashed red lines and the output is represented with a green continuous line.

Fig. 4. Annotated inline sample of the considered dataset. Each horizon
line presented in the left image corresponds to the binary mask presented in
the right (used for extracting tiles for our single-class training experiments).
The represented horizons, from top to bottom, are denoted North Sea, Chalk,
Rijnland, SSN, Altena, Germanic, and Zechstein.

multi-class performance, we also wanted to evaluate how these
networks would perform when solving the problem of horizon
picking from small datasets. The kernel size (for the stride
strategy displayed in Figure 2) was defined empirically: we
evaluated different values and found the best results with a
window of 64 x64 pixels. It was also the best configuration in
terms of execution time.

As the metrics for evaluating the results, we used Mean
Intersection-over-Union (mloU) and accuracy, and the Jaccard
distance and weighted categorical cross-entropy as loss func-
tions. To optimize the networks, we used Adam optimizer
with a learning rate of 0.001. We report the accuracy in our
results using the distance in milliseconds to the corresponding
horizons manually picked by the expert, as in Mattos et.
al [10].

With a trained network, we evaluated the whole seismic
cube using a sliding window scheme, preserving the kernel
information of each tile prediction to mount the inlines result,

as depicted in Figure 2 and presented in Section II. Then,
we applied the contour detection pipeline and the mesh
optimization method to derive the final horizon predictions,
as previously described. Finally, we computed the distance
between the obtained predictions and the ground truth data,
and derived the mean distance value for each horizon and
coverage area with a distance less than 8 milliseconds (ms),
as in [10]. As the Netherlands F3 dataset resolution is 4ms,
the latter metric selects the area within a 2-pixel range from
the ground truth image.

IV. RESULTS AND DISCUSSION

We present results of four experiments, using the two
different semantic segmentation networks and the multi-class
and single-class training data. We further compare these results
with those presented by Mattos ez. al [10], which represents the
current state-of-art for horizon picking based on small training
sets, using the same Netherlands F3 dataset and employing
the same evaluation metrics (mean distance and coverage
area). The network employed by this baseline work previously
reported having outperformed the U-Net and FCN (Fully
Convolutional Network) architectures, therefore, we wanted
to check how PSP-Net and Deeplab V3+ would perform
compared to it.

The obtained results of our experiments, as well as the
ones provided by the baseline work, are reported in Table I
and Table II, together with the corresponding loss functions
employed®. There are two distinct metrics used in those
results: the mean distance, which represents the average time
difference, in milliseconds, between the predicted horizon line
and the ground truth line, and the coverage area, which shows
what percentage of the predicted lines has a time difference
below a threshold, in this case 8ms. For the mean distance
metric (see Table I), values closer to O are desirable, and for the
metric computing the coverage area within 8ms (see Table II),



TABLE I
MEAN DISTANCE BETWEEN THE GROUND-TRUTH AND THE PREDICTED RESULTS (MILLISECONDS).

Metric Loss function North Sea | Chalk | Rijnland | SSN | Altena | Germanic | Zechstein | Average
Single-class PSP-Net mloU Jaccard 2.51 2.46 2.06 2.11 34 5.36 4.44 3.19
DeeplabV3+ | Accuracy | Weighted 22.11 2.59 2.45 2.7 3.45 7.25 4.5 6.43
Multi-class PSP-Net mloU Jaccard 2.32 2.39 2.13 2.14 3.1 5.25 371 3.01
DeeplabV3+ | Accuracy | Weighted 29.86 19.78 2.81 3.11 3.65 6.24 7.3 10.39
Mattos et. al [10] mloU Not informed 2.98 3.18 2.42 2.47 498 7.52 4.61 4.02
TABLE II
PERCENTAGE OF COVERAGE WITH DISTANCE UNDER 8ms BETWEEN THE GROUND-TRUTH AND THE PREDICTED RESULTS (%).
Metric Loss function | North Sea | Chalk | Rijnland SSN | Altena | Germanic | Zechstein | Average
Single-class PSP-Net mloU Jaccard 95.83 96.51 99.03 98.79 87.5 73.56 56.07 86.76
DeeplabV3+ | Accuracy | Weighted 72.64 96.8 97.94 97.27 87.7 59.82 44.57 79.53
Multi-Class PSP-Net mloU Jaccard 96.57 97.61 98.99 98.97 | 90.63 73.29 68.09 89.16
DeeplabV3+ | Accuracy | Weighted 70.61 84.54 92.19 90.83 | 84.49 67.49 40.35 75.79
Mattos et. al [10] mloU Not informed 91.93 91.19 94.57 93.06 | 74.37 57.03 66.37 81.22

values closer to 100% are ideal. In both tables, we display
the achieved results for each individual horizon as well as the
average values for the 7 horizons considered.

Comparing the mean distance to the ground truth (Table I),
one can observe that PSP-Net network delivered the best re-
sults for both the single-class and the multi-class experiments,
in comparison with the Deeplab V3+ network, for virtually
all considered horizons. It also delivered an improvement on
the distance error compared to the baseline work [10], from
average values of 4.02ms to 3.01ms (an improvement of around
25%) for the multi-class scenario. Although this would be
the most straightforward comparison, once the authors also
employ multi-class annotation, our single-class experiment
also delivered results that outperform the current state-of-art,
from average values of 4.02ms to 3.19ms (an improvement
of around 20%). Comparing the single-class and multi-class
results, for PSP-Net, we observed a slight drop in performance
(from average values of 3.0lms to 3.19ms), due to relaxing
the need of fully annotating the target horizons. However, this
drop (around 5%) seems to be fair for the benefit involved.
Figure 5 shows the PSP-Net result for single-class for two
different horizons.

Interestingly, unlike PSP-Net, for Deeplab V3+, the single-
class experiment outperformed the multi-class one, with aver-
age values of 6.43ms and 10.39ms, respectively, a counter-
intuitive finding. In fact, the single-class experiments with
Deeplab V3+ achieved better results for all horizons except
for the Germanic group, in comparison with the output from
the multi-class model. Also, although PSP-Net consistently

2In both tables, Jaccard refers to the Jaccard Distance loss function and
Weighted refers to the Weighted Categorical Cross-Entropy loss function.

performed better than Deeplab V3+, it is also important to
notice that, compared to the previous baseline, the single-
class experiment with Deeplab V3+ reported lower mean
distance values for Chalk, Altena, Germanic, and Zechstein
horizons. Corroborating with previous works that employ PSP-
Net and Deeplab V3+ for seismic image processing, our results
indicate that these networks, well established at the computer
vision community for segmentation in general-purpose appli-
cations, may have good potential for the geophysical domain
as well.

Considering the area coverage for distances within 8ms
(Table II), PSP-Net also delivered the best results, consistently
with the previous metric, for all considered horizons. Similar
to the results observed for mean distance, the single-class
experiment with Deeplab V3+ also outperformed the multi-
class one (again, with exception for the Germanic horizon)
and also achieved slightly better results compared to the
baseline [10] for most horizons.

Curiously, for the topmost horizon (North Sea group), both
single-class and multi-class versions of Deeplab V3+ pre-
sented poor results in comparison to the outputs produced by
PSP-Net and the baseline work, considering both metrics. This
behavior was unexpected due to relatively simple structure
of the North Sea horizon (see Figure 4) and requires further
investigation. Possible assumptions rely on the choice of the
inlines composing the training dataset or on the fact that, being
a more complex network, the parametrization of Deeplab V3+
is also more intricate, thus our configuration may be failing
on handling a more trivial solution.

It is also important to notice that the two lower horizons
(Germanic and Zechstein) often presented worst results in
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Fig. 5. PSP-Net results for single-class classification for two different horizons, Altena and Germanic.

comparison to the other horizons, for all experiments and also
for the baseline work. This behavior, however, is expected,
due to the greater complexity of these horizons (again, refer
to Figure 4 for exemplification). They both have a low average
height and a wide amplitude variance, impacting the results.
Also, Zechstein reaches the bottom edge of the image in some
inlines, and is characterized by several salt domes, which also
interfere in the structure of the remaining horizons, especially
in Germanic, the adjacent one. As a consequence of this
behaviour, the predicted mask could present some holes and
discontinuities and so the contour detection algorithm will not
predict correctly. Figure 6 depicts a case of a precise prediction
and a case of a flawed prediction for Zechstein horizon using
the single-class version of PSP-Net (using mloU metric and
Jaccard loss function). Although the predicted mask is feed to
the post-processing pipeline and the contour detection method
displayed in Figure 3, some errors are inevitably propagated
to the subsequent steps.

For PSP-Net, the best results achieved used mloU as the
evaluation metric and Jaccard distance as the loss function,
while, for Deeplab V3+, the best results were obtained using
accuracy as the evaluation metric and weighted categorical
cross-entropy as the loss function. The convergence of the used
metrics was achieved with 200 epochs, both for PSP-Net and
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Fig. 6. Two different inlines with segmentation results for the Zechstein
horizon using PSP-Net. The top rows displays an example of a good prediction
and the bottom row displays a defective one.

DeepLab V3+ in the cases using mloU metric. For accuracy,
the convergence was achieved with 50 epochs for accuracy in
both networks. Finally, for the multi-label case, both mloU
and accuracy reached convergence using 50 epochs in both
networks.



V. CONCLUSIONS

In this work, we presented an approach for simplifying
training data annotation for horizon picking based on semantic
segmentation networks, which allows to reduce the annotation
effort dramatically.

We proposed to create the training sets for semantic segmen-
tation networks from individual horizon annotations instead of
requiring inlines with full annotation for all target horizons
under consideration, which enables the expert to pick individ-
ual horizons in the most convenient inlines or crosslines. We
defined a training set for each horizon individually and conse-
quently trained a specific model for each horizon, compiling
their results at a post-processing stage that tackle geometrical
inconsistencies among each derived point cloud. We further
evaluated two commonly used semantic segmentation archi-
tectures that report very competitive results in the computer
vision community. We increased the performance achieved by
a state-of-art work for horizon picking using small training
sets, both in multi-class (around 25% of improvement for the
mean distance) and in our proposed single-class segmentation
(around 20% of improvement for the mean distance).

Thinking about the day-to-day of expert Geologists, using
this proposed method, they will be able to reduce the amount
of points annotated for each horizon that they would like to
segment.

As further research, we intend to explore the post-processing
step to remove geometrical inconsistencies and fix them. An-
other future work is running experiments based on annotation
from well-established automatic tools, as well as new exper-
iments using other datasets so that the generalization of the
network can be confirmed. We also intend to run experiments
where the experts would create horizon picking annotations
considering the more convenient inlines and horizons with the
automatic tools they usually have in hand. That would enable
us to evaluate a real scenario application of the proposed
methodology.
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