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Abstract—Unsupervised metric learning is concerned with
building adaptive distance functions prior to pattern classifica-
tion. Laplacian eigenmaps consists of a manifold learning algo-
rithm which uses dimensionality reduction to find more compact
and meaningful representations of datasets through the Laplacian
matrix of graphs. In the present paper, we propose the entropic
Laplacian eigenmaps (ELAP) algorithm, a parametric approach
that employs the Kullback–Leibler (KL) divergence between
patches of the KNN graph instead of the pointwise Euclidean
metric as the cost function for the graph weights. Our objective
with such a modification is increasing the robustness of Laplacian
eigenmaps against noise and outliers. Our results using various
real-world datasets indicate that the proposed method is capable
of generating more reasonable clusters while reporting greater
classification accuracies compared to existing widely adopted
methods for dimensionality reduction-based metric learning.

I. INTRODUCTION

Dimensionality reduction-based metric learning aims to
recover the underlying geometric structure of data while cap-
turing a non-Euclidean distance function that is better suited
to represent similarity between samples. Manifold learning al-
gorithms are capable of finding more compact and meaningful
representations of the observed data by preserving the intrinsic
non-Euclidean geometry of the data. The Laplacian eigenmaps
is a manifold learning algorithm for non-linear dimensionality
reduction based on the Laplacian matrix of graphs [1]. One
of the main drawbacks of Laplacian eigenmaps (LAP) is that
such a method may be remarkably influenced by the presence
of noise and outliers. The performance of the LAP is severely
affected in datasets which do not lead to smooth manifolds.

The rationale of the Laplacian eigenmaps method is that
if we approximate a manifold by a connected and undirected
basic graph, then it would be feasible to find a map from
the vertices of the graph onto a d-dimensional Euclidean
subspace Rd, such that the locality is preserved (i.e., the map
is smooth in the sense that neighboring points in the graph
remains spatially close after the mapping being performed).
Such a map is produced by the eigenvectors of the graph
Laplacian matrix [2]. The representation map generated by
the respective algorithm resembles to a discrete approximation
to a continuous map that naturally arises from the geometry
of the manifold (i.e., the Laplace-Beltrami operator) [3]. The
eigenvectors of the graph Laplacian associated to a point cloud

converges to the eigenfunctions of the Laplace-Beltrami oper-
ator in the case data follows a uniform probability distribution
on an embedded manifold [4]. In the machine learning (ML)
literature, the Laplacian eigenmaps method is closely related
to spectral clustering (i.e., unsupervised classification approach
for data clustering) [5].

In the present paper, we propose the entropic Laplacian
eigenmaps (ELAP), a parametric method that incorporates the
relative entropy in the estimation of the Laplacian matrix of
the KNN graph. There are two main contributions of this
paper. Firstly, we replace the pointwise Euclidean distance by a
patch-based information-theoretic distance (Kullback–Leibler
or KL-divergence), resulting in a less sensitive method to noise
and outliers. Secondly, our results exploring more than 20
real-world datasets suggest that the proposed method produces
more reasonable clusters as well as larger classification accu-
racies compared to existing popular supervised classifiers and
manifold learning algorithms, as ISOMAP [6] and LLE [7].

The remainder of this paper paper is organized as follows.
Section 2 summarizes related methods. Section 3 details the
proposed ELAP algorithm. Section 4 reports computational
experiments and results. Section 5 concludes and suggests
future directions in the literature of metric learning-based
dimensionality reduction.

II. RELATED WORK

In this section, we discuss the relative entropy or KL-
divergence, Laplacian matrix, Laplacian eigenmaps algorithm
and its relation with graph-cuts in graphs.

A. Relative entropy

In ML applications, the problem of quantifying similarity
between objects or clusters is a challenging task, especially
in cases in which the standard Euclidean distance is not
a reasonable alternative. Many studies on feature selection
adopt statistical divergences to select the set of features that
maximize some measure of separation between classes. Part of
their success is due the fact that most dissimilarity measures
are related to distance metrics. In such a context, information
theory provides a solid mathematical background for metric
learning in pattern classification. The entropy of a continuous
random vector x is given as follows:



H(p) = −
∫
p(x)[log p(x)]dx = −E [log p(x)] (1)

where p(x) is the probability density function (PDF). In a
similar fashion, we may define the cross-entropy between the
PDFs p(x) and q(x) as follows:

H(p, q) = −
∫
p(x)[log q(x)]dx (2)

The relative entropy consists of the difference between the
cross-entropy and entropy [8], as formulated below:

DKL(p, q) = H(p, q)−H(p) (3)

= −
∫
p(x)[log q(x)]dx+

∫
p(x)[log p(x)]dx

=

∫
p(x)log

(
p(x)

q(x)

)
dx = Ep

[
log

(
p(x)

q(x)

)]
A relevant property is that the relative entropy is non-

negative, in the sense that DKL(p, q) ≥ 0. First, it is worth
noting that log x ≤ x− 1, which leads to:

−DKL(p, q) =

∫
p(x)log

(
p(x)

q(x)

)
dx (4)

≤
∫
p(x)

[
q(x)

p(x)
− 1

]
dx

=

∫
q(x)−

∫
p(x) = 0

B. Laplacian matrix of a graph

Let G = (V,E) be an undirected graph with vertex set V =
{v1, v2, ..., vn}. We consider that the graph is weighted, where
each edge between vi and vj has a non-negative weight wij ≥
0. Typically, the weights wij represent a similarity measure or
a pairwise distance between vectors ~xi ∈ Rm and ~xj ∈ Rm.

Definition 1. The weighted adjacency matrix of an undirected
graph G = (V,E) with |V | = n is the symmetric matrix
W = {wij} for i, j = 1, 2, ..., n. If wij = 0 the vertices vi
and vj are not connected through an edge.

Definition 2. The degree of a vertex vi ∈ V is defined by the
sum of the elements of the i-th row of W :

di =

n∑
j=1

wij (5)

The degree matrix D is defined as the diagonal matrix with
degrees d1, d2, ..., dn.

Laplacian matrices and their properties have been vastly
explored in spectral graph theory, a rather mature research
field which focus is on studying graphs regarding to the
characteristic polynomial, eigenvalues, and eigenvectors of all
types of matrices associated with a graph [9]–[13].

Definition 3. The unnormalized graph Laplacian matrix is
defined as follows:

L = D −W (6)

where D consists of the degree matrix and W is the adjacency
matrix.

In the following, we present some elementary, although
especially important, mathematical properties of the graph
Laplacian [5]. More details about the Laplacian spectrum and
advanced properties may be found in the study conducted by
Mohar [14].

Theorem 1. The Laplacian matrix L satisfies the following
properties:

1) For every column vector ~f ∈ Rn we have:

~fTL~f =
1

2

n∑
i=1

n∑
j=1

wij(fi − fj)2 (7)

2) L is symmetric and positive semi-definite and fi indi-
cates the i-th coordinate of f .

3) The smallest eigenvalue of L is zero and the correspond-
ing eigenvector is the constant ~1 vector.

4) L has n non-negative, real eigenvalues 0 = λ1 ≤ λ2 ≤
... ≤ λm.

To prove the first statement mentioned above, it is worth
noting that by the definition of L and D we have the following:

~fTL~f = ~fTD~f − ~fTW ~f

=

n∑
i=1

dif
2
i −

n∑
i=1

n∑
j=1

fiwijfj

=
1

2

2

n∑
i=1

dif
2
i − 2

n∑
i=1

n∑
j=1

fiwijfj


=

1

2

 n∑
i=1

dif
2
i − 2

n∑
i=1

n∑
j=1

wijfifj +

n∑
j=1

djf
2
j


=

1

2

 n∑
i=1

n∑
j=1

wijf
2
i − 2

n∑
i=1

n∑
j=1

wijfifj +

n∑
i=1

n∑
j=1

wijf
2
j


=

1

2

n∑
i=1

n∑
j=1

wij(fi − fj)2 (8)

The second statement is divided into two parts. The first part
is about symmetry and it follows directly from the symmetry
of the matrices D and W . In the second part concerned
positive semi-definiteness, it is clear that (fi − fj)

2 ≥
0,∀fi, fj ∈ R, and because wij ≥ 0 for i, j = 1, 2, ..., n,
then ~fTL~f ≥ 0. To prove the third statement, noteworthy the
following equation:



L~1 = (D −W )~1 = D~1−W~1 =

n∑
i=1

di −
n∑

i=1

n∑
j=1

wij

=

n∑
i=1

di −
n∑

i=1

di = 0 (9)

demonstrating that the constant eigenvector ~1 contains zero
eigenvalue. Lastly, the fourth statement is a direct outcome of
statements 2 and 3.

C. Laplacian embedding on the line

The embedding that the LAP generates is optimal in terms
of preserving local information. Thus, subsequently to the
embedding process, neighboring points in the graph are close
while distant points are far apart. Suppose we have a connected
weighted graph G = (V,E) which nodes are the data points in
X = [~x1, ~x2, ..., ~xn]. The problem may be formulated through
the following question: How mapping the nodes of G onto a
line so that connected points stay as close as possible? Finding
an appropriate answer for this question is the objective of the
LAP.

Let ~y = [y1, y2, ..., yn]T ∈ Rn be a map of vertices
v1, v2, ..., vn onto the real line. An adequate objective function
should heavily penalize neighboring points that are mapped far
apart. A suitable choice for a given adjacency matrix W is the
following function:

J(~y) =
1

2

n∑
i=1

n∑
j=1

wij(yi − yj)2 = ~yTL~y (10)

where L is the Laplacian matrix. It is worth mentioning that
J(~y) consists of a measure of dispersiveness of the points
in the real line. Thus, minimizing such a measure aims to
guarantee that if ~xi and ~xj are close in the input space, then
the coordinates yi and yj should also be close in the line.
Therefore, we may formulate the constrained optimization
problem as follows:

arg min
~y

yTLy subject to yTDy = 1 (11)

where the constraint yTDy = 1 removes an arbitrary scaling
factor in the embedding [3]. Specifically, we are interested
in the direction of the vector ~y. If there is no constraint, we
could then further minimize the objective function by simply
dividing the components of ~y by a constant. We may then
express the Lagrangian function as follows:

L(~y, λ) = yTLy − λ(yTDy − 1) (12)

Differentiating with respect to ~y and setting the result to
zero results in the following:

∂

∂~y
L(~y, λ) = 2L~y − 2λD~y = 0 (13)

which leads to:

L~y = λD~y (14)

(D−1L)~y = λ~y (15)

elucidating that we have a generalized eigenvector problem.
Since it consists of a minimization problem, it is then required
to select the eigenvector of D−1L associated to the smallest
eigenvalue. As the constant eigenvector ~1 contains zero eigen-
value, this must then be discarded. It is reasonable mapping
all points onto the same coordinate in order to minimize their
dispersion level. However, such a trivial solution is of no
practical use. Therefore, ~y should be the eigenvector associated
to the smallest non-zero eigenvalue, also known as the Fiedler
vector [9], [15].

D. Laplacian embedding on Rd

Consider the generalized problem of embedding the graph
G = (V,E) into an d-dimensional Euclidean space. Each node
vi ∈ V needs to be mapped onto a point in Rd, requiring the
estimation of d coordinates for each node. We denote the final
embedding by an n× d matrix Y = [~y1, ~y2, ..., ~yd], where the
i-th row, ~y(i), provides the coordinates of vi in the manifold.
The objective function is generalized to the following:

J(Y ) =
1

2

n∑
i=1

n∑
j=1

Wij

∥∥∥~y(i) − ~y(j)∥∥∥2 (16)

where ~y(i) = [~y1(i), ~y2(i), ..., ~yd(i)] is the d-dimensional
representation of vi. It is worth noting that, considering Y
as an n × d matrix in which each row represents a ~y(i), for
i = 1, 2, ..., n, we then reformulate the objective function as
follows:

J(Y ) =
1

2

n∑
i=1

n∑
j=1

Wij(~y
(i) − ~y(j))(~y(i) − ~y(j))T (17)

Expanding the expression for J(Y ), we may simplify to the
following:

J(Y ) =
1

2

n∑
i=1

n∑
j=1

[
Wij~y

(i)~y(i)
T

−Wij~y
(i)~y(j)

T

−Wij~y
(j)~y(i)

T

+Wij~y
(j)~y(j)

T
]

=
1

2

 n∑
i=1

di~y
(i)~y(i)

T

− 2

n∑
i=1

n∑
j=1

Wij~y
(i)~y(j)

T

+

n∑
j=1

dj~y
(j)~y(j)

T


=

1

2

2

n∑
i=1

di~y
(i)~y(i)

T

− 2

n∑
i=1

n∑
j=1

Wij~y
(i)~y(j)

T


=

n∑
i=1

di~y
(i)~y(i)

T

−
n∑

i=1

n∑
j=1

Wij~y
(i)~y(j)

T

(18)



Considering the matrix Yn×d of the coordinates for the
n points, the diagonal matrix Dn×n of degrees di, and the
adjacency matrix Wn×n, we may rewrite the equation adopting
a matrix-vector notation as follows:

J(Y ) = Tr(DY Y T )− Tr(WY Y T ) (19)

As the trace is an operator that is invariant under cyclic
permutations, then we have the following:

J(Y ) = Tr(Y TDY )− Tr(Y TWY ) = Tr(Y T (DY −WY ))

= Tr(Y T (D −W )Y ) = Tr(Y TLY ) (20)

Thus, we have the following constrained optimization prob-
lem:

arg min
Y

Tr(Y TLY ) subject to Y TDY = I (21)

whose Lagrangian function is given by:

L(Y, λ) = Tr(Y TLY )− λ(Y TDY − I) (22)

Taking the derivative and setting the result to zero leads to
the following:

∂

∂Y
L(Y, λ) = 2LY − 2λDY = 0 (23)

resulting in the following eigenvector problem:

LY = λDY (24)

This result demonstrates that we should compose the
columns of the matrix Y with d eigenvectors associated to the
d smallest non-zero eigenvalues of the normalized Laplacian
D−1L. Some variants of the algorithm include the eigende-
composition of different versions of the graph Laplacian. The
most common choices refer to another form of normalized
Laplacian, given by Lsym = D−1/2LD−1/2, and the pure
unnormalized Laplace L = D − W . While applying LAP
to some real-world data, several limitations have been found,
such as uneven data sampling, out-of-sample problem, small
sample size, discriminant feature extraction and selection,
among others. To overcome such problems, extensions of the
LAP have been proposed [2]. Algorithm 1 summarizes the
LAP method.

Algorithm 1 Laplacian eigenmaps (LAP)
1: function LAPLACEEIGEN(X,K, d)
2: From input data Xm×n build an KNN graph.
3: Select the weights to define the adjacency matrix W .

Wij = exp

{
−‖~xi − ~xj‖

2

t

}
if vj ∈ N(vi)

(25)

4: Compute the diagonal matrix D, with degrees di for
i = 1, 2, ..., n.

di =

n∑
j=1

Wij (26)

5: Compute the Laplacian matrix L = D −W .
6: Select the bottom d eigenvectors with non-zero eigen-

values of D−1L and define matrix Y , where each column
is an eigenvector.

7: return Y
8: end function

E. Graph cuts and Laplacian eigenmaps (LAP)

There exists a deep relation between the problem of finding
the minimum cut in a weighted graph and spectral clustering,
which is the application of the k-means algorithm subse-
quently to the LAP. In the following, we briefly discuss about
such an intrinsic connection based on the seminal paper of
Luxburg [5]. Firstly, recalling that the normalized cut (RCut)
is formulated as follows:

RCut(A1, A2, ..., Ak) =
1

2

k∑
i=1

w(Ai, Ai)

|Ai|
(27)

where |Ai| denotes the number of elements in the partition Ai,
the complement of Ai is represented by Ai, and w(Ai, Ai) is
formulated as follows:

w(Ai, Ai) =
∑

i∈Ai;j∈Ai

wij (28)

refers to the summation of weights of the edges with one
vertex in Ai and another vertex in Ai. Typically, the problem
of finding the cut that minimizes RCut is NP-hard. For a
binary problem k = 2, we have to minimize RCut(A,A),
where:

RCut(A,A) =
1

2

[
w(A,A)

A
+
w(A,A)

A

]
(29)

It is possible to associate the value of RCut with the
Laplacian matrix of the graph. Let ~f ∈ Rn be defined as
follows:

fi =



√
|A|
|A|

vi ∈ A

−

√
|A|
|A|

vi ∈ A
(30)



We know that:

~fTL~f =
1

2

n∑
i=1

n∑
j=1

wij(fi − fj)2 (31)

The previous equation may also be computed as follows [5]:

~fTL~f = |V |RCut(A,A) (32)

Therefore, the minimization of RCut is mathematically
equivalent to the following:

arg min ~fTL~f s.t. ~fT~1 = 0 and ‖f‖ =
√
n (33)

It is worth noting that the problem is NP-hard due to the fact
that as the dimensionality of the solution vector ~f is n, and
each component fi may assume one of two possible values,
we then have a total of 2n candidate solutions. Exhaustive
search becomes unfeasible for large values of n. By relaxing
such a problem by allowing that fi ∈ R, the solution to the
relaxed problem is known to be ~f = ~v1, where ~v1 is the
eigenvector associated to the smallest non-zero eigenvalue of
the Laplacian matrix - recalling that the smallest eigenvalue is
zero. Subsequently, we quantize the components of the vector
~f , considering fi = 0 if fi < 0 and fi = 1 if fi ≥ 0, which
may be performed by a clustering algorithm such as k-means.
In fact, the regular Laplacian leads to an approximation to the
minimization of the RCut, while the normalized Laplacian
induces to an approximation for NCut, defined as follows:

NCut(A1, A2, ..., Ak) =
1

2

k∑
i=1

w(Ai, Ai)

vol(Ai)
(34)

where vol(Ai) is the summation of the degrees of the nodes
in Ai. Figure 1 depicts how relaxing the problem results in
different sub-optimal solutions depending on the type of the
Laplacian matrix (i.e., normalized versus unnormalized).

Fig. 1. Normalized versus unnormalized Laplacian leading to different
approximations to the minimum cut problem.

III. ENTROPIC LAPLACIAN EIGENMAPS (ELAP)
The main motivation of the proposed ELAP method is to

replace the pointwise Euclidean distance between ~xi and ~xj
in the Gaussian kernel used to compute the edge weights
by the relative entropy between patches Pi and Pj . We
use an information-theoretic distance function, namely the
KL-divergence. Our inspirations are the parametric principal
component analysis (PCA) [16] and ISOMAP-KL [17], which
consist of two recent dimensionality reduction-based unsuper-
vised metric learning algorithms that are variations of the
PCA and ISOMAP, respectively, with information-theoretic
divergences.

Let X = {~x1, ~x2, . . . , ~xn}, with ~xi ∈ Rm, be our data
matrix. The first step in the proposed method consists of
building the KNN graph from X . At this early stage, we
employ the extrinsic Euclidean distance to compute the nearest
neighbors of each sample ~xi. Denoting by ηi the neighborhood
system of ~xi, a patch Pi is defined as the set {~xi ∪ ηi}. It is
worth noting that the number of elements of Pi is K + 1,
for i = 1, 2, ..., n. In other words, a patch Pi is given by an
m× (k + 1) matrix as follows:

Pi = [~xi, ~xi1, ~xi2, ..., ~xik] =


xi(1) xi1(1) . . . xik(1)
xi(2) xi1(2) . . . xik(2)

...
...

. . .
...

...
... . . .

...
xi(m) xi1(m) . . . xik(m)


(35)

The idea behind the proposed method is to consider each
column of the matrix Pi as a sample of a multivariate Gaussian
random variable of size k+1. Then, we compute the maximum
likelihood estimators of the model parameters ~µi (mean) and
Σi (covariance matrix) as follows:

~µi =
1

k + 1

k+1∑
j=1

~xij (36)

Σi =
1

k

k+1∑
j=1

(~xij − ~µi)(~xij − ~µi)
T (37)

Let p(x) and q(x) be multivariate Gaussian densi-
ties, N(~µ1,Σ1) and N(~µ2,Σ2). Then, the relative entropy
DKL(p, q) becomes:

DKL(p, q) =
1

2

[
log

(
|Σ2|
|Σ1|

)
+ Tr

[
Σ−12 Σ1

]
(38)

+(~µ2 − ~µ1)T Σ−12 (~µ2 − ~µ1)−m
]

Similarly, the relative entropy DKL(q, p) is formulated as
follows:

DKL(q, p) =
1

2

[
log

(
|Σ1|
|Σ2|

)
+ Tr

[
Σ−11 Σ2

]
(39)

+(~µ1 − ~µ2)T Σ−11 (~µ1 − ~µ2)−m
]



As the relative entropy is not symmetric, it is then possible
to compute its symmetrized counterpart as follows:

Dsym
KL (p, q) =

1

2
[DKL(p, q) +DKL(q, p)] (40)

which contains the following closed-form expression:

Dsym
KL (p, q) =

1

2

[
1

2
Tr
(
Σ−11 Σ2 + Σ−12 Σ1

)
(41)

+
1

2
(~µ1 − ~µ2)T Σ−11 (~µ1 − ~µ2)

+
1

2
(~µ2 − ~µ1)T Σ−12 (~µ2 − ~µ1)−m

]
Figure 2 illustrates the mapping of local patches onto the

KNN graph to a parametric representation. In this parametric
feature space, the relative entropy is a more meaningful
measure of similarity compared to the traditional Euclidean
distance.

Fig. 2. Mapping from a patch Pi onto the graph to a parametric feature
vector.

Algorithm 2 summarizes the proposed method.

Algorithm 2 Entropic Laplacian eigenmaps (ELAP)
1: function ENTLAPLACEEIGEN(X,K, d)
2: From input data Xm×n build an KNN graph.
3: Select the weights to define the adjacency matrix W .

Wij = exp

{
−
Dsym

KL (Pi, Pj)
2

t

}
if vj ∈ N(vi) (42)

4: Compute the diagonal matrix D with degrees di for
i = 1, 2, ..., n.

di =

n∑
j=1

Wij (43)

5: Compute the Laplacian matrix L = D −W .
6: Select the bottom d eigenvectors with non-zero eigen-

values of L and define the matrix Y , where each column
consists of an eigenvector.

7: return Y
8: end function

There are two main differences between the LAP and
its entropic counterpart. First, the distance function in the
Gaussian kernel. Second, in the proposed ELAP method we
do not normalize the Laplacian matrix L using the inverse of
the degree matrix D.

IV. EXPERIMENTS AND RESULTS

In order to test and evaluate the proposed method, we
performed two empirical experiments. In the first experi-
ment, a quantitative comparison of clusters obtained after
dimensionality reduction to 2-D spaces with the silhouette
coefficient or SC (i.e., measure of the fit to a low-dimensional
representation) [18]. In the second experiment, after dimen-
sionality reduction to 2D spaces, we compare the average
classification accuracies for four supervised classifiers, namely
the KNN, decision trees (DT), Bayesian classifier under Gaus-
sian hypothesis, and random forest (RF). We then compare
the proposed ELAP method against the PCA, kernel PCA,
ISOMAP, LLE, Hessian eigenmaps (HLAP), and regular LAP.

All datasets used in the experiments, along with detailed
information regarding the number of instances, features and
classes for each one of them, are publicly available at
openML.org. The results of the first empirical experiment are
reported in Table I. Bold values denote the best method for
that particular dataset. Based on the averages and medians, we
may realize that the proposed ELAP method shows a superior
performance in comparison with the regular LAP. Moreover,
the proposed ELAP method is the best method in terms of
generating well formed clusters.

To check whether the results provided by the proposed
method are statistically superior to the competing methods,
we then performed a Friedman test (i.e., non-parametric test
for paired data in case of more than two groups) [19]. For
a significant level α = 0.01, we conclude that there is
strong evidence against the null hypothesis that all groups are
identical (p = 5.71×10−13). In order to analyze which groups
are significantly different, we perform the Nemenyi post-hoc
test [20]. According to this test, there is strong evidence that
the proposed ELAP method produces significantly superior
SCs compared to the PCA (p = 0.00166), kernel PCA
(p < 10−3), ISOMAP (p < 10−3), LLE (p < 10−3), HLAP
(p < 10−3), and standard LAP (p < 10−3).

In the second empirical experiment, subsequently to per-
forming the dimensionality reduction-based metric learning,
for each dataset we use 50% of the samples to train four
distinct supervised classifiers, as follows: KNN (K = 7), DT,
quadratic Bayesian classifier (QDA), and RF. Each of these
methods is used to classify the 50% remaining samples from
the test data and the average accuracy among them is selected
to evaluate the behavior of the dimensionality reduction in
supervised classification tasks. The results are reported in
Table II.

The non-parametric Friedman test to verify if the classi-
fication accuracies obtained by the proposed ELAP method
are statistically superior compared to existing methods shows
that, for a significance level α = 0.01, there is strong evidence



TABLE I
SILHOUETTE COEFFICIENTS FOR CLUSTERS PRODUCED BY PCA, KERNEL

PCA, ISOMAP, LLE, HESSIAN EIGENMAPS (HLAP), LAPLACIAN
EIGENMAPS (LAP), AND ENTROPIC LAPLACIAN EIGENMAPS (ELAP) FOR

25 DATASETS (2D CASE).

Dataset PCA KPCA ISO LLE HLAP LAP ELAP

mammog 0.349 0.032 0.307 0.070 -0.747 -0.251 0.703
marketing 0.082 -0.006 -0.001 0.078 0.125 -0.273 0.293

Biodeg 0.094 0.126 0.031 -0.061 -0.321 -0.055 0.336
Tictac -0.023 -0.019 -0.020 0.007 -0.043 -0.011 0.354

pc3 0.201 0.074 -0.017 -0.760 -0.768 -0.341 0.537
Blood 0.086 0.026 0.082 0.000 -0.327 0.004 0.322

kc1 0.371 0.210 0.187 0.202 -0.401 -0.480 0.519
parity5 -0.062 -0.047 -0.048 -0.051 -0.043 -0.036 0.540
thoracic 0.006 -0.002 -0.006 0.082 -0.018 -0.021 0.319

attendence -0.034 0.002 -0.077 0.000 -0.053 -0.121 0.233
fl2000 0.180 0.043 0.119 0.073 0.253 0.025 0.320

creditscore 0.111 0.081 0.131 0.071 0.119 0.049 0.249
haberman 0.060 -0.024 0.062 -0.004 0.040 -0.032 0.373

newton 0.087 0.113 0.082 0.077 0.092 0.090 0.142
wildcat 0.151 0.081 0.125 0.149 -0.020 0.028 0.348

datatrieve 0.239 0.010 0.096 0.066 0.120 0.080 0.248
Grub 0.042 0.050 0.066 0.094 0.190 0.132 0.285

fem-blad 0.122 0.008 0.170 0.143 0.185 0.030 0.336
mw1 0.349 0.122 0.286 0.175 -0.841 0.180 0.565
ar1 0.265 0.028 0.216 -0.004 -0.835 -0.002 0.350

segment -0.161 -0.028 -0.164 -0.227 -0.623 -0.240 0.615
kc3 0.386 0.103 0.233 0.062 -0.803 -0.129 0.495

boxing1 0.019 0.055 -0.030 0.016 -0.013 0.028 0.188
collins -0.049 -0.056 -0.053 0.056 -0.674 -0.012 0.3
blogger 0.036 -0.011 0.052 0.029 -0.002 0.003 0.333

Mean 0.116 0.039 0.073 0.014 -0.216 -0.054 0.372
Median 0.087 0.028 0.066 0.062 -0.043 -0.011 0.336

Minimum -0.161 -0.056 -0.164 -0.760 -0.841 -0.480 0.142
Maximum 0.386 0.210 0.307 0.202 0.253 0.180 0.703

against the null hypothesis that all groups are identical (p =
1.91×10−12). In addition, according to the Nemenyi post-hoc
test to verify which groups are significantly different, there
is strong evidence that the proposed ELAP method produces
significantly higher classification accuracies in comparison
with the PCA (p < 10−3), kernel PCA (p < 10−3), ISOMAP
(p < 10−3), LLE (p < 10−3), HLAP (p < 10−3), and standard
LAP (p < 10−3).

Despite of such promising results, the proposed ELAP
method has some limitations. A negative aspect of manifold
learning algorithms in general - including the proposed method
- is the out-of-sample problem. Most unsupervised metric
learning algorithms are not capable of dealing with new sam-
ples that are not part of the training data in a straightforward
manner. A natural choice would be adding such new samples
to the data and then perform a further full training round,
which may be time consuming. Another caveat of the proposed
method concerns the definition of the parameter K (number of
neighbors) that controls the patch size. Our experiments reveal
that the SC and classification accuracies are rather sensitive
to changes in such a parameter. In the present study, we
employ a strategy in which KKN graphs are built for each
dataset considering all values of K in the interval [2, 40].
We select the best model as the one that maximizes the
classification accuracy among all values of K. It is worth
mentioning that we are using the class labels to perform
model selection, however, the dimensionality reduction-based
metric learning is fully unsupervised. A visual comparison

TABLE II
AVERAGE CLASSIFICATION ACCURACIES GENERATED SUBSEQUENTLY TO
THE PCA, KERNEL PCA, ISOMAP, LLE, HESSIAN EIGENMAPS (HLAP),
LAPLACIAN EIGENMAPS (LAP), AND ENTROPIC LAPLACIAN EIGENMAPS

(ELAP) FOR 25 DATASETS (2D CASE).

Dataset PCA KPCA ISO LLE HLAP LAP ELAP

Monks 0.593 0.578 0.584 0.635 0.599 0.610 0.787
Tictac 0.619 0.644 0.607 0.591 0.651 0.743 0.760

KNugget 0.739 0.731 0.760 0.755 0.567 0.752 0.786
cloud 0.657 0.601 0.615 0.606 0.587 0.601 0.676
kc1 0.834 0.827 0.822 0.818 0.698 0.697 0.844

parity5 0.453 0.390 0.421 0.359 0.343 0.406 1.000
attendence 0.835 0.829 0.825 0.833 0.847 0.825 0.860

AIDS 0.380 0.300 0.360 0.290 0.340 0.280 0.810
fl2000 0.654 0.610 0.610 0.654 0.603 0.566 0.662

creditscore 0.770 0.705 0.794 0.750 0.685 0.764 0.800
Hayes 0.594 0.670 0.666 0.632 0.723 0.625 0.807
crabs 0.605 0.592 0.607 0.650 0.635 0.607 0.680

haberman 0.733 0.668 0.732 0.704 0.722 0.683 0.760
newton 0.682 0.675 0.642 0.625 0.692 0.675 0.714
wildcat 0.789 0.768 0.756 0.740 0.719 0.746 0.814
veteran 0.655 0.659 0.619 0.605 0.630 0.594 0.696

datatrieve 0.907 0.915 0.934 0.919 0.930 0.892 0.942
ar1 0.959 0.938 0.942 0.950 0.741 0.938 0.963

segment 0.824 0.847 0.860 0.795 0.756 0.854 0.887
kc3 0.885 0.882 0.895 0.891 0.724 0.814 0.895

boxing1 0.691 0.658 0.670 0.629 0.620 0.587 0.717
collins 0.79 0.825 0.796 0.798 0.668 0.813 0.847

vineyard 0.769 0.721 0.769 0.74 0.74 0.759 0.798
kidney 0.605 0.671 0.684 0.644 0.69 0.611 0.697
mux6 0.609 0.683 0.656 0.726 0.605 0.511 0.734

Mean 0.705 0.695 0.705 0.694 0.661 0.678 0.797
Median 0.691 0.675 0.684 0.704 0.685 0.683 0.798

Minimum 0.380 0. 300 0.360 0.290 0.340 0.280 0.662
Maximum 0.959 0.938 0.942 0.950 0.930 0.938 1.000

of the clusters obtained through the standard LAP and the
proposed ELAP method for the parity5 dataset is depicted in
Figure 3. It is worth noting that the discrimination between
classes is comparably more evident in the proposed ELAP
method as a consequence of less overlaps between clusters.
The Python source code for ELAP can be found at https:
//github.com/alexandrelevada/Entropic-Laplacian-Eigenmaps.

V. CONCLUSION

Unsupervised metric and manifold learning are intrinsi-
cally related. Many algorithms have been devised to learn
underlying geometric structures from data, being the LAP
among the most relevant ones. Many extensions have been
proposed to avoid some limitations of the original method,
such as the HLAP. However, one persistent problem is that
most methodological variations adopt the Euclidean metric to
measure similarity between samples in the KNN graph.

In the present study, we propose the ELAP algorithm as
a parametric method that incorporates the relative entropy
between local Gaussian distributions into the Laplacian matrix.
The rationale is that replacing the pointwsie Euclidean distance
by a patch-based information-theoretic distance would result
in a more robust method against noise and outliers. Our
claim is that the proposed ELAP algorithm is a promising
alternative to existing manifold learning algorithms. Such a
claim is based upon computational experiments, which report
two main points. First, the quality of the clusters generated by
the proposed method may be superior to those produced by



Fig. 3. Comparison between clusters generated after LAP and ELAP (number
of neighbors K = 2) for the parity5 dataset.

competing manifold learning algorithms. Second, non-linear
features of the proposed method may be more discriminative
in supervised classification compared to features obtained
through competing manifold learning algorithms.

Future research might include further information-theoretic
distances, such as the Bhattacharyya, Hellinger and Cauchy-
Schwarz divergences, as well as geodesic distances based in
the Fisher information matrix. Another possibility is the non-
parametric estimation of local densities using kernel density
estimation techniques (KDE). In this case, non-parametric ver-
sions of the information-theoretic distances might be employed
to compute a distance function between the patches of the
KNN graph. The ε-neighborhood rule might also be used
for building the adjacency relations that define the discrete
approximation for the manifold, leading to non-regular graphs.
Furthermore, a supervised ELAP algorithm might be devised
by combining both Euclidean and information-theoretic diver-
gences. In such a proposition, the edges of the KNN graph
in which the endpoints belong to the same class are weighted

with the minimum of the two distances, while the edges in
which the endpoints belong to different classes are weighted
with the sum of the distances to enforce smaller intra-class
compared to inter-class variations.
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