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Abstract—Image denoising concerns with the development of
filters to remove or attenuate random perturbations in the
observed data, but at the same time, preserving most of edges and
fine details in the scene. One problem with joint additive Gaussian
and impulsive noise degradation is that they are spread over all
frequencies of the signal. Hence, the most effective filters for this
kind of noise are implemented in the spatial domain. In this
paper, we proposed a Non-Local Medians filter that combine the
medians of every patch of a search window using two distinct
similarity measures: the Euclidean distance and the Kullback-
Leibler divergence between Gaussian densities estimated from the
patches. Computational experiments with 25 images corrupted
by joint Gaussian and impulsive noises show that the proposed
method is capable of producing, on average, significant higher
PSNR and SSIM than the combination of the median filter and
the Non-Local Means filter applied independently.

I. INTRODUCTION

Image denoising is a crucial pre-processing stage in many
pattern recognition and computer vision tasks. Among them,
we can cite low-level image segmentation and tracking of
objects in a video. Hence, the problem of estimating the true
underlying signal from a degraded observed version is a topic
of interest by many researchers. In summary, the main goal in
denoising is to filter random perturbations in the image with a
smoothing kernel, but keeping the maximum amount of details
untouched [1], [2].

The typical statistical model assumed by most denoising
filters is the AWGN (Additive White Gaussian Noise), which
assumes that the observed pixel is the sum of two components,
the underlying true value, and the noise term, generated from
a Gaussian distribution with zero mean and variance o?2.
Moreover, the noise is uncorrelated with the own noise and the
underlying signal [3]. Many filters have been proposed to deal
with this kind of noise in the literature and the state-of-the-art
in AWGN denoising is achieved by Non-Local Means [4] in
the spatial domain and BM3D [5] in a sparse wavelet-based
domain [6].

Another kind of degradation often presented in digital image
processing is the impulsive noise, that are short duration
“on/off” pulses caused by problems in acquisition, such as
dead pixels in screens or digital cameras [7]. One of the
best approaches for impulsive noise filtering are the non-linear
rank-order filters, especially the median filter, which is more
robust against the presence of outliers than the mean filter.

In this paper, we are interested in denoising images cor-
rupted by joint Gaussian and impulsive noises. Recently, there

has been a large interest in dealing with mixture of noises
by combining different approaches. In the work of Hu et. al
[8], a patch-based weighted means is proposed to remove a
mixture of Gaussian and impulsive noises by combining ideas
of the Trilateral filter and Non-Local Means. In the work of
Awad [9], a method based on a cascade of stages is proposed
to deal with mixture of Gaussian and impulsive noises. The
idea consists in removing outliers in the first stage and the
remaining of the noise is filtered in the subsequent stages.
Adaptive total variation using L; norm regularization has been
applied with success in effectively removing impulsive noise
from images [10]. An optimization algorithm based on low-
rank decomposition with tensor robust Principal Component
Analysis has been proposed to recover the underlying signal
corrupted with sparse noise/outliers using the definition of
tensor logarithmic norm to avoid over-penalization of large
eigenvalues [11].

Our proposed method to denoise joint Gaussian and impul-
sive noises is an attempt to combine the median and the Non-
Local Means filters into a single method. In the first variant,
we use as distance function the traditional Euclidean distance
to measure the similarity between two patches. In the second
variation, inspired by the work of Bindilatti and Mascarenhas
to extend the Non-Local Means filter to Poisson noise [12],
we employ information-theoretic divergences, namely, the
KL-divergence or relative entropy, to measure the similarity
between patches from the same search window.

It has been reported in the literature that some computer-
ized tomography images can be corrupted with a mixture of
Gaussian and impulsive noise during data acquisition process
[13]. Hence, the usefulness of the proposed method can be
relevant in medical image processing.

The main contributions of this work are twofold: 1) we
propose Non-Local Medians, an extension to the traditional
Non-Local Means filter to deal with impulsive noise by using
the L; norm and the KL divergence as similarity measures;
and 2) results obtained with 25 different images corrupted by
a mixture of Gaussian and impulsive noises indicate that the
proposed method is capable of producing quantitative results
in terms of PSNR and SSIM that are, on average, superior
than the results obtained by the successive application of the
individual filters (first Median, then NLM).

The remaining of the paper is organized as follows: Section
2 describes the mathematical formulation of the proposed
noise model, the median and the Non-Local Means filters, as



well as the Kullback-Leibler divergence and the computation
of its symmetrized version in the univariate Gaussian case.
Section 3 describes the proposed method in details: Non-
Local Medians (using the Euclidean distance) and Non-Local
Medians KL (using the KL divergence). Section 4 shows
the experiments and the obtained results in terms of two
quantitative metrics: the Peak Signal-to-Noise Ratio (PSNR)
and the Structural Similarity Index (SSIM). Finally, Section 5
presents the conclusions, final remarks and future directions.

II. RELATED WORK

In this section, we define the mathematical model of the
denoising problem and briefly discuss the median and Non-
Local Means filters.

A. The noise model

Considering joint additive zero mean Gaussian noise and
the impulsive noise, the mathematical model for the denoising
problem is given by:

Yi =Ty + 1y (1
zi = h(y:) 2

where y; is the corrupted pixel, z; is the respective noise-
free pixel, n; is the additive Gaussian noise, h(.) is a non-
linear function that turns y; to 0 or 255 with probability p.
In the classical approach, we have n; ~ N(0,02). Note that
the noise is uncorrelated, that is, E[n;n;] = 026; ;, where
0;;j =1if ¢ = j and 6; ; = 0 if ¢ # j and E].] denotes the
expectation operator. Thus, according to equation (1), we have
Ely;] = E[z;] = p and 02 = 02 + 02.

A digital impulse, d(n), is defined as a signal with duration
of one sample that can be expressed as:

1 ifn=0
5(”):{0 if 00 ®)

By computing the Fourier transform of the impulse signal,
we have:

F{(n)} = > d(n)e > Im =1 4)
which shows that the energy of an impulse is equally spread
among all frequency components [7]. Usually the best filters
to deal with this kind of noise work in the spatial domain.

B. The median filter

Given the model defined by equations (1) and (2), it is
possible to recover y; by inverting the non-linear function A(.),
that is, y; = h~*(2;). One way to achieve this goal is to use the
median filter. The median filtering of a 2D image comprises
the following steps: 1) Apply a sliding window of size k X k,
where £ is chosen to be an odd integer; 2) At each pixel p; ;,
store the pixel values of the window in an array of size k?; 3)
Sort the resulting array; 4) Replace the central pixel p; ; of the
image by the median (the element in the middle of the sorted

array). Note that a sorting algorithm is required for finding the
median of a set of values. There exist various sorting algorithm
with complexity of O(n log(n)), as Quicksort, for example.
In larger windows, the difference between different sorting
algorithms is noticeable in the computational time. Median
filter is suitable for impulsive noise since the median of a set
is quite robust to the presence of outliers. Figure 1 illustrates
the process.
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Fig. 1. Median filtering of a pixel using a kernel of size 3 x 3

C. The non-local means filter

The non-local means algorithm tries to take advantage of
the high degree of redundancy in natural images, by scanning
a vast portion of the image in search of similar pixels, using
the concept of a similarity measure [4], as Figure 2 illustrates.
Given a noisy image = = {x;|i € I}, the estimated value of
the noise-free pixel, denoted by N L[z](4), is computed as a
weighted average of all the pixels in the image:

NL[z)(i) = Y w(i,j)z; 5)
jerI

where the family of weights {w(i, )}, depend on the simi-
larity between pixels ¢ and j, and satisfy the usual conditions
0 <w(i,j) <1and > w(i,j) = 1. The similarity between
two pixels ¢ and j depends on the similarity of the intensity
gray level vectors x(;) and x(n;), where 7, denotes a patch,
that is, a square neighborhood of fixed size and centered at
a pixel k. The pixels with a similar gray level neighborhood
to xz(n;) have larger weights on average. These weights are

defined as:
1 [|2(n:) — =(my)113
— 6
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where Z(i) is the normalizing constant given by:

20 = Y eI _20EY

and h is a parameter that controls the decay of the exponential,
acting as a degree of smoothing. Considering an input image
of size n, the NLM algorithm has order of O(n?(2), where
denotes the patch size. To achieve a good trade-off between
cost and performance, the non-local estimate of the noise-free
pixel, given by the summation in equation (5), does not involve
all the image pixels. Instead, it considers a search window of



size s X s around the current pixel ¢, reducing the complexity
to O(ns?). It is possible to extend the NLM filter by using
different distance functions instead of the traditional Euclidean
metric. Some works consider stochastic distances based on the
parameters of statistical models estimated inside each patch to
deal with other kind of noises, such as signal dependent noise
(Poisson) [12] and multiplicative noise (speckle) [14].
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Fig. 2. Non-Local Means employs the concept of similarity measures between
patches to compute the weights used in the mean value.

III. THE PROPOSED METHOD

In this section, we describe the proposed method in details,
describing how each variation works. In summary, the idea
behind Non-Local Medians is to deal with the impulsive noise
by computing a weighted median instead of a weighted mean.

A. Non-Local Medians

In the first variation of the proposed method, namely, Non-
Local Medians, the main difference in comparison with NLM
consists in modifying equation (5) to:

NL[z] (i) =Y w(i,j)m; ®)
JeI
where m; denotes the median value of the patch z(n;).
Note that, by replacing x; by m;, we eventually suppress
impulsive noise within that particular patch. As we are trying
to estimate the median in a non-local way, instead of using
the Euclidean L, norm, we employ the L; norm as similarity
measure in Non-Local Medians, since it has been shown
that in statistics, Lo regression estimates the mean while L
regression estimates the median.

B. Non-Local Medians KL

The idea here is to replace the L; norm by an information-
theoretic distance function: the KL-divergence or relative
entropy.

1) Kullback-Leibler divergence: One of the most challeng-
ing tasks in multivariate data analysis is quantifying mean-
ingful similarity measures between data points in an unsu-
pervised manner [15]. Finding alternative distance functions
can bring benefits to data clustering and filtering, especially in
scenarios in which the standard Euclidean distance becomes an
unreasonable choice [16]. Information-theoretic measures have
been successfully applied in statistics to quantify a degree of
similarity between random variables [17]. In this context, the
concepts of entropy and relative entropy can be used as a solid
mathematical background for unsupervised metric learning
[18]. We begin by introducing the entropy of a random variable
x as the expected value of the self-information:

H(p) = — / p()llog p(x))dz = —E [log p(z)]  (9)

where p(z) is the probability density function (pdf) of .
Assuming z is normally distributed as N (yu,o?), its entropy
is given by:

=3 (1+log (2ma?))

In a similar way, we can define the cross-entropy between
two probability density functions as:

H(p,q) = — /p(x)[log q(z))dx 11

The Kullback-Leibler divergence, or simply relative entropy,
is the difference between the cross-entropy of p(x) and ¢(z)
and the entropy of p(x) [19], that is:

Dkr(p,q) = H(p,q) — H(p)
_ / p()llog q(z))dz + / p(z)llog p(x))dz

- (2 e (2]

It should be mentioned that the relative entropy is always
non-negative, that is, Dxr,(p,q) > 0, being equal to zero if,
and only if, p(x) = g(z). Let p(x) and ¢(x) be univariate
Gaussian densities, N (p1,0%) and N (ju2,03). Then, the KL-
divergence between them is given by:

12)
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It is straightforward to note that:
Byl(z — m)? = of (14)
Byl(x — p2)’] = El2?] — 2E[xpz + 13 (15)
E[xz] = Var[x] + EQ[x] = 0’% + u% (16)



which finally leads to:
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Note that Dgr(p,q) # Dxkr(q,p), that is, the relative
entropy is not symmetric. The symmetrized KL-divergence
between p(x) and g(z) is:

sym 1
DL (p.a) = 5Dk (p,q) + Drcr(a,p)] (18)
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In summary, Non-Local Medians KL works as follows:

1) For each patch p; in the search window, we compute
the median m; and the standard deviation o;

2) Discard all samples that do not belong to the 95%
confidence interval around the median, that is, we select
to compose our novel patch p; the pixels that satisfy:

m; — 1.960; < x; < m; + 1.960; (19)

3) Estimate the local mean and the local variance of the
novel patch pj;

4) Compute the KL-divergence between the central patch
p; and p; using equation (18);

5) Compute the weight w(i, j) as:

1 D"
w(i, j) = %exp{—W} (20)

6) Estimate the noise-free pixel x; as:

NL[z)(i) = Y w(i, j)m;

jer
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IV. EXPERIMENTS AND RESULTS

To test and evaluate the performance of the proposed Non-
Local Medians approach for image denoising, we conducted
a set of computational experiments with 25 different gray
level images obtained from the USC-SIPI database, shown
in Figure 3. Basically, we compared the performance of
both variations of the proposed method, namely, Non-Local
Medians (NLMED) and Non-Local Medians KL (NLMEDKL)
with the Median filter alone (MED) and the successive appli-
cation of the original Median (first) and NLM (second) filters
(MED+NLM). To compare the different methods, we selected
two quantitative measures: PSNR [20] and SSIM [21]. Tables I
and II shows the obtained PSNR’s and SSIM’s for each one of
the 25 images. All images were degraded by additive Gaussian
noise with variance o2 = 10 and salt and pepper noise in 5%
randomly selected image pixels. Figure 4 shows some noisy
images used in the experiments.

Fig. 3. Selected gray level images for the computational experiments.

It is worth noticing that, according to the PSNR metric,
the proposed method (NLMED or NLMEDKL) produced the
best results in 24 out of 25 images, that is, in 96% of the
cases. In terms of SSIM, the proposed method (NLMED
or NLMEDKL) produced the best results in 22 out of 25
images, which represents 88% of the cases. To test if the
results obtained by the proposed method are statistically
superior, we performed a non-parametric Friedman test [22].
In terms of PSNR, there are strong evidences against the null
hypothesis that all groups are identical (p = 1.11 x 10716)
for a significance level & = 0.01. To check which groups
are significantly different, we performed a Nemenyi post-
hoc test [23]. According to the test, for a significance level
a = 0.01, there are strong evidences that the proposed method
NLMEDKL produced significantly higher PSNR’s than the
Median filter MED (p = 1.43 x 107%) and MED+NLM
(p = 4.32 x 10~®). Similarly, the proposed method NLMED
produced significantly higher PSNR’s than the Median filter
MED (p = 1.44 x 10~%) and MED+NLM (p = 4.31 x 10~%).
There are no evidences that the variations of the proposed
method NLMED and NLMEDKL are different in terms of
PSNR for these images (p = 0.511), with the same for MED
and MED+NLM (p = 0.999).

The same analysis is performed in terms of SSIM. There
are strong evidences against the null hypothesis that all groups
are identical (p = 2.99 x 10~!*) for a significance level
o = 0.01. To check which groups are significantly different,
we performed a Nemenyi post-hoc test. According to the test,
for a significance level o = 0.01, there are strong evidences
that the proposed method NLMEDKL produced significantly
higher SSIM’s than the Median filter MED (p = 8.24 x 1077,
MED+NLM (p = 2.62 x 10~7). Similarly, the proposed
method NLMED produced significantly higher SSIM’s than



Fig. 4. Noisy images corrupted with joint Gaussian and impulsive noises.

TABLE I
PSNR VALUES OBTAINED AFTER PERFORMING DENOISING WITH MEDIAN
FILTER (MED), MEDIAN AND NLM (MED+NLM) AND THE PROPOSED
METHOD VARIATIONS NON-LOCAL MEDIANS (NLMED) AND
NON-LOCAL MEDIANS WITH KL-DIVERGENCE (NLMEDKL).

TABLE II
SSIM VALUES OBTAINED AFTER PERFORMING DENOISING WITH MEDIAN
FILTER (MED), MEDIAN AND NLM (MED+NLM) AND THE PROPOSED
METHOD VARIATIONS NON-LOCAL MEDIANS (NLMED) AND
NON-LOCAL MEDIANS WITH KL-DIVERGENCE (NLMEDKL).

MED MED+NLM NLMED NLMEDKL MED MED+NLM NLMED NLMEDKL
Aerial 26.243 26.001 26.438 26.458 Aerial 0.8648 0.8487 0.8692 0.8704
Baboon 25.109 24.921 25.188 25.211 Baboon 0.7046 0.6583 0.7077 0.7104
Brain 28.556 28.699 28.943 28.579 Brain 0.8269 0.8568 0.8587 0.8461
Boat 28.975 28.912 29.244 29.160 Boat 0.8281 0.8332 0.8428 0.8425
Crowd 28.746 28.612 28.860 28.795 Crowd 0.8733 0.8795 0.8870 0.8857
Couple 30.342 30.300 30.580 30.611 Couple 0.8239 0.8253 0.8368 0.8374
Goldhill ~ 30.383 30.318 30.634 30.761 Goldhill  0.8409 0.8375 0.8560 0.8579
Lena 30.829 31.303 31.336 31.198 Lena 0.8566 0.9006 0.8907 0.8854
Man 28.798 28.683 29.135 29.084 Man 0.8471 0.8405 0.8561 0.8580
Miramar 26414 25.885 26.452 26.566 Miramar  0.8185 0.7672 0.8211 0.8250
Moon 29.618 29.846 29.976 30.016 Moon 0.6782 0.6740 0.6904 0.6954
Duck 28.619 28.541 28.753 28.833 Duck 0.7749 0.7597 0.7805 0.7874
Plant 27.724 27.630 27.752 27.745 Plant 0.8297 0.8048 0.8330 0.8365
River 27.598 27.224 27.651 27.767 River 0.8221 0.7791 0.8235 0.8277
Pentagon  29.856 29.414 30.006 30.119 Pentagon  0.8368 0.8012 0.8404 0.8473
Airplane  27.208 27.301 29.409 27.350 Airplane  0.8229 0.8714 0.8640 0.8537
Sail 26.138 26.040 26.349 26.384 Sail 0.8206 0.8405 0.8443 0.8406
City 24.225 24.012 24.280 24.270 City 0.7567 0.7243 0.7605 0.7625
Einstein ~ 32.101 32.478 32.642 32.688 Einstein  0.8553 0.8752 0.8741 0.8827
Owl 28.299 27.736 28.373 28.506 Owl 0.8451 0.8029 0.8463 0.8523
Butterfly  29.842 29.91 30.144 30.081 Butterfly  0.8783 0.8896 0.8925 0.8900
OldCity  26.898 27.005 27.080 27.052 OldCity  0.6894 0.6809 0.7015 0.6996
VirusA 28.298 27.896 28.403 28.491 VirusA 0.8954 0.8777 0.8963 0.8975
VirusB 28.943 28.766 29.206 29.316 VirusB 0.9135 0.9025 0.9170 0.9187
Chariots  23.692 23.715 23.769 23.697 Chariots 0.744 0.741 0.7469 0.7438
Average  28.138 28.046 28.344 28.350 Average  0.8179 0.8109 0.8295 0.8302
Median 28.556 28.541 28.753 28.579 Median 0.8281 0.8332 0.8443 0.8461
Minimum 23.692 23.715 23.769 23.697 Minimum 0.6782 0.6583 0.6904 0.6954
Maximum 32.101 32.478 32.642 32.688 Maximum 0.9135 0.9025 0.9170 0.9187

the Median filter MED (p = 1.93 x 10~°) and MED+NLM
(p = 7.07 x 1075). There are no evidences that the variations
of the proposed method NLMED and NLMEDKL are different
in terms of PSNR for these images (p = 0.510), with the same
for MED and MED+NLM (p = 0.826).

To illustrate the difference between the methods, Figure 5
shows visual results for Miramar, Butterfly, Brain, Airplane
and Old City images. It is possible to notice that there is a sig-
nificant level of residual noise in the Median filtered images.

On the other hand, when we successively apply the Median
and the NLM filters, the images exhibit oversmoothing, in the
sense the many fine details in the images are not preserved.
The proposed Non-Local Medians variations provide a better
tradeoff between noise reduction and edge preservation. Figure
6 shows additional qualitative results for the images Goldhill,
Duck, Plant, Moon and River. Again, note how the proposed
Non-Local Medians filter achieves a good balance between
smoothing and conservation of high frequency content.



In future works, we intend to compare the proposed method
against other state-of-the-art approaches for joint Gaussian and
impulsive noise removal. Among these methods, we can cite
a robust non-local median filter [24] and a PCA based filter
[25]. However, we need to implement them from scratch, since
the source codes are not public available.

V. CONCLUSION

Denoising of images corrupted by joint Gaussian and impul-
sive noises is a challenging task, since state-of-the-art methods
based on domain transformations and sparse representations
(BM3D) are not effective. Methods in the spatial domain
are often better choices to deal with impulsive noise. Given
the above, in this paper, we presented a Non-Local Medians
filter that combine the features of rank-order and non-local
strategies.

Our method can be considered as an extension of NLM to
deal with impulsive noise. The proposed Non-Local Medians
variations unify two distinct approaches that are very good
at dealing with Gaussian and impulsive noise separately: the
Non-Local Means filter and the Median filter. Computational
experiments with several real images jointly corrupted by
Gaussian and impulsive noises showed that the proposed
method can produce, on average, significantly better results
in terms of PSNR and SSIM than the successive application
of the original Median and NLM filters.

Future works may include the use of other information-
theoretic divergences and other family of entropies as similar-
ity measures, such as the Hellinger, Bhattacharyya, Cauchy-
Schwarz and Total Variation divergences, as well as, Renyi
and Sharma-Mittal entropies. Dimensionality reduction based
metric learning algorithms can be applied to learn a more
compact and meaningful representation for the patches within
a search window. We intend to apply PCA, Sparse PCA,
Robust PCA and Parametric PCA before the computation of
the Euclidean distances as a way to learn better similarity
measures. Furthermore, Gaussian-Markov random field mod-
els can be used to capture the spatial dependence structure
of the patches, as a way to induce an additional smoothing
constraint to the denoising problem.
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Fig. 5. Visual results for Miramar, Butterfly, Brain, Airplane and Old City images. From left to right, we have: Median, Median+NLM, Non-Local Medians
and Non-Local Medians KL.
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Fig. 6. Visual results for Goldhill, Duck, Plant, Moon and River images. From left to right, we have: Median, Median+NLM, Non-Local Medians and
Non-Local Medians KL.



