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Abstract—This paper presents a methodology for image clas-
sification using Graph Neural Network (GNN) models. We
transform the input images into region adjacency graphs (RAGs),
in which regions are superpixels and edges connect neighboring
superpixels. Our experiments suggest that Graph Attention
Networks (GATs), which combine graph convolutions with self-
attention mechanisms, outperforms other GNN models. Although
raw image classifiers perform better than GATs due to in-
formation loss during the RAG generation, our methodology
opens an interesting avenue of research on deep learning beyond
rectangular-gridded images, such as 360-degree field of view
panoramas. Traditional convolutional kernels of current state-of-
the-art methods cannot handle panoramas, whereas the adapted
superpixel algorithms and the resulting region adjacency graphs
can naturally feed a GNN, without topology issues.

I. INTRODUCTION

The generic image classification problem consists of deter-
mining what object classes (typically from a set of pre-defined
categories) are present in an input image. Early approaches
followed the traditional pipeline of extracting image features
(e.g., colour, texture, etc.) and feeding them to a classifier. The
seminal work by Krizhevsky and colleagues [ 1] explored deep
neural networks for image classification, winning the Ima-
geNet Large Scale Visual Recognition Challenge ILSVRC) in
2012 by a large margin and setting a turning point for research
on image classification. The datasets became more challenging
and the networks grew deeper, with the GoogleNet architec-
ture [2] winning the ILSVRC2014 challenge and “Squeeze-
and-Excitation” layers being introduced in [3] to win the
ILSVRC2017 challenge, with a top-5 error rate of 2.251%.

Despite the recent advances both in terms of datasets and
network architectures, using traditional convolutional kernels
limits the applications of these networks in problems that do
not present a domain based on rectangular grids. For example,
panoramas capture a full 360-degree field of view. Although
the equirectangular representation does use a rectangular do-
main, sampling is highly non-uniform. To handle these issues,
some authors proposed networks designed to adapt to the
spherical domain have been designed, such as [4], while others
propose to learn how to adapt convolutional layers to the
spherical domain, as [5]]. As another example, we can mention
point-cloud classification, in which spatially unstructured data
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cannot be represented using a rectangular domain. In this
context, some authors either explore a voxelized representation
of the scene with 3D networks [6] or directly use 3D points
as input to a network.

Graph-based representations can be used to model a variety
of problems and domains. Furthermore, they naturally allow
several “multiresolution” representations of the same object.
For example, both pixel-level and superpixel-level represen-
tations of the same image might be modeled using graphs.
In fact, superpixel-based representations have the advantage
of reducing the input size, and potentially allowing different
domains (e.g. pinhole and spherical images) to be represented
as the same (or similar) graph. Furthermore, there are several
recent advances toward the development of Graph Neural
Networks (GNNs) [[7], which could bridge the gap between
different domains. In this paper, we explore Graph Attention
Networks (GATs) [8] to classify images based on superpixel
representations. GATs are a Graph Neural Network model
that combine ideas of graph convolutions [9], which allows
graph nodes to aggregate information from their irregular
neighbourhoods, with self-attention mechanisms [10]], which
allows nodes to learn the relative importance of each neighbour
during the aggregation process.

Our methodology comprises the following steps: (i) generate
a superpixel representation of the input image; (ii) create a
region adjacency graph (RAG) from the superpixel represen-
tation, by connecting neighbouring superpixels; (iii) feed the
RAG to the GAT, which will predict the class. Experiments
on several datasets show that the GAT outperforms other
RAG-based GNN classifiers, but the RAG provides much less
information than the raw image, so that the GAT’s performance
is inferior compared to the raw-image classifiers.

This paper is organised as follows: in Section [l we present
related works and peering approaches. Section [ revises
existing superpixel segmentation techniques and how they
are used to represent graphs, exposing the differences with
the competing approach. Section describes the proposed
method, while Section [V] shows the experimental setup and
obtained results. Finally, the conclusions are drawn in Sec-
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II. RELATED WORK

Monti et al. [11]] provided, to the best of our knowledge, the
first application of Graph Neural Networks (GNNs) to image
classification, as well as proposing the MoNET framework
for dealing with geometric data in general. Their framework
works by weighting the neighbourhood aggregation through a
learnt scaling factor based on geometric distances.

Velickovic et al. [[8]] proposed a model using self-attention
for weighting the neighbourhood aggregation in GNNs, recog-
nising that this model could be seen as a sub-model of
the MoNET framework, nonetheless providing extraordinary
results on other datasets, namely Cora and Citeseer, two
famous citation networks [12], and on the FAUST humans
dataset [|13]].

Although graph-based methods can be applied directly to
images by considering each pixel a node of the graph, as in the
seminal paper of Shi and Malik for image segmentation [14],
lower-level representations generate smaller graphs. Using
each region produced by a segmentation result might be a
natural choice, but generating accurate segmentation results is
still an open problem. A compromise solution between using
individual pixels and object-related regions is superpixels.
Superpixels group pixels similar in colour and other low-
level properties, like location, into perceptually meaningful
representation units (regions or segments) [15]. These over-
segmented, simplified, images can be applied in a number of
common tasks in computer vision, including depth estimation,
segmentation, and object localization [[16]. A comprehensive
survey on superpixels can be found in [[15]].

The abovementioned work on using GNNs on images,
alongside the work on adapting self-attention for GNNs and
the works for generating superpixels of images form the pillars
on which we based our experiments.

Two other models later came to our knowledge, which
extended or could be seen as sub-models of the MoNET
framework, using geometric information to weight neigh-
bourhood aggregation, and provided results for the MNIST
dataset. One of those is the SplineCNN model [17], which
leverages properties of B-spline bases in their neighbourhood
aggregation procedure. The other is the Geo-GCN model [18]],
which is a MoNET sub-model with a differently engineered
learned distance function performing data augmentation using
rotations and conformations.

Another technique for using GNNs with image data is
to use them as a form of semi-supervised augmentation for
classification, as in [19]. The main difference between their
method and ours is that while they extract a CNN feature
descriptor for each image with a (possibly pretrained) convo-
lutional network, and then build a graph on which their model
is used (akin to how Graph Convolutional Networks are used
for semi-supervised classification in bag-of-words in [9]]), we
use the GAT as a classifier for a graph representing an image
directly. Although their technique is useful for semi-supervised
learning, the technique of using the network for superpixel

Algorithm 1 Region Adjacency Graph (RAG) generation

1: procedure SUPERPIXEL2GRAPH(Image I of width w,
height h and k£ channels, Superpixel segmentation tech-
nique S, and node feature builder F')

2: s, N + S(I) o s returns the superpixel n € N of a
(x,y) pixel

3: x(n) «+ F(I,s,n)¥n e N
vector of node n

> x(n) is the feature

4 E+—{}

5 for 1 <z <wdo

6: for 1 <y <hdo

7 if s(x,y) # s(x + 1,y) then

8 E+— EU{(s(z,y),s(x+1,y))}
9: end if

10: if s(z,y) # s(z,y + 1) then

11: E+ EU{(s(z,y),s(z,y+1))}
12: end if

13: end for

14: end for

15: return G = (N, &),z
16: end procedure

classification has some possible advantages of its own, and
they are not directly comparable.

III. SUPERPIXEL GRAPHS

A number of techniques exist to generate superpixels
from images, such as SLIC [[16]], SNIC [20], SEEDS [21],
ETPS [22], and the hierarchical approach from [23]. For
our experiments, we chose to use SLIC [16] since it was
readily available and had a spatial component in its superpixel
segmentation. SLIC is stable and it is still recommended
among other state-of-the-art oversegmentation algorithms [15].
Nonetheless, we believe that other segmentation techniques
with similar characteristics could be used.

After applying a superpixel segmentation technique, we
generate a Region Adjacency Graph (RAG) by treating each
superpixel as a node and adding edges between all directly
adjacent superpixels (1-neighborhood connection). Note that
this differs from the approach adopted in [11], since their
superpixel graphs have connections that span more than one
neighbour level, with edges formed with the K nearest
neighbours. Each graph node can have associated features,
providing an aggregate information based on characteristics
of the superpixel itself. Algorithm [I] describes the adopted
procedure, whereas Fig. [I] depicts the generation of a RAG
from an image.

There are many possibilities for building the features related
to each node. For example, statistics about the colour and
position of a superpixel, such as the mean, standard deviation,
and correlation matrices of its pixels are readily available
from the superpixel segmentation. In the case of images
defined on rectangular domains, positional information relates
to a 2D point. However, this concept can be easily adapted
to omnidirectional images or point clouds, so that a single



Fig. 1.

From left to right, the image to be converted into a RAG@ the image with the superpixel segmentation being shown @ and the image with the

superpixel segmentation and the generated region adjacency graph overlayed on top of it

topology based on graphs can be used in different applications.
We do not build features for the edges, since we use an
attention-based technique, and believe that the edge feature
will be learned accordingly from the attention mechanism
using both nodes’ features.

In this work in particular, we apply this procedure to the
well-known MNIST [24], FashionMNIST [25], Street View
House Numbers (SVHN) [26] and CIFAR-10 datasets.
The first two datasets contain grayscale images of 28 x 28
pixels and 10 classes, and the last two contain RGB images
of 32 x 32 pixels, both also having 10 classes.

Monti and colleagues used the MNIST dataset and con-
verted it into a graph-based format by using a superpixel-based
representation. But whereas they connected nodes through a
K-nearest neighbour procedure, we do so using RAGs. Hence,
our dataset presents a lower-connectivity graph, which could
impair information flow and make the classification problem
harder. We also provide results for the RAG representation
of the FashionMNIST dataset, since it is a more challenging
dataset for which the information loss from the superpixel
representation could impact more significantly the model.
Since these two datasets contain only grayscale images, we
build each superpixel’s feature vector as the concatenation of
the average luminosity of the pixels in a superpixel and the
geometric centroid.

The SVHN and CIFAR datasets, however, both contain
RGB channels in their images, and a natural extension for the
feature vector is to use the concatenation of the average value
for each colour channel and the geometric centroid. These
datasets were used to see how the model would perform both
with simple and complex colour images.

IV. OUR MODEL

We transform the Undirected Graph produced from the over-
segmented image’s RAG into a Directed Graph G = (N, E),
and feed it to a Neural Network model that operates on Graphs.
More specifically, we use GAT layers stacked on top of each
other using the same adjacency graph on each layer.

Our model is a version of the GAT model by Velickovic
et al. [§]], roughly based on the implementation by Nathani et
al. [28].. Attention is implemented by scattering the source and
target nodes’ input features into their respective edges, making

Algorithm 2 Implemented GAT Layer

1: procedure GAT-FORWARD(Directed graph G = (N, &),
Node Features z:(n)Vn € N, learnable transition function
f and learnable attention function a)

2: Migi(te,€)  1{e = (se,te)}Ve € €
3: hsre(Se) < x(se)Ve €

4: htgt(te) — x(te)Ve eé&

5: h(e) < hsre(se) || hige(te)Ve = (se,te) € €
6: y(e) « f(h(e))Ve € £

7: ale) < a(h(e))Ve e &

8: Qpgse(€) < maxeee afe)

9: Qnorm(€) < ale) — apese(€)Ve € €
10: Qezp(€) + enorm(€Ve € £

11: Qgum — (Migt X ttegp(e)) + €

12: Yale) < y(e)aegp(e)Ve € €

13: return o = (Mg, Yo) [ Csum
14: end procedure

the transition and activation function on both these inputs and
then summing them up over each target node through the
edges.

Therefore, for each layer with input dimension d; and output
dimension d, we learn two functions. The transition function
f: R?% — R composed of a linear layer followed by a
nonlinearity, and the attention function a : R4 — R that tells
how much the target node of an edge should attend to the
source node’s information, also composed of a linear layer.
The values produced by the attention function are activated
using softmax for each target node. On the implementation,
we take advantage of the fact that o(z + ¢); = o(z),.

In summary, given a directed graph G = (N, £), with edges
e = (8¢, te) € € and node features x(n)Vn € N, let T(t) be
the set of nodes with an edge towards ¢, the attention model
can be summarised by Equations (I) and (Z) below, where ||
denotes vector/tensor concatenation.

ea(@(®)z(1)
et €0
> als, O f(@(s)](0) @)

seT (1)

a(s,t) = )

o(t) =



The detailed algorithm showing the optimisation can be
seen in Algorithm [2| Each of these layers can be arranged
in a multi-head model by concatenating their outputs after the
forward pass of each layer. That is, given k heads, the joint
output of the k-headed layer, where each head has its own
transition and attention functions f; and a; (as well as the

k
intermediary c;), would be as in Equation (3)), where Hi:l ar
is the concatenation of all vectors/tensors ay:

k

ST als ) fula(s) () 3)

seT(t) =1

o(t) =

The output of the final GAT layer can then be sum-
pooled, having all the values added, and then passed through
a MultiLayer Perceptron (MLP) for the final prediction. The
Python/Pytorch implementation in its fullest can be seen in
the provided GitHub repository{ﬂ as well. Most operations
have been parallelized as much as the authors could fathom,
with some operations done in a preprocessing phase to avoid
overload.

V. EXPERIMENTS

In this section, we show the potential of our technique on
four datasets: MNIST [24]], FashionMNIST [25[], SVHN [26]
and CIFAR-10 [27]. The superpixel algorithm has a target of
75 regions, so that the analyzed graphs present approximately
75 nodes each.

All experiments were ran either in a computer with a
NVIDIA Quadro P6000 or one with a NVIDIA GTX 1070
Mobile. Both computers have 32GB of RAM. For devel-
opment, we adopted the Pytorch library, version 1.X, using
CUDA.

For all experiments we set a budget of 100 epochs for
optimisation, with a batch size of 32 images, using a 90/10
split for training and validation in the dataset’s original training
data. We use Adam as the optimiser, with a learning rate
of 0.001, 81 = 0.9, and By = 0.999, using the model with
the best validation accuracy on the test dataset. If the model
failed to leave a baseline accuracy for the first 10 epochs, we
restarted the training procedure from scratch.

A. MNIST

We trained two versions of the GAT model: A single-headed
GAT with 3 layers, with 32,64 and 64 neurons, and a two-
headed GAT, where each head has the same amount of neurons
as the single-headed model. Both models used sum-pooling
and a MLP with two layers of 32 and d, neurons for the
final classification, where d, = 10 is the number of classes in
MNIST. All neurons use ReLLU activations, except for those
at the last layer of the classification MLP, which use softmax
activations. We did not use any regularisation technique.

All dataset images are converted to a corresponding RAG,
using SLICO [29], a zero-parameter variant the SLIC algo-
rithm. We set the target number of superpixels as 75, but the

Uhttps://github.com/machine-reasoning-ufrgs/spixel- gat

generated RAGs are not guaranteed to have exactly 75 nodes
due to how the SLIC algorithm works.

Table [l shows that both GAT models performed better than
the MoNET model [11], showing that a learned representation
of the geometric distance can lead to better performance
than the fixed one of [[11]. Note that our model has also
to deal with graphs that are sparser than the ones used in
the baselines [11], [17], [18], since in their graph edges
are formed through K-nearest neighbours and ours use only
directly adjacent nodes. Although one could expect worse
accuracy, the results suggest that our approach is able to
learn relevant geometric information relating the features from
all neighbouring superpixels. We also report the performance
of the graph-based approaches SplineCNN [17] and Geo-
GCN [18], as well as recent alternative approaches such
as the Generative Tensor Network Classifier (GTNC) [30]
and the best performing method based on Support Vector
Classification (SVC) as reported in the dataset homepageﬂ
Although our approach does not reach state-of-the-art results,
it is competitive and the best among graph-based methods.

B. FashionMNIST

We trained the single-headed and multi-headed GAT models
with the same configuration of Section [V-A] Since the Fash-
ionMNIST dataset also has 10 classes, the number of output
neurons is d, = 10 as well. The RAGs were also generated
as in Section [V=Al

Since none of the found graph-based papers present results
for both MNIST and FashionMNIST, we provide a perfor-
mance comparison of our models to GTNC [30] and the two
best classifiers from the FashionMNIST benchmark [25] in
Table [Il The gap on the performance between the traditional
ML models that used the full features of the dataset and
our models, which use a reduced representation based on
the oversegmented image, is higher on FashionMNIST. This
shows how much harder the FashionMNIST dataset is for
oversegmented images, where the information loss is greater
with the aggregation of the features of the pixels in the
superpixel.

Another interesting fact to note is that the multi-headed
model performed worse than the single-headed one. This was
further confirmed when we tried learning with a 4-headed
model, which performed slightly worse than the 2-headed one.

C. Street View House Numbers

To check the performance of the model with multi-channel
data, we trained and tested the two-headed model on the
Street View House Numbers (SVHN) dataset [26], using
the 32 x 32 cropped version and the same parameters for
oversegmentation as in the previous sections. We achieved
a similar performance with the two-headed GAT model on
the FashionMNIST dataset, with 80.72% test accuracy. This
comes to show that our model works even with full colour
data, as well as the confounders present in the SVHN dataset.

Zhttps://github.com/zalandoresearch/fashion-mnist
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TABLE I
TEST ACCURACY FOR THE TESTED MODELS ON MNIST AND
FASHIONMNIST, PROCESSED AS RAGS WITH APPROXIMATELY 75 NODES
(CALLED MNIST-75 AND FASHIONMNIST-75), COMPARED TO THE
BASELINE MODELS. BOLD VALUES SHOW THE BEST OF THE
GRAPH-BASED MODELS. WE ALSO PRESENT THE MEAN ACCURACIES OF
THE TWO BEST CLASSIFIERS FOR THE NON-OVERSEGMENTED MNIST
AND FASHIONMNIST DATASETS, AVAILABLE IN THE FASHIONMNIST

BENCHMARK.
MNIST-75  FashionMNIST-75
MOoNET |[11] 91.11% -
SplineCNN [17] 95.22% -
GeoGCN [18] 95.95% -
GAT-1Head 95.83% 83.07%
GAT-2Head 96.19% 81.40%
MNIST FashionMNIST
GTNC [30] 97.6% 88.2%
SVC(10,poly) 97.6%* 89.7%*
SVC(100,poly) 97.8%* 89.6%*
== Loss == Train Acc Valid Acc
25 100.00%
20 ,——"—’_—_’_’_—‘__-———‘_———-—
V4 ~ 75.00%
/I
15 4
3
% 50.00% g
S 8
1.0 <
25.00%
0.5 .
0.0 0.00%
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Epoch

Fig. 2. Training Curve for the Street View House Numbers 32 x 32 dataset

That is, the classifier has learned both to prioritise the
centermost superpixels and to identify which structure it
contains by comparing changes in colour tone, instead of
simple changes in luminosity, proving that, although it does
not reach state-of-the-art performance, the model can achieve
relatively good accuracy even working with less expressive
data.

D. CIFAR-10

The CIFAR-10 dataset [27]] contains 50,000 32 x 32 colour
images distributed in 10 classes. We used the same parameters
for oversegmentation as in the previous sections. The results
we achieved through a network with the same architecture as
GAT-2Head was 45.93% accuracy on the test set — very distant
from what we achieved on the MNIST and FashionMNIST

datasets. The training and validation accuracies were not
impressive either, being 58.61% and 53.40% respectively.

As a baseline, we considered the VGGI11 [31] architecture,
with and without batch normalisation. We were unable to train
the model without batch normalisation, whereas with batch
normalisation we achieved 62.86% validation accuracy, which
shows the heavy information loss during the RAG transfor-
mation procedure. However the comparison of the GAT with
the VGG model is still unfair, in terms both of information
available to the model and the number of parameters.

While the VGG model has access to the oversegmented
image, with each segment’s pixel having the averaged RGB
values for each superpixel — approaching also geometry in-
formation — the GAT model only has access to the average
colour and the centroid position, not knowing anything about
the superpixel’s shape. More precisely, while the VGG model
has access to the middle images in Fig. [3| the GNN model
has only access to the graph on the right images, with each
node containing the average pixel value and position.

As for the model size, the VGG11 network has 132,868,840
parameters, while the GAT has only 55,364. The VGG network
also consumed almost twice as much VRAM as the GAT-
2Head architecture on the CIFAR images. VGG11 consumed
4,109MiB for training and 1,055MiB for testing, while the
GAT model expended 1,067MiB for training and 485MiB for
testing. For the sake of illustration, the current state-of-the-
art result on CIFAR-10 [32] is reached with an AmoebaNet-B
(550M parameters) pre-trained on ImageNet and fine-tuned on
CIFAR-10.

VI. CONCLUSION

In this paper, we have investigated the application and
interplay between Graph Attention Networks (GATs) [8] and
image classification problems. In order to do so, we have used
Region Adjacency Graphs (RAGs) computed from an image
segmented using a superpixel algorithm, SLICO. We showed
that using attention-based graph neural networks on a feature
space that contains the geometric information can be improved
by weighting the edges of a superpixel graph using a learned
function which operates solely on the geometric information.

However, this approach to image classification has its short-
comings. The information loss in the pixel aggregation for
more complex images can result in significant performance
degradation when compared to using the full image. Also,
graph-based approaches may come with the same limitations
intrinsic to the models they use, and in our case the GNN-
based architecture imposes some limitations in terms of mem-
ory usage for larger graphs due to the batching procedure
(and thus finer segmentations), despite the smaller number
of parameters the model itself had. Training in small batches
lead to an unreliable training pattern, further aggravating such
issues.

These limitations are, however, venues for future work.
It has been shown that architectures based on graph con-
volutional networks, such as the GAT, suffer from an over-
smoothing of node-level information, thus acting like low-pass



Fig. 3. Examples showing the loss of information in the RAG procedure
when using only the average of each channel, which negatively affects the
performance of the network.

filters [33]]. While GATs might not be subject to the same
limitation, this could be investigated to allow deeper GATSs
with potentially better performance in this domain. Another
venue is helping scaling Graph Neural Networks, of which
GAT is a representative, to larger graphs (and thus larger
images) or to make them work in an online manner, or with
smaller batches.

Also, our models used no regularization whatsoever, and
investigating regularization techniques for these models could
incur in better performance. Lastly, investigating different
node feature vectors could provide the network with richer
information and lesser the information loss due to the RAG
procedure, possibly with information to recustruct the super-
pixel’s components.

These graph-based approaches to image classification are
also a prime example of application to non-euclidean images,
such as omnidirectional images [34]]. The flexibility of a graph-
based approach could be more invariant to the domain of the

image, possibly allowing pre-training on planar images and
transfer to spherical images.
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