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Abstract—We present a novel way of using one’s eye to capture
an image of what it “sees” through the use of steady-state
visually-evoked potentials (SSVEP). Existing methods leveraging
response patterns for SSVEP visual image reconstruction show
lossy reconstruction and have a lengthy scanning process. With
our signal acquisition procedure, data collection requirements are
significantly decreased while still improving the signal clarity.
The data for image reconstruction were collected from the
Oz positioned electrode using a low-cost, wearable electroen-
cephalography (EEG) device. For image reconstruction, software-
defined lock-in amplifier (LIA) and discrete Fourier transform
(DFT) signal processing methods are analyzed and compared.

Index Terms—Signal processing, visual field reconstruction,
brain-computer interfaces (BCI), steady-state visually evoked
potential (SSVEP), lock-in amplifier, pattern recognition.

I. BACKGROUND AND INTRODUCTION

Vision, sensation, and perception have long been important
fields of study [1], [2]. The knowledge of how humans
perceive and sense the world around them can be applied to
create body sensor networks [3], smart prosthetics [4], [5],
and implants [6] that help those with severe disabilities and
those with difficulties in performing perceptual, sensational,
or motor tasks. Sensors [7], wearable computing [6], [8], [9],
and brain-computer interface (BCI) [10]–[12] have become
increasingly relevant to medicine and health care as early
detection and monitoring systems. As these techniques con-
tinue to develop, the requirements for our understanding of the
capabilities of these devices and human senses will become
increasingly significant [13], [14].

Metaveillance is the sensing of sensing [15]. Through under-
standing and visualization of the senses, we may improve our
understanding of the perception of both humans and machines
and their respective capabilities [16], [17]. This understanding
of human and machine perceptions, and human vision, in
particular, can greatly influence the progress of imaging and
pattern recognition technology, in much the same way as the
anatomy of the human eye influenced the camera, and the
understanding of the neuron influenced the design of neural
networks.

Neuroimaging devices can provide strong entry points of
study for metaveillance applied to humans. However, most
investigations using neuroimaging techniques such as EEG,
fMRI, etc, have barriers to entry due to the need for specialized
and expensive equipment [2], [18]. As an example, a current
state-of-the-art visualization technique that leverages deep
neural networks with 6000 training images to generate images
from human vision uses expensive fMRI devices [19]. Thus, to

Fig. 1: The conceptual end goal of this research, a user of our system looks
at a “NO CAMERAS ALLOWED” sign (left) and captures an image (right)
reconstructed from EEG signals using techniques discussed in this paper.

ensure that our project is easily accessible, we have designed
our experiments to operate on a low-cost, wearable, 5-channel
EEG device. This can potentially shine a new light on how
wearable EEG devices are used other than for their existing
meditative and mental state monitoring applications [20].

A. SSVEP

Steady-state visually-evoked potentials (SSVEP) are a
known technique used in EEG research. SSVEP response
patterns are periodic responses from the visual cortex that are
evoked through a visual stimulus flickering at specific fre-
quencies. An increase in neural activity at the same frequency
of the visual stimulus is present in the attended region [2],
[22]. SSVEP has recently engendered growing interests in
the scientific community [22]–[26] and is widely used in
studies investigating spatial attention [2]. In common practice,
SSVEP signals are usually monitored using EEG or functional
magnetic resonance imaging (fMRI) [2], [27], and are detected
from a large range of frequencies, 1–90Hz [28], [29]. How-
ever, human brains show steady and strong responses only in
a limited range of stimulus frequencies.

B. Eye as a Camera

In this paper, we propose several new methods of capturing
vision directly from the eye. Previous studies show the pos-
sibilities to measure and visualize the ability to see, as well
as investigate the augmented reality visualization of human
sight [16], [17]. Through the use of SSVEP response patterns,
a subject’s visual field can then be reconstructed [30].

The prior reconstruction procedure [30] has several draw-
backs. The first is the lengthy scanning process, which hinders
possible applications. Other concerns include the methods for
data acquisition and signal processing techniques, leading to



(a) Base bitmap (145× 150 px). (b) Low-passed LIA. (c) Integrated LIA. (d) Multi-peak FFT.

Fig. 2: The images are the visual field reconstructions of the base bitmap of a tree [21] with only bit-value scaling applied to scale the maximum bit value
to 255. Each image uses a different reconstruction algorithm. The EEG data are collected by User A with a stimulus frequency of 8.5Hz. The time duration
for each pixel data collection is 1 s for a total experiment time of about 6h.

significant loss of image reconstruction quality. Based on these
drawbacks of the original approach, we hypothesize that by
altering the experiment methods and by applying different
signal processing algorithms on the raw EEG data, the quality
of the reconstructed images will increase. Decreasing the total
experimental time is also another requirement to improve the
overall user experience and to realize the potential for real-life
applications.

Fig. 1 depicts the end goal for our procedure, the concept
that human vision can directly serve as a medium for recording
visual information.

II. METHODS

The Muse Meditation Headband by InterAxon Inc. is the
EEG sensing device used during the experiments. When worn,
an external electrode is added and placed at the occipital
lobe (Oz) position to detect SSVEP responses. Following
the 10-20 system of EEG placement, the Oz position is the
most consistent for measuring SSVEP responses at varying
frequencies [31].

For the following experimental procedure, we chose 5
different images. The star, panda, and spring tree images
showcase our procedure’s efficacy on images of increasing ge-
ometric complexity, while the “NO CAMERAS ALLOWED”
sign and the face portrait represent typical images that one
may encounter in their day-to-day life. All images are black
and white to simplify the process and ensure the presence of
distinct SSVEP responses [30].

A. Experimental Procedure

First, new participants perform a 5-minute frequency detec-
tion task using a flickering stimulus window of a black image
and a white image of varying frequencies from 5Hz to 20Hz
at 0.5Hz increments to discover their optimal SSVEP response
frequency. For each target frequency, the stimulus flashes for
6 s with 4 s rest in between frequencies. Fig. 3 shows graphs
of raw EEG data and the corresponding outputs from the LIA
and FFT algorithms at the target frequency. The FFT uses a
2-second data window, i.e. 512 samples at 256Hz sampling
frequency.

By comparing and contrasting, we select the frequency
that elicits the most stable and observable SSVEP responses
with the shortest response delay for the following scanning
experiments. The response delay is the delay between the
stimulus on screen and the response activation in the brain.
From Fig. 3a, the LIA and FFT graphs show a steady activation
from 2 to 6 s. The LIA graph remains consistently greater than
10, while the FFT slowly ramps up from 2 to 4 s and reaches a
steady-state activation. A sharp linear deactivation response to
the stimulus follows at 6 s for both methods of analysis. The
mild bumps in the LIA graph between 3 to 4 s and 5 to 6 s
may represent the user’s increased visual attention. Fig. 3b is
a sub-optimal SSVEP response graph with an activation that
is unstable and a deactivation that is difficult to notice. Unlike
in Fig. 3a, the LIA graph in ig. 3b does not consistently reach
high activation between 2 to 6 s. The FFT also only shows
what may perhaps be a weak activation between 3 to 4 s as
well as 4 to 6 s.

Stable SSVEP response (i.e. continuous and distinct activa-
tion response) will allow better signal reconstruction quality,
and shorter response time will reduce interference and cor-
ruption when the stimulus window switches. Once we find a
suitable frequency, redoing the frequency detection task is not
necessary since the main objective is to find a single frequency
that fits a particular person.

Once a stimulus frequency is selected, we select an image
for the scanning process. Before slicing the image into smaller
sub-images of equal frame size, the selected image is scaled
and padded with additional black pixels. The participant may
apply side paddings on the image to avoid stimulus flickering
between the end of a previous row and the start of the next
one. The top and bottom paddings can help capture top and
bottom image details easier. A step size defines the vertical
and horizontal shift between each sub-image. The step-size
and the scaling of the original image determine the resolution
of the resulting bitmap image. To illustrate, we slice a panda
image into 200 × 200 px frame images with a step-size of
40 px in Fig. 4. Fig. 4 also shows 2x4 sample sub-images
around a point of interest marked in red. We then display
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(a) 8.5Hz frequency test graphs from User A.
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(b) 7Hz frequency test graphs from User A.

Fig. 3: a) and b) are the resulting graph from a frequency test run at 8.5Hz and 7Hz respectively for User A. The top graph is the raw EEG data, the middle
is magnitude output using Low-passed LIA, and the bottom is the FFT power spectral density (PSD) with the noise floor subtracted. Both processing methods
use a 2-second data capture window.

Sample picture to splice
Sample 2 x 4 
image splices

Presentation of spliced image
as a stimulus image

Fig. 4: Panda image [32] (2000 × 2092 px) is sliced into 200 × 200 px
at 40px step sizes and the corresponding presentation as a stimulus. The
corresponding bitmap is an image with 50× 53 px.

these sub-images individually as a stimulus image at the center
of a black background application window flickering at the
stimulus frequency. Participants focus their eyes at a 3 px-
tall indicator located at the center of the application window.
The indicator aids in keeping the attention of the participant
on the flickering stimulus. After a fixed time duration, the
stimulus image moves from left to right and top to bottom,
which simulates the picture going across the screen, similar to
the regular reading direction.

Fig. 5: The experiment proper with the stimulus image presented on the
monitor and EEG data recordings from Muse headset to the laptop computer.

Fig. 5 shows a picture of a subject performing the ex-
periment. While the user focuses on the stimulus image, we
collect and timestamp the user’s EEG data coming from the
Muse. The experiment repeats until all the rows are taken.

Throughout the experimental process, the participants can
relax and blink normally. Though we encourage participants
to be focused, short moments of distraction will not overly
influence the final image.

Raw data collected are processed using Fast Fourier Trans-
form (FFT) and the two implementations of software-defined
Lock-in Amplifier (LIA) algorithms. We extract the bitmap
of a particular pixel from the raw data using the start time
and the end time recorded for each stimulus image, while
each stimulus image corresponds to one pixel in the final
reconstruction.

Fig. 2 shows the corresponding image reconstructions of a
tree using each algorithm. These reconstructed images have
the highest pixel resolution (145 × 150 px) among all the
images we have taken using the eye as a camera. The original
image size is 6000×6000 px. Fig. 8 shows the corresponding
image reconstructions of a human face using each algorithm.
The original photograph size is 2051 × 2736 px while the
reconstructed images and the target bitmap are 82× 102 px.

B. Fast Fourier Transform

Fast Fourier transform [33] is an algorithm that computes
the discrete Fourier transform (DFT) [34] of a sequence of
data points. The algorithm transforms the signal from its
original time-domain representation to components in the
frequency domain. Fig. 6 shows a sample graph taken using the
algorithm with the first and second SSVEP response harmonic
frequencies encircled for emphasis.
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Fig. 6: Sample PSD of EEG data at Oz position from 1-30Hz. Encircled
are the SSVEP response peaks at the first (8.5Hz) and the second (17Hz)
harmonics. The data window size used in this transformation is 2560 samples.



Prior study [30] examines activation at the target frequency
to estimate the strength of the SSVEP responses while consid-
ering only the peak activation for a particular pixel, Maximum
Peak FFT. However, activations for SSVEP are often not
located only at the target frequency but in a triangle of
activation surrounding the target frequency, as shown in Fig. 6.
Multi-peak FFT, therefore, takes all the activation in a range
around the target value and sums them up to receive its bitmap
value. We note that FFT requires a minimum number of
sampled points for its transformation. With too few sample
points computed, the desired frequency may not exist in the
output. Therefore, for time windows below 2 s, the FFT data
window must be widened artificially in a range around the
stimulus duration for data to be processed.

(a) (b) (c)

Fig. 7: The EEG data for reconstructing the panda image [32] are taken by
User B at 8.5Hz with 2 s pixel time duration. a) Base bitmap image (53 ×
50 px). b) FFT reconstruction considering only the peak FFT at the SSVEP
stimulus frequency, Maximum Peak FFT. c) FFT reconstruction considering
multiple peaks for a particular SSVEP stimulus frequency, Multi-peak FFT.

TABLE I: Accuracy measurements in choosing between FFT
implementation shown in Fig. 7b (Maximum Peak FFT) and
Fig. 7c (Multi-peak FFT).

Maximum Peak FFT Multi-peak FFT

RMS Accuracy (Acc.) 0.588 0.625
True Positive Rate 0.983 0.964
True Negative Rate 0.550 0.670

Two implementations of FFT, Maximum Peak FFT, and
Multi-peak FFT, are used to compute the reconstruction. Fig. 7
shows the difference between the two FFT reconstruction
methods after subtracting the noise floor. To limit the algo-
rithms discussed, we consider only the FFT implementation
that results in better accuracy. Table I shows the accuracy
comparison between the two FFT implementations. We obtain
the metrics by comparing the image reconstructions with the
base bitmap image in Fig. 7a. RMS accuracy refers to root-
mean-square accuracy which derives from 1− RMSE, where
RMSE is the root-mean-square error between the reconstruc-
tion and the target bitmap. In this paper, the true positive rate
(TPR) refers to the percent of correct predictions of white
pixels based on the target bitmap while the true negative rate
(TNR) refers to the percent of correct predictions for black
pixels. As shown, the Multi-peak FFT method performs better
than the Maximum Peak FFT method. Although the TPR for
Multi-peak FFT is less, when we consider the sum of TPR
and TNR, Multi-peak FFT gets a better reconstruction.

C. Lock-in Amplifier

A lock-in amplifier is an analog device that selects and
amplifies a particular oscillatory frequency while rejecting all
other frequencies [35], [36]. Due to this nature, LIA can extract
a signal in an extremely noisy environment as long as this
reference signal frequency is precise and known. An advanced
form of LIA uses a second reference signal, 90◦ phase-
shifted to the first reference. Given a target frequency, two
reference signals, y(iωt) and z(iωt) in Eqn. 1, are multiplied
to the original signal. Software-based LIA is useful for our
experiment since we want to extract the SSVEP response
frequency, and we know the target frequency, fs, and the
corresponding i harmonics. In this paper, we consider only
the data obtained from the fundamental frequency. Thus, we
introduce two software-based LIA implementations.

y(iωt) = z(iωt+
π

2
), t = (t1, t2, . . . , tn)

ω = 2πfs
(1)

1) Integrated Lock-in Amplifier: This software-defined LIA
uses the integration of sinusoidal functions to cancel out all
other frequencies and extract the original signal. As shown in
Eqn. 2, the raw EEG data u(t) is multiplied by the reference
wave then integrated over n points where n is the total number
of data points sampled over the given stimulus duration. The
same is done with the reference wave replaced by its 90◦

phase-shifted counterpart.

p =

∫
u(t)y(iωt)dt =

1

n

n∑
j=1

u(tj)y(iωtj)

q =

∫
u(t)z(iωt)dt =

1

n

n∑
j=1

u(tj)z(iωtj)

(2)

The magnitude obtained from p and q removes phase
dependence. After scaling by a constant c, the result is the
final pixel value in Eqn. 3.

pixel = c
√
q2 + p2 (3)

2) Low-passed Lock-in Amplifier: This software-defined
LIA implementation mirrors how a hardware-based LIA per-
forms. Eqn. 4 details the mathematical formula of this im-
plementation. The raw EEG data is first multiplied by the
reference wave and its 90◦ phase-shifted counterpart at the
target frequency for each pixel frame. Then, a second-order
Butterworth low pass filter at 0.7Hz is applied to the mod-
ified signals. The filtering is necessary in order to yield an
approximately time-independent output [37]. The magnitude,
α, is obtained from these time-independent outputs.

Vy(iωt) = lowpass(u(t)y(iωt), 0.7Hz)

Vz(iωt) = lowpass(u(t)z(iωt), 0.7Hz)

α(iωt) =
√
Vy(iωt)2 + Vz(iωt)2

(4)

Eqn. 5 simply averages the summed magnitudes of the base



(a) Base bitmap (82× 103 px). (b) Low-passed LIA. (c) Integrated LIA. (d) Multi-peak FFT.

Fig. 8: Portrait image reconstruction using SSVEP response data from multiple users. First 34px rows are from User A. Next 35px rows are from User B.
Last 34px rows are from User C. EEG data from User A and B are collected with a stimulus frequency of 8.5Hz while User C are collected with 8Hz.
Time duration of 1.5 s for each image frame is used by all users.
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Fig. 9: Example pixel row conversion using the Low-passed LIA. This bitmap
corresponds to the 62nd row in Fig. 8b.

frequency at the time range, ta, . . . , tb, that corresponds to a
particular sub-image frame duration. c is a constant applied to
each value found for one entire image bitmap. Hence, pixel
is used to indicate the pixel value of a particular sub-image
frame.

pixel =

c

b∑
j=a

α(tj)

b− a

(5)

Fig. 9 illustrates this pixel transformation. The graph shows
the α(t) for a particular row of Fig. 8b. The corresponding
grayscale 82 px image row generated from SSVEP is over-
layed on the graph to match the amplitude pattern.

III. RESULTS AND DISCUSSION

To ensure the the work is reproducible, we obtained results
from three users, User A, User B and User C. User A and
User B, both male, have their best SSVEP response at 8.5Hz.
The best SSVEP response frequency for User C, female, is at
8Hz. All three users used the Muse headband device, and the
experiments were successfully carried out both together with
supervision and individually at different locations.

(a) (b) (c) (d)

Fig. 10: a) The original star image (1000× 999 px). b) Reconstruction from
the prior art [30] by User C, which takes about 27min of experiment time.
c) The base bitmap of the original image (20 × 26 px). d) Reconstruction
using Low-passed LIA at 2 s stimulus duration by User C, which takes about
17min of experiment time.

A. Capture Image Accuracy and Improvements
Fig. 10 shows the dramatic improvements in the quality of

the reconstruction and the experiment time requirements using
the methods described earlier. Even though total experiment
time is just 17min, Fig. 10d is clearly a better reconstruction
compared to Fig. 10b, which took 27min of data collection.

(a) (b) (c)

Fig. 11: Denoising the reconstructed image of the tree shown in Fig. 2b. a)
Untreated image. b) Result after setting pixel threshold set at 0.92. c) Result
after applying total variation denoising [38] set at 0.49 on b).

Fig. 11 further illustrates the merits of our breakthroughs.
To elaborate, the most dramatic increase in RMS accuracy
came from applying a simple pixel threshold adjustments to
classify a black and a white pixel. In Fig. 12, as the pixel
threshold increases, the TNR increased substantially compared
to the decrease in TPR. We obtained the highest TPR and TNR
combination when we set the threshold at the 92nd percentile.
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Fig. 12: Showing TPR and TNR with different thresholds set on Fig. 11a.
The threshold is set to maximize TPR + TNR. In this case the best threshold
is 0.92.

Therefore, whites were data values from the 92nd percentile
and above, while the rest were blacks. After thresholding, we
applied a total variation denoising [38] algorithm to the image.
The best weight found to maximize RMS accuracy is 0.42,
resulting in a 0.840 RMS accuracy image. By using simple
and accessible denoising techniques, we managed to improve
the accuracy of the reconstruction for a feature-rich image
from 0.544 to 0.840 based on Table II.

TABLE II: Accuracy measurements for different pictures of
interest.

RMS Acc. TPR TNR

Fig. 11a 0.544 0.973 0.546
Fig. 11b 0.731 0.843 0.931
Fig. 11c 0.840 0.869 0.959
Fig. 13a 0.661 0.961 0.704
Fig. 13b 0.703 0.863 0.924
Fig. 13c 0.812 0.881 0.970

(a) (b) (c)

Fig. 13: Denoising the reconstructed image of the portrait shown in Fig. 8b. a)
Untreated image. b) Result after setting pixel threshold set at 0.75. c) Result
after applying total variation denoising [38] set at 0.34 on b).

Fig. 13 is the same set of denoising algorithms applied
on the portrait image shown in Fig. 8b. The accuracy also
improves, showing that the process is reproducible. The major
contribution of thresholding is to improve the true negative
rate while preserving a reasonable true positive rate. Thus,
the improvement is greater on bitmaps with more black pixels
(Fig. 11) than bitmaps with less black pixels (Fig. 13). The

total variation denoising algorithm removes outlier pixels
caused by remaining noises, improving overall RMS accuracy.

B. Stimulus Duration

The effect of stimulus duration on visual reconstruction
was examined. Experimental data for different stimulus frame
duration were gathered from each user, starting at 0.25 s. The
image reconstruction results for a star with increasing stimulus
frame duration is shown in Fig. 14 for Low-passed LIA,
Fig. 15 for Integrated LIA, and Fig. 16 for Multi-peak FFT.
From the results, Multi-peak FFT has the longest stimulus
duration required to get any recognizable result, as both
0.25 s, and 0.5 s stimulus duration do not yield any identifiable
features of the star. Low-passed LIA is able to retrieve the star
at 0.5 s time duration, while Integrated LIA is able to present
useful shape information at the stimulus duration of 0.25 s.
As a reference, a 0.25 s duration only provides two stimulus
periods for either 8Hz or 8.5Hz stimulus frequencies.

Fig. 14: Low-passed LIA reconstructions of a star at different frame duration
by three users. Top row are from User A. Middle row are from User B. Last
row are from User C. Stimulus frame duration are increasing from left to
right: 0.25 s, 0.5 s, 0.75 s, 1.0 s, 2.0 s and 4.0 s.

Fig. 15: Integrated LIA reconstructions of a star at different frame duration
by three users. The top row is from User A. The middle row is from User
B. The last row is from User C. Stimulus frame duration are increasing from
left to right: 0.25 s, 0.5 s, 0.75 s, 1.0 s, 2.0 s and 4.0 s.

Fig. 17 shows a plot of the RMS accuracy for different
stimulus duration taken of the star by each user using the



Fig. 16: Multi-peak FFT reconstructions of a star at different frame duration
by three users. The top row is from User A. The middle row is from User
B. The last row is from User C. Stimulus frame duration are increasing from
left to right: 0.25 s, 0.5 s, 0.75 s, 1.0 s, 2.0 s and 4.0 s.

Low-passed LIA method. Though different users have different
accuracy curves in relation to the stimulus duration, accuracy
clearly trends upward and reaches a steady-state. Between
0 to 2 s, accuracy rises steeply. Afterward, although we can
see some improvements, the gains are not as dramatic. The
experiment shows that the steady-state accuracy is different
for every user albeit only slightly.

0 1 2 3 4 5 6 7 8
Stimulus Frame Duration (s) 

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

R
M

S
 A

cc
u

ra
cy

User A

User B

User C

Fig. 17: RMS accuracy graph for the star using Low-passed LIA method at
different stimulus frame duration for each user.

Table III highlights the best accuracy measurements for each
user and method. A relatively long time duration produces
better accuracy but not always. The table shows that the TNR
has a stronger impact on RMS accuracy. The TPR for all users
and methods is quite high with an average of about 0.989.
The TNR, however, has a higher variance between methods.
Integrated LIA has the best TNR values, which translate to
having the best RMS accuracy, but it also has the highest
time duration requirements to achieve that accuracy. Multi-
peak FFT lags behind the other two LIA methods as none of
the users reached past 0.6 RMS accuracy.

Some trade-off may exist between the user’s attentiveness
and visual field reconstruction accuracy as stimulus frame
duration increase further. Participants have reported attention
issues at higher durations. They have noted that faster stimulus

TABLE III: Best accuracy measurements obtained at a partic-
ular stimulus duration for each user and method.

User A User B User C

Low-passed LIA Frame Duration [s] 3.0 1.0 6.0
RMS Accuracy 0.640 0.610 0.609
TPR 0.994 1.000 1.000
TNR 0.696 0.651 0.645

Integrated LIA Frame Duration [s] 3.0 4.0 6.0
RMS Accuracy 0.680 0.670 0.675
TPR 0.982 0.988 1.000
TNR 0.750 0.787 0.767

Multi-peak FFT Frame Duration [s] 2.0 1.0 6.0
RMS Accuracy 0.567 0.582 0.556
TPR 0.970 0.982 0.982
TNR 0.582 0.614 0.528

frame duration allows users to see new images more often,
while longer duration forces participants to look at the same
image for longer. However, we did not explore this issue
in detail since doubling the stimulus frame duration will
double the experiment time requirements. As an example,
to reconstruct the 20 × 26 px star at 8 s requires 69min of
experiment time but a 4 s requires only about 34min. For a
low-resolution image like the star, this experiment is feasible
but becomes exponentially harder as the image scale increases.

IV. CONCLUSION

We successfully designed an experimental process that
maximizes signal quality during data collection. We also
implemented improvements and algorithms which can better
extract the source signal from EEG and SSVEP response data.
Image reconstruction was completed with a low-cost, wear-
able, 5-channel EEG device, using only a single channel from
the occipital lobe electrode. LIA algorithm implementations
perform better than their FFT counterpart. In general, Low-
passed LIA provided the best image reconstruction quality.
With the new process and algorithms, multiple participants
were able to take high definition “photographs” of multi-
featured and complex objects such as the human face. We
hope to further improve this technique by applying it in the
real-world and using it to gain insight into human vision.

V. FUTURE WORK

A. Cognitive Studies and Visual Acuity

The results of this work may help us investigate links
between the visual acuity of the human eye and the visual
cortex. Cognitive-visual exercises, such as the one presented
here, are useful to understand our capacity to sense our
environment, extending to applications in mental health and
personalized health care.

B. Image Reconstruction Enhancements

This paper presents signal processing techniques to re-
construct images from the human eye. Potentially, we can
further enhance the reconstructed image by taking into account
the sources of speckle noise. By combining the LIA and
FFT processing with pattern analysis and machine learning
techniques, we may improve upon the resulting image quality.



C. Multicolored Image Capture

Our techniques currently use black and white images.
Studies have shown that red, green, and blue solid colors
can be mapped based on SSVEP response amplitudes [39].
A possible next step is to map how our brain interprets solid
colors that have red, green, and blue mixtures before producing
a multicolored image capture. In this way, capturing real-life
full-color representations from the human eye can be realized.
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