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Abstract—Hydrographic Printing, also called Hydrographics, is
a viable method for coloring objects created with 3D printers.
However, executing the hydrographic technique leads to a complex
interaction between a thin film and a 3D printed object, in which the
image in the film must adhere to the object. To handle the difficulty
of predicting the final result of hydrographic printing, we propose
a 3D computational simulation that uses Position-Based Dynamics,
a popular technique for simulating deformable bodies and widely
used in physics engines. We take advantage of this technique running
in parallel a GPU-based simulation with suitable performance. We
simulate the film behavior and its interaction with the printed object,
as an interaction between a soft-body colliding with a rigid one.
To evaluate the achieved performance consistency, we varied the
number of vertices and voxels in the bodies involved and observed
that the simulation kept running in real-time. We also execute the
hydrographic technique in different printed models and compare
these results with the simulated models.

I. INTRODUCTION

The 3D printing manufacturing process had a fast development
in the last years. The advances of this technique influenced many
areas such as product design, engineering, architecture, medicine,
cultural heritage [1] [2] [3].

Unfortunately, despite the advances in complex shapes fab-
rication, creating colored objects by additive manufacturing is
still difficult. Some high-end 3D printers address the problem of
creating the shape and coloring the surface as a single task [4].
Often, this approach is undesirable because it forces the choice of
a specific equipment model, leading to a budget that often exceeds
the project expectations. Among the manufacturing process, when
we search for a more accessible and cheaper way of coloring 3D
printed objects, we often deal with two methods: the traditional
painting and the decal techniques [5].

With the traditional painting, we have to deal with material loss,
ink preparation, ink mixing, solvents, and surface preparation.
Moreover, skilled people are essential to this technique. This
approach needs an initial setup that requires a set of assets.

Decal techniques work with a substrate (a plastic or paper
sheet) that carries a printed pattern or image. This substrate reacts
with an activator (water, heat, or another reagent) to transfer the
pattern to a surface through contact [6]. One advantage of this
process is that we can apply it to a previously 3D printed object.
Another advantage is the possibility of adoption in a large scale
industrial production, with a semi-automatic process, minimal
material loss, and a more comfortable way.

Among the decal techniques, Hydrographic Printing [7], also
called Water Transfer Printing (WTP) or Hydrographics, is a
known technique made to coloring 3D objects. It is viable to
a wide variety of materials such as ceramic, fiberglass, plastic,
wood, and metal. To perform this technique it is initially necessary
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Fig. 1. A 3D printed object covered with carbon fiber pattern by a hydrographic
printing technique. (a) Hydrographic film floating. (b) 3D printed object colored
with hydrographics.

to print a 2D image over a polyvinyl film. This film is put on a
vat of water and kept floating over the water surface, as shown in
Figure 1a. The film reacts with an activator solution and becomes
a thin sheet that carries the ink of the previously printed 2D image.
The object is deepened in the vat, and the colors are transferred
when it touches the film. Figure 1b shows the final aspect of the
3D printed object decorated with a pattern by the hydrographics
technique.

With hydrographics, it is usual to transfer a repetitive pattern
(like carbon fiber, camouflage, wood, stone, animal skin) to the
object. Thus, there is no need for accurate alignment between the
color pattern contained in the film and the object in the coloring
process. However, when it is necessary to color specific areas of
a piece printed in 3D, we have to provide an accurate mapping
of the colors from the 2D image contained in the film to the
surface of the 3D object. Performing this operation with the usual
hydrographic printing is hard because there is no control of how
this mapping will occur.

Our proposal aims to simulate virtually the hydrographic print-
ing process in real-time, opening new possibilities. We believe
that the most interactive process allows simulating the immersion
with different positions quickly. This way, after simulations by
varying the immersion positions, it will be possible to choose a
more suitable way to use the hydrographics, by considering the
use of the largest possible area of the film, keeping the stretch
controlled. With the approach, it will be possible to reduce the
common issues of hydrographics, avoiding material loss, and
improving the prediction of the process. Also, unlike previous
works [8], [9], that use a full physical model tailored with Finite
Element Method (FEM) on the Central Processing Unit (CPU),
our main contribution is to propose a real-time simulation on the
Graphics Processing Unit (GPU), by adopting the Position-Based
Dynamics (PBD) technique combined with a soft-body collision
detection approach.

The organization of this paper is as follows: first, we present



related works (section 2), followed by the background knowledge
that enabled our implementation (section 3), then we show
assumptions, parameters, and definitions to the simulation made
(section 4). After that, we describe the tests and compile results
with the solution adopted (section 5), finally presenting the
conclusions (section 6).

II. RELATED WORK

Zhang et al. [8] present an approach of computational sim-
ulation for hydrographics. The simulation proposed can predict
the distortion of the film and the color variation during the
hydrographic printing process. Furthermore, their work shows a
method to automatize the physical process of the hydrographics
partially by hardware that controls the immersion into the water.
Finally, they propose a solution with multiple immersions to
provide a suitable treatment that covers more complex concave
objects.

Panozzo et al. [9] present relevant contributions to the same
problem. Their work makes a detailed study of the physical con-
ditions (like water temperature, the quantity of activator, dipping
velocity) in which hydrographic printing occurs. This descriptive
survey proposes a set of physical and computational tools that
generate more accurate results with hydrographic printing. Their
algorithmic solution treats the problem differently from the work
of Zhang et al. [8]. Finally, they describe an algorithm to simulate
the printing process and the film distortion when it adheres to the
arbitrary 3D surface.

Regarding the implementation of computational simulation,
Zhang et al. [8] proceed into the CPU. Their work addresses the
problem to a 2D domain, representing the film. Thus, the simu-
lation consists of calculating the discrete velocities and positions
over the film. The 2D velocity field calculation simplified the
problem. The simulation was enough for their needs. However,
simulation examples took up to 5 minutes to perform a single
immersion. This duration can be a very time-consuming process
when an interactive simulation is necessary or in a real-time 3D
simulation.

Panozzo et. al [9] implemented the simulation in the CPU. They
adopted a generic solver for linear systems in which it is possible
to run processes in parallel by using threads. In their work, the
complete simulation for a model took between 7 and 10 minutes.

Our work aims to show that it is possible to provide a
hydrographic printing simulation in the GPU adopting a different
algorithmic solution with PBD [10], yielding better performance
while still giving accuracy.

III. BACKGROUND

This section presents some relevant aspects of the hydrographic
printing process and its physical simulations, particularly applying
PBD. We use this knowledge as foundations to implement the
simulation proposed.

A. Hidrographic Printing

Experiments with complex objects like the one in Figure 2a
with convexities and concavities, shows that hydrographics bring
better results in objects with a convex main face (or at least
one significative face). Also, objects with great concavity or
occlusions will have areas where the film will not stick properly
(Figure 2b). So, predominantly concave objects are inappropriate
for hydrographics. Another issue in the hydrographic printing
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Fig. 2. (a) Tested objects. (b) Concavities and occlusions cause problems with
hydrographics. (c) The film is highly stretched in some regions of the sphere.

process is that some regions of the film undergo a more significant
stretching than others, which leads to a color whitening (Figure
2c).

During the hydrographic process, when the film touches the
object, it immediately adheres to the object and continues dipping
together. Other released parts of the film begin a stretching
movement, and it begins to move but on the waterline. The water
does not mix with it. Water behaves as a support for the film and
helps the film embrace the model. The film behaves like a thin,
elastic object that immediately adheres when it touches the object.
The film stretches slowly as the immersion movement. When the
process ends, the image’s points printed over the film occupy
some specific position in the object surface. A computational
simulation of this process must consider these observations to
give a realistic movement between the film and the object.

Based on the physical hydrographic process, it is clear that the
simulation modeling would lead mainly to an interaction between
a soft-body - the hydrographic film - and a rigid-body moved with
constant velocity - the object to be painted. Although there is the
interaction between object and the film with fluid - the water -
we observe the system formed and considered that should not
suffer significant interference of the water [8] [9], since the film
remains on the surface without mixing with it.

B. Physical Simulation

When we use the classical approach with Euler integration [11],
the update of the physical system involves calculating the sum of
forces that result in the accelerations that allow us to compute
the velocities, and finally, the velocities allow the calculation
of the positions. This approach can lead to instabilities: explicit
integration extrapolates the right side of equations blindly, and for
example, by a large ∆t, a spring overshot its equilibrium, causing
an internal gain of energy and increasing the instability [12].
In physical simulations that involve computer graphics, for each
time-step of a scene, it is essential to update the frame by directly
knowing the new position of each vertex, considering that each
vertex represents a particle. The PBD approach can address these
two problems: provides a more stable and controllable algorithmic
solution with the advantage of directly update the positions [10].

PBD was first presented by Müler et al. as an alternative way
to process physical simulations on particle based systems. PBD
determines a trade-off between numerical precision versus better
stability and suitable performance. Instead of applying the full
force-based system concepts, driving to a second-order derivative
system, PBD by-pass the derivative steps acting directly on the
positions of the particles in the system. The PBD simulation starts
with forces (externals and internals) acting over the particles and
the motion equations. Initially, the classical Eulerian integration
handles external forces (like gravity and wind). Internal forces



(like elastic forces in a soft-body) were represented by functions
called Constraints.

Constraints are restrictions used to model the dynamic in-
teraction between the particles in a system. In a simulation,
they are used, for example, to stop the particle move when it
reaches an obstacle. We also can use constraints to handle the
distance allowed between two particles, making it easier to control
the maximum deformation of a soft-body in a simulation [13].
Functions usually express constraints. These functions can be an
equality if it is satisfying when the computed value reaches zero
or an inequality if it is satisfying when the function reaches
a value greater or equal than zero. To simplify the notation,
we can represent the equality and inequality constraints with
the C(p) � 0 notation, where p is a set of references to
particle positions bounded to the particular constraint. The set of
constraints applied to the particles generates a system of equations
that can be solved by an iterative way, usually Gauss or Jacobi.
This decision gives greater importance to the stability of the
system by approximations and corrections around the expected
positions.

IV. REAL-TIME 3D POSITION-BASED DYNAMICS
SIMULATION FOR HYDROGRAPHIC PRINTING

The computational steps in our proposed simulation are as
shown in Figure 3. The simulation scene has a rigid model with
a texture and a deformable triangle mesh representing the film
with particles and distance constraints (Figure 3a). Then, the
rigid model is pre-processed, creating a voxelization to handle the
collision (Figure 3b). The simulation starts entering the condition-
controlled loop, updating the rigid model position in each time
step, checking the collision, and the film constraints (Figure
3c). When the collision occurs, the simulation proceeds with the
collision response, and the film stretches (Figure 3d). Finally, the
simulation stops, and we transfer the texture of the rigid model
to a simulated flat film (Figure 3e).
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Fig. 3. The simulation starts with (a) texturized rigid model and hydrographic
film model. The rigid model (b) is voxelized to collision handling. The simulation
moves the rigid body down (c), and handles the collision between the film and the
rigid body (d). The texture is transferred to the film with reverse-texture mapping
(e). Finally, hydrographic printing is executed in the physical object (f).

A. Simulation models

The simulation receives as input the rigid body model with a
mapped texture. Also, it is necessary to provide the parameters to
create the plane mesh considering scale factors and the relative
position between the rigid body and the film mesh. We parame-
terize the number of points in plane mesh width W and its height
H, together with the horizontal and vertical distance between each
vertex. The plane mesh has its normal vector parallel to the Y-axis
and a parameter to define its center. It is possible to define the 2D
texture that the plane mesh will assume. We apply a chessboard
texture to observe the film stretching when the simulation run.
Modeling the scene as in the PBD scheme, the points of the
film are equivalent to particles, and each particle has distance
constraints in the vertical and horizontal directions (determined
by the vertical and horizontal spacing parameter).

B. Rigid model pre-processing

In a computer simulation, due to discrete updates of the
positions, eventually, some collisions are lost, and one body can
across another, generating the tunneling effect [14]. To address
this problem, the pre-processing step (Figure 3b) stores the
closest distance φ from the surface of an object in the grid
representation. With this representation, called Signed Distance
Field (SDF), negative values are usually the distances within
the object, and positive values are distances outside the object
[15]. Applying a distance function by traversing the object with a
previously created Axis-Aligned Bounding Boxes (AABB) tree
can determine the φ value in each position in the grid. This
representation also stores 5φ as the normal on the surface of
the object. 5φ values make it possible to resolve the collision
response by knowing the point of contact and moving the particle
by reflecting the normal at this point of contact [14].

C. Physical simulation

The simulation we set the gravity force to zero. With this, we
aim to simulate the flat film floating in the vat. So, when the mesh
collides with a rigid body, then the film model with the chessboard
texture follows the mesh deformation, creating the visual effect
of a thin sheet stretching and adhering to an object. We assume
that the film’s particles that collide with the object will follow the
same vertical velocity of the object. This assumption would be
sufficient to represent the adhesion of the film to the rigid body.
The particles that have not collided yet are the ones free to move
and deform. Their new positions are calculated by the iteration
process described in the Algorithm 1.

The Algorithms 1 and 2, adapted from [10] and [14], illustrate
how the PBD simulation works. The deformable plane is repre-
sented by a set of N particles and M constraints. Each particle
i ∈ [1..N ] has as attributes: its position xi, its velocity vi, the
inverse mass wi given by the mass mi. Lines (1) to (3) just
initializes these attribute values.

Each iteration of main loop on lines (4) to (22) runs with a
given time-step ∆t like an Eulerian method. The value of fext
is given by the sum of external forces (in our simulation, we set
zero).

Line (7) computes a predicted position pi for each particle
by an explicit Euler integration. Lines (9) to (13), executes the
collision handling. These collisions are generated dynamically
in every ∆t. Lines (14) to (16) apply the constraints to the



particle through an iterative solution to satisfy the final posi-
tioning of N vertex to M constraints. We set the number of
iterations when the simulation starts. This number will determine
the dynamic of iteratives corrections applied to the predicted
position pi. The operation of ∆x/n represents the applying
of under-relaxation, considering the n the number of particles
involved. The solveConstraints function at line 15 is detailed
in Algorithm 2. Lines (18) to (21) computes the final values to
positions and velocities, after running the final correction.

Algorithm 1 Position-Based dynamics simulation algorithm
1: for all particlei ∈ particles do
2: initialize xi = xi0, vi = vi0, wi = 1/mi

3: end for
4: loop
5: for all particlei ∈ particles do
6: apply forces vi ← vi + ∆twifext(xi)
7: predict positions pi ← xi + ∆tvi
8: end for
9: for all particlei ∈ particles do

10: find neighboring particles (pi)
11: find solid contacts
12: end for
13: solveContacts
14: loop solverIteractions times
15: solveConstraints(C1, ..., CM )
16: xi ← xi + ∆x/n
17: end loop
18: for all particlei ∈ particles do
19: velocity update vi ← (pi − xi)/∆t
20: xi ← pi
21: end for
22: end loop

Algorithm 2 Constraint solver algorithm (scatter)
1: procedure SOLVECONSTRAINTS(constraints)
2: for all particlei ∈ particles do in parallel
3: initialize position delta ∆xi ← 0
4: end for
5: for all constraintj ∈ constraints do in parallel
6: compute λc
7: for all particlei ∈ constraintj do
8: compute constraint gradient 5xiC
9: atomically update ∆xi ← ∆xi + wiλc 5 xiC

10: end for
11: end for
12: end procedure

1) The Solver: PBD solves non-linear equations with equality
and inequality constraints. First, it becomes the problem linear.
After that, it is necessary to find the solution for an under-
determined system of equations by converting it to a minimization
problem. The Equation 1 expresses the linearization process. It
applies the linear approximation in a multi-variable function to an
equality constraint that suffered a correction of ∆p to its position
in the 5C(p) direction [10].

C(p+ ∆p) ≈ C(p) +5C(p)×∆p = 0 (1)

∆p = λM−1 5 C(p)T (2)

λ = − C(p)

5C(p)M−1 5 C(p)T
(3)

The correction ∆p shown in Eq. 2 is made with the Lagrange
multiplier λ, restricted to the constraint gradient 5C(p). The Eq.
2 is weighted by the inverse mass of the particle, represented by
the matrix M−1, where M = diag(m1,m2, ...,mN ) and mi is
the mass of each particle. Combining Eq. 1 and 2, we have Eq.
3 [10].

The simulation uses the distance constraint C(p1, p2) =
|p1−p2|−d, keeping particles p1 and p2 at distance d. Satisfying
this constraint implies in apply the derivatives in each point. They
are 5p1

C(p1, p2) = n and 5p2
C(p1, p2) = −n respectively,

given n = p1−p2
|p1−p2| . With λ, the scale factor weighted by the

inverse masses wi, we have λ = |p1−p2|−d
w1+w2

, the formulations 4
and 5 to correct its positions [10].

∆p1 = − w1

w1 + w2
(|p1− p2| − d)

p1− p2
|p1− p2|

(4)

∆p2 = +
w2

w1 + w2
(|p1− p2| − d)

p1− p2
|p1− p2|

(5)

2) Parallel computing of constraints: Usually, a particle is
associated with many constraints. Gauss-Siedel (GS) solvers can
process each constraint sequentially. To improve the performance,
the GS solver can use the GPU to process grouped constraints
in parallel with a coloring graph fashion [16]. On the other
hand, Jacobi solvers use the GPU to process constraints in
parallel, with an under-relaxation solution based on the constraint
deltas average. First, computing constraints associated with a
particle in parallel and accumulating the position deltas for each
particle. After that, computes the average value dividing the
accumulated deltas by the total number of constraints affecting
the particle. This processing can be parallel with a particle-centric
(gather) approach or constraint-centric approach (scatter). We use
a constraint-centric way, as shown in Algorithm 2, with each GPU
thread to process all the associated particles. After processing all
position deltas, we execute an atomic update. This solution has
less performance and is harder to converge [17], but considering
the number of particles and constraints involved, we consider this
solution suitable.

D. Collision handling

Physical-based simulations in real-time needs of an efficient
collision handling method. Checking the collision between two
bodies with a naive implementation can lead to a O(m × n)
computational effort, where m and n are the number of vertices
of each body, this makes it unsuitable for maintaining a real-
time simulation for large values of m and n. To face this
problem, many approaches can be applied, providing efficient data
structures and adopting parallel checking in the GPU [18] [19]
[20].

We adopt a grid-based method, subdividing a limited space
with volumes (as cubic voxels) in a uniform data structure [19].
The voxel structure has 128 voxels in each axis on a 3D space,
with 2,097,152 voxels representing the cube containing the rigid
body, with regions inside and outside this body. The neighbor
finding for collision checking was provided by the spatial hash
solution, as presented in [20]. This method reduces the time
drastically to search particles in the neighbor because the given
data structure stores the particles in a hash structure, with spatially



close particles occupying the same hash cluster. In addition, it is
possible to process this task in parallel.

E. Reverse texture-mapping

The computational simulation steps provide the visualization in
real-time how the hydrographic film deforms when adheres with a
rigid body. However, this simulation only provides the movement
between the two bodies and does not perform the automatized
generation of the planned texture with a suitable deformation to
apply the hydrographic printing in a real 3D printed object.

(a) (b)

(c) (d)

Fig. 4. Reverse texture-mapping process: (a) Texture, (b) The texture applied to
the rigid model, (c) Reverse-texture process to obtain texture coordinates for the
film mesh from textured rigid model (d) The reversed texture.

This final step, called reverse texture-mapping, consists of
solving the following problem: given a rigid mesh with a mapped
texture, determine a 2D image to be printed on a real hydrographic
film, so that when performing the hydrographic painting through a
controlled movement correctly transfer colors to the correct points
of the real object. This 2D image is a flattening of texture applied
to the rigid body, with an adequate deformation according to the
stretch of the film and with the curvature of the rigid body at the
point where it touched the film during the immersion.

For this, we determine a function that performs the reverse
mapping of the texture, as shown in Figure 4. The input of this
function is the vertices of the rigid body with the mapped texture
coordinates, as shown in Figure 4b, and its final objective is to
determine the equivalent texture coordinates at the vertices of the
film. When the bodies collided, the simulation generates contact
points between the rigid body and the deformable one. For each
contact point H present in the mesh of the film, there is a triangle
in the rigid body mesh with vertices A, B, and C with that can be
touched by this contact point, as shown in Figure 4c. This triangle
is reached at P through a ray-triangle intersection ~HP casting

a ray in the direction of contact point H normal (considering
the deformed film) to the rigid body with the Möller-Trumbore
algorithm [21].

Then, first we use the Equation 6 representing the arbitrary
point P in the triangle A, B and C, considering P with barycen-
tric coordinatesu, v and w. After that, whe generate the Equation
7 to interpolate the texture coordinates up and vp of this arbitrary
point belonging to the triangle with vertices A, B and C with
respective texture coordinates ua, va, ub, vb and uc, vc.

P = w ×A+ u×B + v × C (6)

P (up, vp) = w×A(ua, va) +u×B(ub, vb) + v×C(uc, vc) (7)

At the end of this process, the procedure generates the reverse
texture coordinates of the film dynamically at the points where the
film touched the rigid body. Thus, when considering the vertices
of the film in its original flat position as shown in the Figure 4d,
keeping the reverse texture coordinates mapped dynamically, we
render a plane with the reverse texture mapping and the expected
distortion.

This interpolation process has two consequences: (1) possibly,
there will be regions where some vertex of the film may be left
without a coordinate because the ray-triangle intersection does
not occur. (2) eventually, a triangle of the film mesh will fall on
an area where there is a seam in the texture-mapped in the rigid
model (Figure 5a), generating artifacts as shown in Figure 5b.
Similar problem was already described in [22] and [23].

We address the first problem by performing a post-processing
procedure filling the reverse texture coordinates. If a triangle has a
vertex with missing texture coordinates, then we use the texture
coordinates already filled in to interpolate the missing texture
coordinate and fill it.

For the second problem, we use a geometry shader in the
reverse texture mapping with two aims: (a) detect film triangles
that generate seams; (b) subdivide the film triangle creating
new triangles with new interpolated texture coordinates from a
subdivision scheme based on the midpoint of each edge of the
triangle (see Figures 5c and 5d).

V. RESULTS

We execute tests aiming to evaluate the proposal considering
the performance and accuracy. To do the performance tests, we
vary the film resolution and the uniform grid resolution. To
perform the accuracy tests, we execute the physical hydrographic
printing in three different models. Then, we simulate the hydro-
graphic printing to the same models, and we compare reference
points in the pictures taken from the physical and the simulated
result.

A. Setup to physical hydrographic experiment
The reference models used as ground truth in the physical

experiment were a sphere with a diameter of 70mm, a tetrahedron
with an edge of 60mm, and a turtle model with dimensions
of 110mm x 75mm. We use a squared plastic vat plastic box
with 29 liters, a tripod connected with a linear actuator (for
controlling the dipping around Y-axis), adapted support to the
object, plastic barriers adapted with aluminum profiles (for limit
the film movement over the waterline), hydrographic blank film
A4 sized, with the pattern previously printed with a pigment ink
printer and varnished, activator reagent spray.
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Fig. 5. Some texture coordinates can generate seam problems: (a) triangle with
seam problem, (b) seam artifacts are generated, (c) a subdivision scheme is applied
by using the midpoint of each edge of the triangle, (d) final result.

B. Hardware and software configurations

The simulator runs on an Intel Core i5-7200U CPU, in an
NVDIA GeForce 940MX GPU with OpenGL 4.3 and Compute
Unified Device Architecture (CUDA) 9.2. The software performs
a simulation of the hydrographic printing process in real-time for
a rigid body mesh and an arbitrary texture.

C. Simulation parameters

To perform the accuracy and performance tests, we created
a chessboard texture proportional to an A4 paper, each square
with a 17mm edge. We built the simulated film by a plane mesh
with M x N vertices, as shown in Table I. Then we apply the
chessboard pattern in this plane. Each vertex in the plane is
connected vertically and horizontally with another by distance
constraints. These constraints are processed in parallel using the
NVIDIA Flex solver.

Our simulation runs with a time-step of 16.67 milliseconds and
a dipping velocity equivalent to 5mm/s in the negative direction
of the Y-axis. In our tests, this velocity was suitable and similar
to the physical process. We define empirically 5 solver iterations
by time-step to provide a realistic behavior to the simulation.

D. Performance Evaluation

To evaluate the simulation performance, we made tests with
three rigid models (sphere, tetrahedron, and turtle) varying inde-
pendently: (1) the number of vertices of the film, (2) the number
of voxels in the rigid body grid used in the SDF collision.

In the first simulation, we used each rigid model and the
uniform grid with 1283 voxels to handle the collision with the
SDF method. So we varied the resolution of the film mesh and
measured the frames per second (FPS), as shown in Figure 6.
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Fig. 6. Variation of FPS by increasing the number of film vertices and constraints
(shown in logarithmic scale to x axis) with sphere, tetrahedron and turtle models
using uniform grid with 1283 voxels.

Taking the sphere model as an example, the number of constraints
and FPS varied according to Table I. As expected, by increasing
the number of film vertices and constraints, the time of processing
each frame increased, but the FPS remained in real-time.

In the second test, we varied the number of voxels in the
uniform grid used on SDF collision. Figure 7 shows the results as
a line graph. This graph is stable, keeping the FPS in real-time.
The spatial subdivision process influences directly in the time of
nearby element finding and in the time of collision checking.

Some oscillation between measurements in Figures 6 and 7
can be explained by two factors: (1) when the simulation begins,
the NVIDIA Flex library creates some internal structures at the
first time, and this leads to higher time consumption. When
simulation parameters change, the simulator empties dynamic
structures such as hash tables to start a new simulation. However,
the memory remains pre-allocated (by the performance definitions
of the library implementation), and this process leads to less time
consumption. (2) the simulation that updates positions and solves
PBD is executed in parallel on GPU; it processes too many values
asynchronously, and it sends the intermediate values that provide
the taken performance measures to the CPU at irregular time
intervals (according to callback functions triggered by the GPU),
and this leads to fickle measurements. Despite these fluctuations,
all measurements lead to a real-time simulation.

TABLE I
FPS VALUES ACCORDING THE NUMBER OF FILM VERTICES AND DISTANCE

CONSTRAINTS. THE RIGID BODY CONSIDERED WAS A SPHERE WITH 25,921
VERTICES AND THE COLLISION MODEL USED A UNIFORM GRID WITH 1283

VOXELS.

Film vertices Constraints FPS
96 172 326.00
2,400 4,700 286.50
9,600 19,000 211.01
21,600 42,900 141.04
38,400 76,400 83.44
60,000 119,500 60.26
86,400 172,200 44.58
117,600 234,500 33.28
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Fig. 7. Variation of FPS by increasing the voxels in each axis of 3D mapped
space to collision detection (each value N on x axis corresponds to N3 voxels).
Tests were made with sphere, tetrahedron and turtle models colliding with the
film mesh with 21.600 vertices and 42.900 distance constraints.

E. Accuracy evaluation

For the evaluation of accuracy, we do not use the reverse
texture-mapping, as shown in Figure 4d. Instead, we perform
the physical hydrographic technique applying a flat chessboard
pattern in the models as ground truth (see Figures 8a, 8c and
8e). Chessboard patterns can provide adequate insight into mesh
distortion and help to find distance references between the texture
and the 3D object used as a reference.

After that, we perform the simulation with the scale factors
calibration to each model. Then, we apply the chessboard texture
when the film still is flat and execute the simulation, observing
the film stretch and the texture deformation. When the simulation
stops, we take a picture of the result in the same position as the
real model photo. Figure 8 shows these photos side by side for
comparison.

Then, we take N measures comparing the pixel positions of the
reference points in the two images. These reference points are the
vertices of each chessboard square. Each pixel pi(x, y) at the real
image, has an equivalent pixel qi(x, y) at the simulated image.
We calculated the distance Ri between each point of the real
image and the simulated one in pixels. With these sample points,
we compute the average distance R̄ with its standard deviation
and show the results in Table II. To evaluate a percentage
representation between the average distance R̄ and the maximum
distance between two points in the used images, we consider
the diagonal with 1,900.70 pixels. The calculated values of each
percentage representation are in Table II.

Aiming to visualize how the film stretches in the models
simulated, we calculate the stretch coefficient for each distance
constraint when the simulation stops (by dividing the final length
of each distance constraint and its initial length). We plot these
coefficients in a heatmap, as shown in Figure 9. Thus, we
observed that each tested model has its stretch fingerprint on the
film. We observe that the points with the most significative stretch
coincide with the points of greatest deviation comparing each
simulated image and the respective photo taken, and consequently

TABLE II
MEASURES MADE BETWEEN THE ORIGINAL MODEL AND THE SIMULATED

MODEL, CONSIDERING EACH IMAGE WITH 1,344 X 1,344 PIXELS AND
RESOLUTION OF 300 DPI, MEAN ± STANDARD DEVIATION, PERCENTAGE

RELATION BETWEEN THE MEAN AND THE MAXIMUM DISTANCE BETWEEN
TWO POINTS CONSIDERING THE DIAGONAL OF THE WORKED IMAGE

Model N R̄
(pixels)

R̄ / Diago-
nal
(%)

Tetrahedron 14 10.62 ± 6.32 0.56
Sphere 16 14.78 ± 8.60 0.78
Turtle 13 10.92 ± 9.49 0.57

are the most difficult to predict the final position in the film. On
the other hand, the points with a low stretch are better aligned
compared to the simulation and the photo taken. Consequently,
these points in the low stretch are easiest to predict the final
position.

The Figure 10 shows initial results with two immersions,
considering physical and simulated steps. For this, we use the 3D
reconstructed model of the turtle and the proposed simulation to
create the top and bottom reverse textures. After that, we apply the
hydrographic printing and color the model with two immersions.
However, this process with two immersions is complex, it requires
precise alignment to avoid damaging the first painting during the
second immersion.

VI. CONCLUSIONS

We presented a computational simulator for Hydrographic
Printing. In 3D printing, the use of hydrographics can be extended
to coloring 3D printed objects, with a simulation to improve
the precision of the physical hydrographic process with a low-
cost setup. The implemented simulation produces results quite
promising. Unlike other works, our contribution was to generate
the simulation in real-time frame rates by using the GPU.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Comparison between real and simulated models. At left, the sphere (a), a
tetrahedron (c), and turtle (e) sample models used as ground truth. At right, the
simulated models of the sphere (b), a tetrahedron (d) and turtle (f).



(a) (b) (c)

Fig. 9. Fingerprint of the stretch in each model tested: (a) tetrahedron, (b) sphere
and (c) turtle.

(a) (b) (c)

Fig. 10. Color process with two immersions for the turtle model: (a) As input the
3D printed model and the texturized model, (b) the proposed simulation generates
the textures to top and bottom. After the physical process with two immersions
by using these textures, the turtle is fully colored (c).

We introduce PBD to simulate a real-world physical process,
in controlled conditions to reach the final results. Despite the
approximations using the PBD, the simulation works with suitable
accuracy, denoting that the simulation is useful to predict the
distortion in the evaluated meshes. The quantitative evaluation
made was the key to understand in which situations the simulation
worked fine. We are working on enhancements over the actual
results by fine-tuning parameters or adapting the algorithm. These
enhancements will enable us to improve the simulation of the
physical process, even more, keeping the purpose of real-time
performance.

The color control on the hydrographic film was not the focus of
this work, but it is desirable to print an image on the film that can
balance the color distortions, generating a reverse compensation
(increasing the pigmentation in regions with more significant
stretching). For this, it will be necessary to investigate methods
of simulating the variation of the thickness of the film. Then, it
will be possible to propose a function that turns the color darker
in a region of the film with more significant stretching.
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