
Regularized Kelvinlet Inversion for Real-Time
Image Deformation and Video Time Warping

Guilherme G. Haetinger
Instituto de Informática – UFRGS

Porto Alegre, RS, Brazil
gghaetinger@inf.ufrgs.br

Eduardo S. L. Gastal
Instituto de Informática – UFRGS

Porto Alegre, RS, Brazil
eslgastal@inf.ufrgs.br

Reference image Edit #1: Mouth (left side) Edit #2: Eyebrows Edit #3: Mouth (right side)

Fig. 1: Demonstration of our method’s results. A series of smooth deformations applied to the reference image (far left),
generating artificial pictures that could pass as rendered shots of the animation. Reference image ©2008, Blender Foundation.

Abstract—We present a novel approach for image deformation
and video time warping. Our technique involves the inversion of
the nonlinear regularized Kelvinlet equations, leading to higher-
quality results and time/space efficiency compared to naive solu-
tions. Inversion is performed by a per-pixel optimization process,
being inherently parallel and achieving real-time performance in
Full HD videos (over 300 fps). We demonstrate our method on
a variety of images and videos, in addition to discussing some
important technical and theoretical details.

I. INTRODUCTION

The production of visually appealing images and videos is a
critical factor for their consumption. In particular, the animation
and movie industry have shown to be a much larger market
than previously imagined, mostly because of amazing special
effects that were not thought possible a few years ago. The
development of new and improved image and video processing
algorithms plays an important role in this context.

Our work targets both the fields of Image deformation
and Video time warping, with the goal of creating visually
appealing artificial results. Image deformation techniques
create new images by “deforming the pixels” of existing
images [1], [2], [3]. We propose a new real-time algorithm that
creates smooth pictures with sub-pixel accurate deformations,
as illustrated in Fig. 1. It is based on the elastic patterns
designed into the Kelvinlet sculpting brush [4]. Our solution
is trivially parallelizable using the graphics hardware, and
can take advantage of the built-in mipmapping capabilities for
antialiasing (required due to the resampling that occurs during
deformation [5]), generating smooth images and high-quality
results. Video time warping is a less-explored area, which can

be seen as an extension of image deformation, from 2D space
to 3D space-time. We use the concept of the space-time video
volume and demonstrate the use of our technique for smooth,
real-time temporal deformations (time warping).

The contributions of our work include:
• An inversion method for the nonlinear Kelvinlet equations,

applied to image deformation and video time warping
through backward mapping. This generates higher-quality
results when compared to forward mapping;

• An efficient image and video warping algorithm that is
inherently parallel and easy to implement. It is able to
process Full HD videos at over 300 frames per second
through our nonlinear per-pixel optimization process;

• A procedure for altering the Kelvinlet deformation field
in order to preserve the image or video’s rectangular
boundary, while still generating smooth deformations;

• A discussion of important technical details for generating
high-quality antialiased images, as well as for detecting
and handling non-invertible deformations. We also discuss
the relationship between temporal and spatial aliasing.

II. RELATED WORKS

A. Image Deformation

Image deformation has numerous applications, ranging from
photo editing to content-aware image resizing [1]. Kauffman
et al. [3] consider a content-aware method for image warping.
They use an image meshing algorithm that respects the
geometry of its objects. The same method is also extendable to
adaptive meshing for video sequences, enabling the deformation



to persist throughout the frames. However, their algorithm
depends on object detection in the images. The energy-based
deformation proposed by Karni et al. [2] uses energy mini-
mization to avoid distorted results. This method uses multiple
weight points to generate a structured deformation, much like
the “warp tools” from modern photo editing software [6].

The regularized Kelvinlet brush [4] describes a volume-
preserving force field that may be used for deformations.
In their paper, De Goes and James are mostly focused on
“sculpting” 3D polygonal meshes, where the displacements
can be directly applied to the vertices through a forward-
mapping implementation. This approach, however, is not ideal
for processing images and videos, for the reasons presented
in Section IV-A. As such, our work extends the Kelvinlet
equations to a backward-mapping approach [5]. We discuss
the Kelvinlet brush in more detail in Section III.

B. Video Time Warping

The relationship between videos and 3D volumes is not new
to the Computer Graphics community [7], [8], [9], [10]. As
pointed out by Rav-Acha et al. [9], the space-time volume used
by our algorithm (to depict and modify time) was introduced
as the epipolar volume by Bolles in 1987 [11], and it has since
been adopted by many researchers for video processing and
analysis [7], [12].

Many works make use of time warping for achieving specific
artistic or technical results, without explicitly focusing on
how the actual warping itself is performed. For example, Rav-
Acha et al. [9] elaborate a time warping framework based on
evolving time fronts, which are smooth space-time surfaces that
traverse the video volume, creating new frames. They achieve
interesting results with this idea, such as altering the winner
in a swimming competition video by delaying (or advancing)
each competitor in time. While they mostly focus on warping
along the time dimension, they also mention the possibility of
warping along time while also deforming in space (which our
technique supports natively). Their work does not discuss the
underlying algorithm used to warp each video frame, but one
of the figures in their paper seems to indicate that they use a
polygonal mesh and a forward-mapping implementation.

Other works with similar ideas include that of Cohen et
al. [8], which presents a non-photorealistic rendering tool for
videos. It explores the notion of time and space questioned
by paintings of the Cubist and Futurist art movements. More
recently, Solteszova et al. [10] target time warping for scientific
visualizations. Operating on top of video streams instead of
static files, Memento is their tool for real-time video interaction
and exploration. It is applicable in diverse scenarios with a good
user interface and useful results for monitoring and comparing
video segments through time. Different from our approach,
they only demonstrate warpings along time, and do not explore
spatial deformations combined with time warping.

The aforementioned methods differ from ours in that they do
not propose new algorithms for the actual warping procedure,
and instead focus on applications of warping. We discuss this
topic further in Section IV-A.

Relation to 3-D volume rendering: one of the difficulties
involved in video time warping is the generation and “playback”
of the resulting warped video frames. While seemingly related
to Volume Rendering techniques [13], [7], [14], it is important
to note that these are not directly applicable to rendering time-
warped videos. This occurs because volume rendering methods
treat the volume as a semi-transparent material that can emit,
transmit, and absorb light, i.e. is intended to be rendered all
at once, whereas the space-time video volume is meant to be
rendered “slice by slice”, i.e., frame by frame.

Other related topics include the generation of regular speed
videos from high-frame-rate inputs. Zhou et al. [15] process
videos in order to detect movement. This way, they are able
to lower the frame-rate by using temporally-variant filters to
enhance the display of salient motions, which can be seen as
a 1D global warping function applied uniformly to all pixels.
Their work is orthogonal to ours and can be used together with
our warping technique.

III. BACKGROUND ON THE REGULARIZED KELVINLET

The Regularized Kelvinlets [4] are elastostatic deformation
methods based on the fundamental solution of linear elasticity,
also known as Kelvin’s state. In this work, we focus on the
application of the grab brush solution [4]. This method defines
a displacement vector K(p) for each point p in the domain
(in our case, each pixel in a 2D image or 3D video volume),
such that the resulting vector field has a controllable degree
of volume preservation.

The Kelvinlet equations can be better understood from a
simple usage example. Imagine a user that clicks on a point
at position p0 in an image (called the deformation pivot), and
drags it to a new position pend (Fig. 2a). This defines a displace-
ment force at p0 to be the vector ~f := pend − p0. The force
vectors for all other points in the domain are then given by [4]:

K(p) = c εU(p− p0) ~f, (1)

where

U(~r) =
(a− b)
rε

I +
b

r3ε
~r ~r > +

a

2

ε2

r3ε
I, (2)

with rε =

√
‖~r‖2 + ε2.

The values a = 1
4π , b = a

4(1−ν) , and c = 2
3a−2b are constants

that depend on the Poisson ratio ν, which controls the volume-
preservation properties of the Kelvinlet field [4]. The parameter
ε controls the “radius” of the deformation effect, i.e., how much
the displacement at p0 affects its neighborhood. The effects of ν
and ε are illustrated in Fig. 2. For all results shown in the paper
and supplementary materials, we use ν = 0.4, which generates
good results in practice. The values for ε, the pivot p0 and the
force ~f are provided in each figure’s caption. Finally, we note
that in Eq. (2), I denotes the identity matrix, ‖ · ‖ denotes the
Euclidean norm, and ·> denotes a transpose. Also observe that
this equation is valid for both 2D and 3D deformations.



~f~f

p0p0

pendpend

(a) Reference image

(ν = −∞, ε = 50)

(b) Low local volume preservation

(ν = 0.4, ε = 50)

(c) High local volume preservation

(ν = 0.4, ε = 130)

(d) Larger influence radius

Fig. 2: Demonstration of the influence of the Poisson ratio (ν) and the radius (ε) on the deformation result. (a) Reference
image and deformation parameters: the pivot p0 is dragged by a user to a new position pend, defining a deformation force ~f .
(b) Deformations with ν → −∞ do not preserve the local volumes, as shown by the severe compression indicated by the green
arrow. (c) Deformations with ν ≈ 0.5 preserve local volumes more consistently across the domain. For this to be possible,
the image must “bulge outwards.” (Section IV-C discusses a method to preserve the rectangular image boundary, which was
not applied here for illustrative purposes.) (d) Deformations with a larger influence radius ε generate less-concentrated results.

IV. OUR KELVINLET INVERSION METHOD FOR IMAGE AND
VIDEO WARPING

As opposed to the 3D sculpting brush described by De Goes
and James [4], the deformation method proposed here uses
an inverse transform. We now explain the inversion process,
starting with a discussion on forward vs backward mapping
(Section IV-A). All equations that follow are applicable to both
image deformation (2D) and video time warping (3D domain).

A. Forward vs Backward-Mapping Implementations

The force field K from Eq. (1) translates each pixel p in
the input image g to a new position q = T (p) = p+K(p) in
the output warped image gw. A naive forward-mapping im-
plementation for generating all output pixels works as follows:

Algorithm 1 Image deformation with forward mapping
1: For each input pixel p in the input image g:
2: Compute the output pixel location q = T (p);
3: Set the output pixel color gw(q) = g(p).

This solution has important difficulties [16]. For instance,
note that most input pixels p are mapped to non-integer output
locations q, and also that neighboring input pixels may be
mapped to non-neighboring output pixels. As such, a post-
deformation interpolation is required to fill the gaps generated
by the input pixel’s displacements [5]. One way to do this in
2D is by associating each pixel with a vertex in a triangle mesh,
and then performing interpolation between the displaced pixels
through triangle rasterization [17] (higher-order interpolations
are also possible [5]). This process becomes significantly more
complicated in 3D, where each triangle is replaced by a 3D
tetrahedron. In this scenario, rasterization becomes a bottleneck,
achieving hardly interactive rates even for small volumes [18]

A generally better solution is to use an inverse transformation,
due to the fact that it does not require the post-deformation
interpolation between pixels [5], [16]. Therefore, our method

uses T−1 to map locations from the output image gw to loca-
tions on the input image g (thus, in the reverse direction). This
results in the following backward-mapping implementation:

Algorithm 2 Image deformation with backward mapping
1: For each output pixel location q in the output image gw:
2: Compute the input pixel location p = T−1(q);
3: Set the output pixel color gw(q) = g(p).

This solution addresses all of the difficulties discussed above.
It does not require any post-deformation interpolation since
the for-loop traverses all output pixel locations q. Furthermore,
the result for each q is independent of the other pixels and
thus all output pixels can be computed in parallel. The only
interpolation required is in the input domain, when sampling
the input image g at location p, to obtain the color g(p).
But since the input domain defines a regular 2D or 3D
pixel grid, this interpolation is a trivial operation, that can
be performed by standard bilinear or higher-order kernels.
In a GPU implementation, bilinear interpolation is directly
supported by the hardware. One can also take advantage of
mipmapping for antialiasing (Section V-A).

The backward-mapping solution requires the computation
of T−1. As such, T must be invertible (a bijection), and one
must be able to compute T−1(q) for each q. Unfortunately, in
the case of the Kelvinlet field (Eq. (1)), there is no closed-form
solution for its inverse. In the next section we show how a
nonlinear optimization technique can be used to compute T−1

efficiently, and Section V-B discusses how to handle situations
where T is not invertible. Fig. 3 illustrates the relationship
between T and T−1.

B. Inverting the Kelvinlet Deformation using Gauss-Newton
Given a particular pixel location q, we wish to compute

p = T−1(q) (line 2 of Algorithm 2). Our insight is that this
problem can be modeled as a nonlinear optimization:

T−1(q) = argmin
p′
‖T (p′)− q‖2 . (3)



Reference image (input) Deformed image (output)

TT

T−1T−1

p = T−1(q)p = T−1(q)

q = T (p) = p+K(p)q = T (p) = p+K(p)

Fig. 3: Relationship between T and T−1. The deformation
T (p) = p +K(p) maps pixels from the input image to new
positions in the output deformed image, using the Kelvinlet
field K. Our method computes the output image by “looking
up” colors in the input domain using T−1.

In other words, the point p′ which minimizes the functional
on the right-hand-side of Eq. (3) is our solution p = T−1(q).

We solve Eq. (3) using iterative Gauss-Newton [19], which
is applicable in this situation since K (Eq. (1)), and thus T ,
is continuously differentiable (the basic idea is to approximate
the right-hand-side of Eq. (3) with its first-order Taylor
expansion [19]). The algorithm works as follows: starting from
an initial guess p′1, a series of improved solutions p′2, p

′
3, . . .

are obtained from the update step p′k+1 = p′k + δk, where

δk = argmin
δ
‖p′k + δ +K(p′k) + J(p′k) δ − q‖

2
. (4)

In the above equation, J(p′k) is the Jacobian matrix of the
operator K, computed at p′k. In the case of image deformations,
J is a 2 × 2 matrix, and in the case of video time warping,
J is a 3× 3 matrix. We include the closed-form expressions
for the Jacobians in our supplementary materials.

The right-hand-side of Eq. (4) is a quadratic functional on δ,
whose minimum is obtained by differentiating and equating to
zero. This results in a closed-form linear solution for δk:

δk = A−1k µ bk, (5)

where

Ak = J(p′k)
>J(p′k) + 2J(p′k)

> + I, (6)

bk = −
(
J(p′k)

> + I
)
ξk, (7)

ξk = p′k +K(p′k)− q. (8)

We set the Gauss-Newton damping parameter µ = 0.5 and
stop the iterations when the residual norm falls below the
threshold 10−1 (in pixel units): ‖ξk‖ < 10−1. This permits
a maximum error in T−1(q) of one-tenth the size of a pixel,
which is visually imperceptible. For each pixel q we start with
the initial guess p′1 = q, which is a sensible choice since the
majority of the pixels in an image are generally not affected
by a particular deformation (i.e., K(p) ≈ ~0 for most pixels,
and thus p = T−1(q) ≈ q). Fig. 4 shows the typical number
of iterations required for convergence.

10 20 30 40 50
Iterations required for convergence

2 × 104

4 × 104

6 × 104

8 × 104

N
um

be
r 

of
 p

ix
el

s

10

20

30

40

50

Fig. 4: (Left) Histogram of the number of iterations required
for convergence of the Gauss-Newton iterations. Most pixels
require around 10 to 20 iterations for the residual norm to fall
below the threshold of 10−1. (Right) Per-pixel visualization of
the number of iterations required for convergence. Note how
pixels that are closer to the deformation pivot require more
iterations. Results computed for the deformation in Fig. 3.

C. Fixed Domain Boundary

Different from 3D sculpting of polygonal meshes [4], when
deforming an image or video one is generally interested in
preserving its rectangular boundary positions. Thus, we propose
an additional term that smoothly decreases the deformation
field’s strength as one gets close to the boundary (Fig. 5b).
This is done by using a control curve (Eq. (9)), which dictates
how much of the original force will be used at a given pixel,
depending on its distance from the boundary:

β◦(p) = sin

(
π

2

min(D◦(p), σ)

σ

)
. (9)

In the equation above, σ represents the radius along the
boundary where the force falloff starts to take place. Note
that β◦(p) ∈ [0, 1],∀p, smoothly varies from 0 at the boundary
to 1 at σ-units from the boundary. Furthermore, ◦ ∈ {x, y, t}
stands for a particular dimension, and D◦(p) computes the
distance of pixel p from the boundary along that particular
dimension. For example, in an image of size W × H , with
one-based pixel indexing:

Dx(p) = min(px − 1,W − px), and
Dy(p) = min(py − 1, H − py).

(10)

We use σ = 50 pixels for the examples shown in the paper
where a fixed boundary was employed. The modified force
field Kβ is then given by:

Kβ(p) =

[
βx(p)

βy(p)

]
K(p). (11)

When processing 3D video volumes (time warping), the entry
βt is added in a third row and column to the matrix above.

Since these operations modify the deformation field, the
Jacobian matrix J in Eq. (4) must also be updated. This is
done by applying the differentiation product rule to Eq. (11),
resulting in a new Jacobian Jβ :

Jβ =

[
βx

βy

]
J +

[
∂βx

∂x
∂βy

∂y

] [
Kx

Ky

]
. (12)

The new matrix Jβ(p′k), evaluated at p′k, must be used in the
Gauss-Newton update steps in Eqs. (5) to (8).



(a) Reference grid image (b) Our deformation result with
antialiasing and fixed boundary

(c) Result without fixed boundary (d) Result without antialiasing

Fig. 5: (a) A reference image with fine details. (b) Our
antialiased deformation with a fixed boundary results in a
high-quality and smoothly-deformed image. (c) Without a
fixed boundary, out-of-bounds pixels with undefined colors
“leak” into the image (shown in yellow). (d) Without proper
antialiasing, the fine lines from the reference grid result in
“jagged” rendering artifacts (red arrow).

V. IMPLEMENTATION DETAILS

We now describe some relevant implementation details of
our image and video warping methods.

A. Antialiasing through Anisotropic Filtering

The sample-rate of the output warped image, relative to the
input domain, varies locally as a funcion of the deformation.
This means that prefiltering must be performed when generating
the output pixels (Fig. 5b), to avoid aliasing artifacts (Fig. 5d).

The deformation’s Jacobian matrix J(p), computed at pixel p,
encodes the local expansion and contraction of the space
around p [16]. It can thus be used to identify the proper
antialiasing kernels. More precisely, the quadratic form

ϕ~v(p) = 1 +
~v>J(p)~v

‖~v‖2
(13)

describes the local contraction (if ϕ~v(p) ∈ [0, 1)) or expansion
(if ϕ~v(p) ∈ [1,∞)) that occurs at pixel p in the direction ~v. This
concept is illustrated in Fig. 6(a–b) for the vertical (~v = ~y) and
horizontal (~v = ~x) directions. The direction ~v1 that minimizes
ϕ~v(p) representes the major axis of spatial contraction at p,
and can thus be used to define oriented anisotropic antialiasing
kernels (Fig. 6c). ~v1 is the eigenvector associated with the
smallest eigenvalue of J + J>.

In our implementation, we employ a mipmap pyramid
for fast antialiasing. We perform anisotropic filtering using
multiple samples along the major axis ~v1, while selecting
the mipmap level based on the contraction along the minor

0.5 1.0 1.5

(a) ϕ~y

0.6 0.8 1.0 1.2 1.4

(b) ϕ~x

1.0 1.5 2.0 2.5 3.01.0 1.5 2.0 2.5 3.0

(c) Mipmap levels

Fig. 6: (a) Visualization of the vertical contractions (pixels
with ϕ~y(p) < 1, in shades of blue) and expansions (pixels with
ϕ~x(p) > 1, in shades of red), for the deformation in Fig. 5b.
(b) A similar visualization for the horizontal contractions and
expansions. (c) Illustration showing the major axes of spatial
contraction ~v1 (black lines), and the corresponding mipmap
pyramid levels computed from ϕ~v1 (colormap).

axis ~v2 [16], which is associated with the largest eigenvalue.
This procedure is supported in hardware through the OpenGL
extension GL_ARB_texture_filter_anisotropic.

B. Detecting Non-Invertible Deformations

If ϕ~v1(p) < 0 then the image is being locally folded-over
itself, meaning that T is not invertible and the warped image
is not properly defined. This often occurs if the deformation
is too strong. Our implementation emits a warning to the user
in such situations, and automatically dampens the deformation
force by the smallest amount required to guarantee invertibility.
This is done by replacing T (p) with Tα(p) = p+αK(p) where
the scaling α ∈ (0, 1) is defined as

α = min
p
− 1− ε
ϕ~v1(p)− 1

. (14)

ε = 10−2 is a small constant used to avoid numerical issues.

VI. RESULTS AND DISCUSSION

We implemented our image deformation method in Julia,
a just-in-time compiled programming language that focuses
on efficiency for scientific computing. Our implementation
is multithreaded and generates all output pixels in parallel,
achieving high-performance deformations. For example, the
execution time for the deformation in Fig. 7b (with bilinear
prefiltering) is 0.042 seconds on a 6-core 3.2 GHz CPU.

For video time warping, we implemented our method in
OpenGL to take advantage of the GPU’s high processing power.
This allows us to execute the deformation processing and video
display in real time (over 300 fps for Full HD 1080p video on
an RTX 2070S). We load the video into a 3D texture in GPU
memory, and for each (x, y) fragment rendered in the current
frame at time t, we find the corresponding point T−1(x, y, t) in
the volume to sample its color. The Gauss-Newton iterations are
computed in parallel for all pixels in the current frame, during
video playback, using a GLSL shader. We solve the small
3× 3 linear systems from Eq. (5) using GLSL’s inverse()
instruction, which is provided in the hardware.



All image deformation results shown in the paper were
generated with our Julia implementation, while the video time
warping results were generated with our OpenGL implementa-
tion. Now, we present results achieved with both methods (see
our supplementary materials for the complete video sequences).

A. Image Deformation Results (2D)

Fig. 7 compares the result of our deformation method to
the available alternatives from Krita, an open source image
editing software [6]. Our method achieves better results when
compared to Krita’s warp and liquify tools (see discussion in
the figure’s caption). Fig. 8 shows a similar comparison on
a synthetic image, showing that our approach preserves local
volume, even while using our fixed boundary constraint. Krita’s
tool results in a strong shape deformation in the thick black line
visible in Fig. 8a, and our result shows the line with minimal
volume size change and with smooth, antialiased displacement
(notice the aliasing artifacts in Krita’s result). Our fixed border
constraint also shows to be more rigid (Fig. 8b), as we see
small portions of background in Fig. 8c. As such, our technique
is able to generate novel and high-quality deformation results,
allowing for a wider range of artistic possibilities.

Fig. 9 shows that our backward-mapping Kelvinlet warping
method works great with fractal images. The fact that it does not
need post-deformation interpolation allows us to deform these
images with continuous precision, meaning that it maps the
output pixel q to the perfect color value of the displaced point,
by evaluating the fractal at T−1(q). In contrast, a forward-
mapping Kelvinlet warping (implemented using the commonly-
used triangle mesh technique) results in unwanted blurriness in
highly displaced areas. Since the fractal defines a continuous
image (broadband signal), all the results shown in Fig. 9 were
antialiased through supersampling.

B. Video Time Warping Results (3D)

Fig. 10 illustrates the idea of time warping in a simple
synthetic video sequence, and Fig. 11 shows how time warping
can be applied to a steady zoom-out video sequence for a real
use case: to increase the shot’s emphasis on a given object (in
this case, the flower).

Fig. 12 shows the results of time warping on a Full HD
1920× 1080 video of someone pouring water into a cup, used
to delay the cup’s filling. As we apply a deformation that
pushes back the water from filling the middle of the cup, it is
visible, by looking at the top of the water level, that the cup
is being filled above the deformation point. This is the result
we want, since the transition from the top water level to the
unfilled gap generated by the displacement is exactly as smooth
as the transition between water and air on the original video
Therefore, we are able to achieve smooth blending between
objects in a scene through time. This result was generated at
~325 frames per second on an RTX 2070 Super GPU.

1) Temporal aliasing: Time sampling is inherently different
from spatial sampling [20]. While our visual system is severely
attuned to spatial discontinuities, object motion can be spaced
throughout larger pixel intervals (temporal discontinuities)

and still be perceived as continuous movement. That is why,
depending on the frame-rate and shot steadiness, one can find
jagged edges (temporal aliasing) when slicing a video through
the time axis (Fig. 13(a-b)). Hence, when we combine different
frames into a new frame through a warping of the time axis,
temporal aliasing is transformed into spatial aliasing, as seen in
Fig. 13c. This is a problem that occurs with any time-warping
technique, and it can be fixed by capturing the video with a
higher frame-rate or by applying a temporal antialiasing filter
(Fig. 13d). This transforms aliasing into motion blur [21].

VII. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm for the inversion of the
Regularized Kelvinlet equations, enabling its use for image de-
formation and video time warping through backward mapping.
Inversion is performed by a nonlinear per-pixel optimization
process (Gauss-Newton), allowing for fast execution time.
Our solution is inherently parallel and achieves real-time
performance in Full HD videos, computing deformations at
over 300 fps on modern hardware.

We showed how to preserve the image or video’s rectangular
boundary through a modification of the deformation field, and
also how to detect and handle non-invertibility. Furthermore, we
discussed the procedures for proper antialiasing of the resulting
images, based on local measures of spatial contraction. We also
discussed the relationship between temporal and spatial aliasing,
providing some insights into the limits of time warping.

Our technique has a number of applications. Image
deformation can be used for interactive photo editing, creating
smooth curves and providing a realistic feeling of control
over a picture, i.e., “warping as if we were touching it”. The
3D time warping brush enables the creation of movie reels
that change the previously established sequence of frames.
Possibilities of future work include the exploration of a user
interface for real-time video interaction, as well as extending
our solution to other types of deformation fields.

Acknowledgements. We would like to thank the anonymous
reviewers for their comments. This work was sponsored by
CNPq-Brazil (436932/2018-0), and financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Brasil (CAPES) - Finance Code 001.

REFERENCES

[1] S. Avidan and A. Shamir, “Seam carving for content-aware image
resizing,” in ACM SIGGRAPH 2007 papers, 2007, pp. 10–es.

[2] Z. Karni, D. Freedman, and C. Gotsman, “Energy-Based Image Defor-
mation,” Computer Graphics Forum, vol. 28, no. 5, 2009.

[3] P. Kaufmann, O. Wang, A. Sorkine-Hornung, O. Sorkine-Hornung,
A. Smolic, and M. Gross, “Finite Element Image Warping,” Computer
Graphics Forum, vol. 32, no. 2pt1, pp. 31–39, 2013.

[4] F. De Goes and D. L. James, “Regularized kelvinlets: sculpting brushes
based on fundamental solutions of elasticity,” ACM Transactions on
Graphics, vol. 36, no. 4, pp. 1–11, Jul. 2017.

[5] G. Wolberg, Digital Image Warping. IEEE computer society press Los
Alamitos, CA, 1990, vol. 10662.

[6] K. Foundation, “Krita,” 2020. [Online]. Available: https://krita.org/en/
[7] S. Frey, “Spatio-Temporal Contours from Deep Volume Raycasting,”

Computer Graphics Forum, vol. 37, no. 3, pp. 513–524, 2018.
[8] A. W. Klein, P.-P. J. Sloan, A. Finkelstein, and M. F. Cohen, “Stylized

video cubes,” in SIGGRAPH/EG Symp. on Comput. Animation, 2002.

https://krita.org/en/


(a) Original image (512×512) (b) Our deformation result (c) Krita warp tool (d) Krita liquify tool (e) Krita warp tool artifacts

Fig. 7: Comparison between our inverse Kelvinlet image deformation method and the Krita tools. (b) Our method produces a
high-quality deformation result that is not possible to reproduce with Krita. It is able to smoothly translate the eyes and nose of the
mandrill downward, while preserving the image’s rectangular boundary. (c) Krita’s warp tool requires two user interactions and
introduces boundary artifacts (green pixels). (d) Krita’s liquify tool produces a slighty better result for boundaries, but compresses
the nose too much and does not move the eyes. (e) Krita’s warp tool generates artifacts if the deformation is too strong (red
arrow), since it uses a forward-mapping polygonal mesh for warping. Kelvinlet params.: p0 = (256, 256), ~f = (0,−90), ε = 100.

(a) Original image (b) Our result (c) Krita warp result

Fig. 8: Distortion comparison between our inverse Kelvinlet
warping method and the Krita deformation tool. Kelvinlet de-
formation parameters: p0 = (128, 128), ~f = (0,−70), ε = 30.

(a) Original rendering
(700×700)

(b) Our inverse Kelvinlet
deformation result

(c) Forward Kelvinlet de-
formation result

(d) Zoom of (a) (e) Zoom of (b) (f) Zoom of (c)

Fig. 9: Deformation of continuous fractal images. (a,d) Original
supersampled rendering. (b,e) Our backward-mapping method
results in a high-quality deformed fractal. (c,f) A forward-
mapping implementation results in a blurred image. Deforma-
tion parameters: p0 = (200, 400), ~f = (200,−100), ε = 100.

frame 25 frame 30 frame 35 frame 40 frame 55 frame 60

Fig. 10: (Top row) Input video consisting of an instantaneous
transition from black to red at frame 52. (Bottom row) Smooth
transition obtained using our time warping method to bring
the red values forward in time. Warping parameters: p0 =
(50, 50, 50), ~f = (0, 0,−30), ε = 50. Video size 50×50×100.

[9] A. Rav-Acha, Y. Pritch, D. Lischinski, and S. Peleg, “Evolving Time
Fronts: Spatio-Temporal Video Warping,” Proc. 32nd Int. Conf. Comput.
Graph. Interactive Tech, p. 8, 2005.

[10] V. Solteszova, N. N. Smit, S. Stoppel, R. Grüner, and S. Bruckner,
“Memento: Localized Time-Warping for Spatio-Temporal Selection,”
Computer Graphics Forum, vol. 39, no. 1, pp. 231–243, 2020.

[11] R. C. Bolles, H. H. Baker, and D. H. Marimont, “Epipolar-plane
image analysis: An approach to determining structure from motion,”
International Journal of Computer Vision, vol. 1, no. 1, pp. 7–55, 1987.

[12] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and
P. Dragicevic, “Time Curves: Folding Time to Visualize Patterns of
Temporal Evolution in Data,” IEEE TVCG, vol. 22, no. 1, 2016.

[13] B. Wylie, K. Moreland, L. Fisk, and P. Crossno, “Tetrahedral projection
using vertex shaders,” in Symp. on Vol. Vis. and Graph., 2002, pp. 7–12.

[14] C. T. Silva, J. L. D. Comba, S. P. Callahan, and F. F. Bernardon, “A
Survey of GPU-Based Volume Rendering of Unstructured Grids,” Revista
de informática teórica e aplicada, no. 2, pp. 9–29, 2005.

[15] F. Zhou, S. B. Kang, and M. F. Cohen, “Time-Mapping Using Space-Time
Saliency,” in CVPR, Jun. 2014, pp. 3358–3365.

[16] R. Szeliski, Computer Vision. Springer London, 2011.
[17] P. S. Heckbert, “Fund. of texture mapping and image warping,” 1989.
[18] J. Gascon, J. M. Espadero, A. G. Perez, R. Torres, and M. A. Otaduy,

“Fast deformation of volume data using tetrahedral mesh rasterization,”
in SIGGRAPH/EG Symp. on Comput. Animation, 2013, pp. 181–185.

[19] J. Solomon, Numerical algorithms: methods for computer vision, machine
learning, and graphics. CRC Press, Taylor & Francis Group, 2015.

[20] D. J. Finlay and P. C. Dodwell, “Speed of apparent motion and the
wagon-wheel effect,” Perception & Psychophysics, vol. 41, no. 1, 1987.

[21] J. Korein and N. Badler, “Temporal anti-aliasing in computer generated
animation,” in SIGGRAPH, Jul. 1983, pp. 377–388.



frame 1 frame 65 frame 130 frame 260

Fig. 11: (Top row) Input video of a flower with a zooming-out camera (352× 288× 260). (Bottom row) Time warped video,
maintaining a zoomed-in flower size throughout most of the sequence, and concentrating the zoom-out at the last moments.
Warping parameters: p0 = (170, 130, 20), ~f = (0, 0, 100), ε = 80. Input video sequence ‘tempete’ from Xiph.org.

Fig. 12: (Top row) Unmodified video of someone pouring water into a cup (1920× 1080× 118). (Bottom row) Same video
warped to delay the cup’s filling. (See our supplementary materials for the full video sequences). Deformation parameters:
p0 = (1050, 700, 10), ~f = (0, 0, 60), ε = 60. Input video sequence by Polina Tankilevitch on Pexels.com.

t

y

(a) Time slice of the original video (b) Zoom of (a): temporal aliasing (c) Time-warped video: temporal alias-
ing transformed into spatial aliasing

(d) Time-warped video with antialias-
ing along the time axis

Fig. 13: (a) Time slice along the (y, t) plane of a video sequence containing object motion. (b) Zoom of (a), showing the
presence of jagged edges, i.e., temporal aliasing (orange arrows). (c) Time-warped video sequence, showing how temporal
aliasing has been transformed into spatial aliasing (blue arrow). (d) Applying an antialiasing filter along the time axis removes
aliasing artifacts but introduces motion blur. Deformation parameters: p0 = (100, 100, 20), ~f = (0, 0, 100), ε = 60.


