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Abstract—Many studies have been done to control virtual
humans and crowds. Navigation, split, merge, and collision
avoidance are examples of what has been done in such areas
when simulating crowds of individuals. This paper explores
the macroscopic crowds’ concept and seeks to solve two main
issues: macroscopic crowd control and visualization. In particular,
we are interested in providing steering behaviors applied to
macroscopic models of crowds, in this case, called Legions of
people, which are an abstraction for a vast amount of people. To
provide the steering behaviors, we propose a multi-level control
of such structures that can represent less or more people, in an
emergent way. We also propose a new organic visualization of
macroscopic and huge crowds based on blobby models.

Index Terms—virtual human crowds, blobby models.

I. INTRODUCTION

Many methods have been proposed in the literature to
simulate crowds of virtual humans. Typically, agents in a crowd
are simulated individually (in a microscopic way [1], [2], [3]),
just like their applied behavioral and steering algorithms.
On the other hand, macroscopic methods aim to simulate
aggregated motion as flows of people [4], [5], generally without
considering individual behaviors. While macroscopic crowds
usually make it possible to simulate huge crowds, because it
optimizes the needed computation, it brings some challenges
for visualization and control [6], [7].

Here is an example of a control issue: when it comes
to adapting to the environment’s complexity, a microscopic
crowd can split into smaller crowds (always simulated through
individuals) to move in complex environments [8]. When faced
with an obstacle, real people need to choose a path to go
around it, left or right. In the same way, crowds of people,
when faced with obstacles, can split into smaller groups that
follow several different paths around the obstacles to avoid
collisions. After splitting, if there is enough free space, groups
can merge and form a new crowd structure. In macroscopic
crowds, this kind of control needs split and merge behaviors
in multi-level behaviors, i.e., subdividing large crowds into
smaller crowds, once there are not simulated individuals.

The second issue regards visualization. It is known that
microscopic simulations of crowds allow more realistic and
organic simulation than macroscopic heat maps or people flow
visualizations [9], [10].

In this paper, we seek to contribute with a new crowd
abstraction model that solves the two problems mentioned

above. First, to adapt the crowd’s behavior according to the
complexity of the virtual environment: crowds should split
or merge, increasing or decreasing the number of structures,
respectively. To that end, we provide a multi-level control, from
macroscopic (huge crowds) to microscopic (individual agents),
passing through groups of different sizes, in an emergent way.
The main goal is to be efficient, as macroscopic control allows
and simultaneously relies on the advantages of microscopic
control, e.g., the more accurate behaviors necessary to adapt to
the complexity of the environment. Our second contribution is
in the visualization aspect. We propose a blobby [11] approach
to visualize macroscopic crowds, producing more organic
visuals for the simulated structures.

Our crowd abstraction, named Legion, is based on BioClouds,
proposed by Antonitsch et al. [12]. However, our legions can
split into smaller groups when moving towards an obstacle.
The main difference between Legions and BioClouds is the
multi-level control of crowds: we can deal with huge crowds,
smaller ones, and groups until reaching one individual level.
Legions can split and merge as they navigate the environment.

The paper is structured as follows: Section II introduces
related work on macroscopic, microscopic, and hybrid crowd
simulation; Section III describes our new models for legion
splitting and merging; Section IV describes our new method
for visualization; Section V presents our experimental results;
and Section VI discusses our conclusions and future work.

II. RELATED WORK

The field of crowd simulation is vast, and its applications can
range from fire drill planning, crime prevention, and pedestrian
flow analysis [9]. The analysis of how a crowd behaves in an
environment as a whole is largely the main concern of the field.
This section reviews microscopic models of crowd simulation,
where each agent is modeled as a single entity of the simulation,
and macroscopic models, where the model control is globally
applied for after being instantiated to individuals. Microscopic
crowd simulation models each agent in a crowd as a single
entity of simulation. Examples of this model are the social
forces model [1], ORCA [2], and BioCrowds [3].

Helbing et al. [1] introduced the concept of social forces.
This model conceptualizes agent movement as if influenced
by internal and environmental characteristics, such as desired
velocity, distance from other pedestrians, and a term modeling



attractive effects of simulation. These simulations exhibit some
self-organizing behavior observed in real crowds.

Van den Berg et al. [2] proposed the ORCA model, which
simulates a crowd based on reciprocal velocity obstacles. The
simulation is solved with linear programming, each step taking
the linear time. Created initially for robotics controllers, the
model tends to give little personal space to each agent. The
model has extensions to allow more natural crowd forming
behavior, e.g., a simulation which respects the fundamental
diagram [13] that describes how fast each given crowd is
willing to move in a certain density, used for modeling cultural
aspects, for instance.

Treuille et al. [6] proposed Continuum Crowds, a crowd
simulation model based on continuum field dynamics. The
model simulates a crowd as a dynamic potential field to perform
navigation for agents and moving obstacles.

Xiong et al. [14] proposed a hybrid approach for crowd
simulation, separating the simulation environment into micro-
scopic and macroscopic regions. They proposed leveraging
the accuracy and computational efficiency of both models.
Their work uses the ORCA model as a microscopic simulation
model, restricted to a region of interest; the remaining space
is simulated using the continuum crowds model. The regions
are interfaced with a transition region. When an agent crosses
the boundary, it is removed from one simulation and added
to the other. The regions are defined during the environment
description and remain static during the simulation.

Bicho et al. [3] introduced a space discretization and
competition model for crowd simulation. In their BioCrowds
model, agents compete to maintain their personal space, and to
do so will take possession of space around them. To model the
environment, Bicho et al. [3] use space discretization markers.
Agents take possession of markers closest to them, forming an
emergent Voronoi partitioning of space. The convex Voronoi
cells each agent now occupies guarantee collision avoidance, as
long as no agent attempts to move outside its cell. BioCrowds
also features self-organizing emergent crowd behavior, notably
the emergence of lanes, vortices, bottleneck, and arc formation.
BioClouds [12] is a generalization of BioCrowds [3] and aims
to abstract a massive number of people as if it were a single
entity. BioClouds inherits some properties of BioCrowds, like
evolving in discrete space (dots on the floor called markers
which are organized in a regular grid) and simulating the next
positions based on the competition model (one agent can only
possess markers on the floor, and no more), which causes free-
of-collision movement. BioClouds models entities as groups
of agents called clouds, which can be a group of just one
individual, even or large crowds (no upper limit is imposed).
A cloud’s behavior differs from a BioCrowds agent in the
following aspects: the space capturing radius and the distance
function used for space competition. While in BioCrowds,
the capture radius is static, in BioClouds it is dynamic and
determined by the cloud desired density in this simple way:
as the density of people/m2 increases in a specific cloud,
the perception radius increases and provides the possibility
to occupy more space around it. Another difference between

BioCrowds and BioClouds is the distance function. Clouds
use the power-of-a-point distance function, which generates
power diagrams, a generalization of Voronoi diagrams. Power
diagrams display the mathematical properties necessary to the
BioCrowds collision avoidance model. Once the agents (or
clouds) spaces are correctly represented as Voronoi diagrams,
the method is free-of-collision. As proposed by Antonitsch et
al. [12], Clouds cannot be subdivided; only their radius can be
increased or decreased. This fact causes issues when clouds
evolve in complex environments. BioClouds have only two
levels of simulation: clouds and agents.

III. LEGIONS

We propose a new macroscopic crowd abstraction, called
Legion, to address the issue of multi-level behavior, allowing
the simulation of groups of varied sizes that react to the
complexity of the environment. Legions represent crowds
of people without simulating individuals, as proposed in
BioClouds model [12]. We introduce the possibility of having
different levels between the higher level (macroscopic) and
the individual agent (microscopic) in an emergent way. The
Legion can be subdivided into crowds, smaller crowds, large
groups, smaller groups, and successively down to the level of
individuals. The subdivision of vast legions into smaller groups
of various sizes occurs depending on the environment.

The main contribution of our model is that it can deal
with those varied sized groups as a single entity, keeping
the group properties as goals, speed, and density as if it were
individual behaviors. Moreover, the subdivision can be followed
by group merging, and it happens only depending on the space
restrictions. Unlike the approach proposed by Xiong et al. [14]
of defining specific regions where the multi-level behavior can
be achieved, in our model, the split and merge behaviors are
dynamically adapted to the complexity of the environment. We
also seek to represent our legions organically, compared to the
usual methods to visualize macroscopic crowds [12], [7], as
discussed in Section IV.

A. Multi-level control

In real life, large crowds can be divided into smaller groups
to get around obstacles. Indeed, smaller groups accommodate
better in free space when competing for regions with other
groups. After a crowd overcomes an obstacle, groups can merge
back into a single large crowd, if there is free space.

Our legion model uses BioCrowds [3], as BioClouds [12],
which means that we also use space markers to provide motion
to our legions (as briefly explained in Section II).

B. Splitting

Legion splitting occurs whenever a legion is in a situation
(time t) where, in a future moment (time t +1), it might have
less space to accommodate the Legion than currently desired.
For example, when a group moves towards an obstacle, that
obstacle takes up space, the group cannot occupy, thereby
reducing its future space availability.



Each legion i has following attributes: the number of agents
it represents (Ai); the desired density (Di in people/m2); speed
(Si in m/s); legion goal ~Gi; and a perception radius (Ri) equal
to the corresponding radius to guarantee the desired density Di.
In addition, as in BioClouds [12], the entities evolve in a
discretized space represented as a regular grid, which cells,
Mi,t , are possessed by the legion i at each frame t. As long as
the group has the same amount of agents, the same density
and space desired to accommodate the structure, Ri, will not
be changed. In a situation of division, that is, the space needed
in the t+1 is less than the desired for the crowd to move. This
structure is subdivided into 7 new structures in the location
of its current area, 6 radial legions and a central one, in a
hexagonal pattern. Six new 7 legions are located at the edge of
the original and are more likely to capture space than the single
cloud. The radius of the newly created clouds is one-third of
the original radius of the clouds. Figure 1 shows a diagram of
the cloud’s split pattern. The radial arrangement was chosen to
facilitate the creation of smaller clouds in a pattern that best
mimics the original density and space occupation. Although
we chose a seven-way split for this work, the number of clouds
created during a split event can be adapted to better simulate
each possible experiment.

The decision to split a legion i at time t +1, with Ai agents,
position ~Xi,t , set of captured cells Mi,t , movement vector ~Vi,t
and perception radius Ri is based on the available space for
the legion i at frame t +1. We check for future available space
by projecting the future position of the legion ~Xi,t+1:

~Xi,t+1 = ~Xi,t +~Vi,t . (1)

Then we check if the markers1 within radius Ri around ~Xi,t+1
are in the set Mi,t or free (i.e., do not attributed to any other
legion or obstacle). If this condition is true, no split is necessary.
To avoid computing the split decision, at each frame, we do
it at every f frames. We have found f = 15 produces good
visual results.

If a split happens, each one of the newly created legions
(in present case 7 legions) receives a new ID and inherits
the same velocity, goal, and desired density as the parent
legion. Moreover, R is calculated based on the number of
agents assigned to each Legion (1/7 of parent legion) and the
desired density. The set of captured cells Mt and the motion
vector ~Vt are calculated to provide the movement of that Legion
at frame t +1 guiding to goal ~G. Since the cloud division can
occur recursively, each structure can be divided again until the
resulting structure represents only one individual.

C. Merging

Cloud merging behavior aims to regroup pair of legions
(i and j) when they have the same goals (~Gi and ~G j) and
are close enough to be reunited. We determine the second
rule through a simple heuristic: we consider the markers that
are close to a straight line from the two clouds centers (~Xi,t

1Markers are dots on the floor in a simulated environment. They are used
in BioCrowds [3], BioClouds [12] and in the current method to discretize the
space, but continuous simulation are also possible

Fig. 1. A split event: a 50-agent legion splits into 7 smaller legions. The new
central legion receives the remaining agents in case of fractional divisions.

and ~X j,t ), if all such markers are part of subsets Mi or M j then
two clouds are adjacent and can be reunited. If this condition is
not true, there is space between the two clouds, not indicating
that they are adjacent, so merge behavior is not applied. Legion
merging conditions are tested at each simulation step.

A legion that is in a situation that leads to splitting and also
merging would cause a not desirable repetition of splitting and
merging behaviors. To avoid such sequential operations, we
add a settling time Sti for each newly created legion, either
by splitting or merging operations. This structure is defined
as: Sti = {sti,mti}, where sti and mti state for last split and
last merged frame, respectively. In addition, we define two
other thresholds: shiftsplit and shiftmerge, which state for a
number of frames where a new split/merge cannot happen.
Such parameters work in a way that only in simulation frame
f = sti+shiftmerge, a new merge can occur for legion i. Similar
process happens to activate again the split operation, i.e., when
simulation f = mti + shiftsplit . In this work we empirically
chosen shiftmerge = shiftsplit = 30 simulation frames because it
results in visually coherent simulations. This value is equivalent
to 3 seconds of simulation time, and can be changed to better
fit different environments. When two legions merge, their data
is combined to define a new legion with a new ID.

D. The control algorithm

At the beginning of the simulation, legions are generated
based on user input, who also defines the environment and the
obstacles. For each legion i at t = 1, the user defines:

1) number of agents Ai,
2) initial position ~Xi,t ,
3) desired density Di (people/m2),
4) desired speed Si (m/s), and
5) goal ~Gi (X,Y,Z) location.

Based on these data, our method computes the perception
radius Ri that the legion must have to achieve density Di,
selects the set Mi,t with the markers inside Ri that could be
attributed to legion i, and finally computes the movement
vector ~Vi,t based on Si, ~Gi and Mi,t .

Each legion is subdivided in 7 other legions when the split
behavior occurs. Let us consider legion k as one of the 7 new
legions generated from i. The data used to instantiate k is:

1) number of agents (int) Ak = Ai/7,



2) initial position
~Xk,t = ~Xi,t +[(sin(2πk/6),cos(2πk/6))×Ri/2],

3) desired density DK = Di,
4) desired velocity Sk = Si, and
5) goal ~Gk = ~Gi.

As for legion i, the method computes the perception radius
Rk, Mk,t , and finally ~Vk,t . The new structures cannot merge
during 30 frames, i.e., 3 seconds of simulation time, as defined
in Section III-C. During the simulation, legions evolve in the
environment, avoiding collision with other legions and obstacles
(when space to move is not free). Therefore, they can split again
and successively, until the Legion has only one individual.

For merge situations, as described before, two legions i and j
can merge if they have same goals and be adjacent. In this
case, their data is gathered to compose a new legion (e.g., m),
where data is instantiated as follows:

1) number of agents Am = Ai +A j,

2) initial position ~Xm,t =
~Xi,t+~X j,t

2 ,
3) desired density Dm = Di,
4) desired velocity Sm = Si, and
5) goal ~Gm = ~Gi.

As in the split situation, the method computes Rm, Mm,t and
finally ~Vm,t . Again, legion m cannot split during 30 frames as
defined in Section III-C. During such time, the legion m can
keep merging again and successively, until there is not other
legion that satisfies the conditions to merge.

IV. BLOBBY VISUALIZATION OF LEGIONS

One of the main criticisms of macroscopic crowd simulation
models is the obfuscation of the crowd visualization, in the
sense that the models do not inherently provide visualization for
finer-grained agents [9], [10]. In this section, we present a new
approach to improve the visualization of huge crowds towards
a more organic appearance. Our approach is to represent both
legions and the environment implicitly as density fields using
a global blobby model [11].

A. Implicit regions

Implicit surfaces [15], [16] are a standard formulation for
representing shapes of density field data. An implicit region in
the plane is the set of points satisfying an inequality:

R = {p ∈ R2 : F(p)≥ 0},

where F : R2→ R is a scalar field on the plane. When F is a
regular function, the boundary of the region R is the implicit
curve given by F(p) = 0. The inequality is F(p) ≥ 0 quite
general. Other, equivalent definitions use variants such as
F(p)≥ T or F(p)≤ T , where T is a user-controlled parameter.

Implicit regions (and solids in space) are natural primitives
for constructive solid geometry [17]. Organically-looking
shapes can be defined implicitly by combining simple geometric
primitives [18], [19].

A fairly intuitive way to create shapes is to start with
simple skeletal shapes, such as points, line segments, disks,
and rectangles. Given a skeleton S, we let F(p) = g(d(p,S)),

where d(p,S) is the distance of p to S and g is a potential
function used to modulate the distance [16, chapter 9]. For
a point skeleton S = {p0} and g(d) = d2 − r2, we get the
family of disks centered at p0, as r varies. Several potential
functions have been proposed. Blinn [11], in a seminal
paper, used an exponential potential for his blobby molecules,
g(d) = exp(−ad2). Nishimura et al. [20] used piecewise
quadratics for their metaballs. Wyvill et al. [21] used piecewise
cubics for their soft objects. General primitives and combination
methods were discussed by Bloomenthal et al. [18], [19].

B. Our implicit model

We describe the shape of the legions in an environment
implicitly as follows:

F(x,y) =
n

∑
i=1

Ci(x,y)−E(x,y)≥ T, (2)

where Ci describes the shape of legion i, E describes the shape
of the environment, and T is a threshold that allows the user
to control the final shape. We shall discuss below our chosen
expressions for Ci and E.

Note that the value for the environment is subtracted from
the combined values for the legions. This algebraic device
reflects the intuition that the obstacles in the environment exert
‘pressure’ on crowds to avoid that region of space, even before
a crowd collides with an obstacle.

C. Modeling legions

We define the shape of legion i implicitly using an inverse
square potential, like those in gravitation and electrostatics:

Ci(x,y) =
r2

i
(x− xi)2 +(y− yi)2 , (3)

where ri is the current radius of legion i and (xi,yi) is its
center. When there is only one legion and no obstacles, we
have n = 1 and E(x,y) = 0, and so F(x,y)≥ T describes a disk
of radius r1 when T = 1. When there several legions and no
obstacles, F(x,y) ≥ T describes shapes that merge the disks
organically as T varies (Figure 2).

Fig. 2. Isolines representing a blobby model for several threshold values.



D. Modeling the environment

We support two implicit models for the environment. In
the first model, the obstacles have a simple geometry, like
a rectangular or cylindrical column in a room, and we can
describe them analytically. More precisely, we define the shape
of obstacle j implicitly as follows:

O j(x,y) = e−D j(x,y), (4)

where D j(x,y) is the distance of the point (x,y) to obstacle j.
The shape function for the environment is then:

E(x,y) =
m

∑
j=1

O j(x,y) (5)

The obstacles can have any geometry, as long as we can
compute their distance function [22, chapter 6]. Note that
the functions for obstacles decay faster than the functions for
legions. This allows legions to connect from a more significant
distance, before obstacles can block legions from entering a
particular space.

In the second model for the environment, we describe its
walkable and non-walkable areas as a global distance function.
We map the distance of each point in space to the closest
obstacle using a discretized distance transform [23] applied
to a binary image describing the environment: white pixels
for walkable markers and black pixels for obstacle occupied
markers. The resulting distance values are capped at a user-
selected maximum value, representing the distance at which
the influence of the obstacle on crowds is considered negligible,
and normalized into the [0,1] range. The normalized values are
encoded into a gray-scale image that describes the obstacle-
distance at each discretized marker.

The shape function for the environment is then:

E(x,y) =
1

s ·D(x,y)
, (6)

where D(x,y) is obtained by sampling the image-encoded
distance map at the pixel corresponding to the marker closest
to the point (x,y), and s is the scale parameter value to
denormalize the sampled distance map (s can also be used to
scale the strength of the environmental pressure on agents).
Figure 3 illustrates an environment image and its distance map.

(a) (b)

Fig. 3. (a) The environment image of experiment B. Walkable terrain in white;
obstacles in black. (b) The corresponding distance map. Lighter colors mean
greater distance to the closest obstacle.

V. EXPERIMENTAL RESULTS

We now present some experimental results obtained with our
model. The experiments focus on exploring the new multi-level
behavior and the proposed visualization. Experiments A and B
compare how different complexities of environment (varied
amount of obstacles) affect split and merge behaviors. In order
to compare two different scenarios, the number of split and
merge operations were counted during each experiment, as well
as the crowd densities and average velocities. Experiments A
and B have the following data:
• The simulation runs at 10 frames per simulated second.
• The cells in the regular grid are 0.125m size and area of

0.015625m2;
• Each experiment has, at the beginning, one only legion con-

taining 100 agents with preferred density of 1agent/m2;
• desired speed S = 1.3m/s;
• goal position ~G = (5,25);
• obstacle size 5mx5m, where experiment A has one obstacle

positioned at (15,25), and experiment B has four obstacles
positioned at (15,25), (23,30), (23,20), (32,25).

• total size of environment 100mx50m.

A. Emergence of split and merge behaviors

Firstly, we want to show the impact of environmental
complexity on the emergence of split and merged behaviors. To
the best of our knowledge, there is no dynamically hybrid crowd
simulation methods which to compare to, so we compare results
to the purely macroscopic simulation. In experiment A, 1 split
and 6 merge operations were executed; while in experiment B,
11 split operations and 50 merge operations happened. Table I
compares the two experiments. Merge operations occur more
often than split operations since one split operation instantiates
7 legions, which need six merge operations to merge back
into one Legion. We emphasize that split/merge operations are
asymmetrical, i.e., one Legion can split one time and gives
origin to 7 legions, that have to merge in pairs from 4 to
6 times to become the same Legion again.

TABLE I
RESULTS OF EXPERIMENTS A AND B: AVERAGE DENSITY (AGENTS/m2),

AVERAGE SPEED (m/s), NUMBER OF SPLITS AND MERGES.

DENSITY SPEED # SPLITS # MERGES
A 1.001 1.30 1 6
B 1.003 1.29 11 50

Figures 4 and 6 show snapshots of experiments A and B:
a legion recursively splitting and merging to traverse a scenario
with obstacles. In experiment B, the first Legion never fully
regrouped into a single legion again, since the created small
groups got far away from others due to obstacles. This fact is
consistent with real-life: people can drift apart due to space
restrictions, and lose group identity. Figure 7 shows the same
scenario simulated with microscopic BioCrowds behaviors.

It is essential to mention that we decide not to include
path planning for all the evaluated simulations, so the only
input was the goal and not a path to achieve the goal. We



did that because we do not want to interfere with the way
the legions will avoid the obstacles, deciding, for instance,
going through the right or left side of the obstacles. In order to
compare with BioCrowds, we also turned off the path planning,
and as a consequence, we can see some agents in a local
minimum, behind the obstacles. We compared our results with
BioClouds [12], in the environment of experiment B, as can be
seen in Figure 5. We measured the average density (people/m2)
along the simulations for the three methods: Legion (d̄ =
1.03), BioCrowds (d̄ = 1.23), and BioClouds (d̄ = 0,99). Even
though the results are similar, as expected, BioCrowds achieved
higher average density, because at the end agents were very
close to each other to achieve the same goal. On the other
hand, BioClouds kept lower densities because it is always one
circle trying to achieve the desired density. Legion achieved
an average density close to the desired one, even after splits
and merges.

B. Blobby visualization of legions

We now illustrate our improved blobby visualization of
crowds. Experiments A and B are repeated with the improved
visualization, and the resulting simulations are presented. The
results are evaluated qualitatively.

We propose a density heat map visualization (Figure 6)
and a visualization including BioCrowds. While the heat map
aimed to represent current data relative to the described crowd,
i.e., how compact people are behaving in a given scenario,
it could not provide much data on the interactions among
the agents contained in a crowd. The shape of a legion is
approximated by a circle for space capturing behavior, which
leads to legions that look a lot more rounded than a real-life
crowd would naturally organize itself to be (Figure 4). The
split and merge behaviors of legions increase the number of
crowd interactions in a simulation compared to the highest level
of abstraction of the BioClouds model. However, when new
groups are generated, their shapes are still rigidly approximated
by circles, failing to model how people spread to occupy the
environment during interactions, as in Figure 6.

Our blobby visualization of legions and obstacles aims at a
more organic-looking cloud environment occupation. This is
illustrated in Figures 9 and 10 for experiment A and Figure 8
for experiment B. Figure 9 is rendered using the analytical
description of obstacles (eq. 5) and Figure 10 is rendered
using the distance map description of the environment (eq. 6).
Figures 6 and 8 show a comparison of our proposed blobby
visualization and the original BioClouds heatmap visualization.

VI. FINAL REMARKS

In this paper, we proposed solutions for two common issues
in the macroscopic crowd: the multi-level control and a new
organic visualization. The multi-level control was implemented
as a function of split/merge behaviors by increasing the number
of inter-entity interactions. This approach should better mimic
crowd interactions present in microscopic simulations, leverag-
ing the simulation’s complexity by varying the granularity of
the simulation dynamically. The proposed blobby visualization

aimed to propose a more organic visualization of huge crowds.
We modeled legions and obstacles in the environment as
implicit regions combined as a global blobby object. The
resulting visualization provides a more organic appearance to
how crowds fit the environment. One open question is how to
ensure that the different shapes of space occupation provided by
blobs are still representative of the simulated crowd densities.
This is currently the object of our investigation.
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(a) (b) (c) (d)

Fig. 4. Snapshots from experiment A using the heatmap visualization. (a) A legion heads towards an obstacle. (b) The legion splits due to the obstacle. (c) The
legions go around the obstacle. (d) The legions begin regrouping.

(a) (b) (c) (d)

Fig. 5. Snapshots from experiment B, simulated with BioClouds. (a) A cloud heads towards an obstacle. (b) The cloud avoids the obstacle and increases its
perception radius. (c) The cloud avoids another obstacle. (d) The cloud moves towards the goal and returns to its original size.

(a) (b) (c) (d)

Fig. 6. Snapshots from experiment B using the heatmap visualization. (a) A legion heads towards the obstacles. (b) The legion splits due to the obstacles. (c)
The legions go around the obstacles. (d) The legions begin regrouping.

(a) (b) (c) (d)

Fig. 7. Snapshots of experiment B simulated with BioCrowds. A crowd of BioCrowds agents separating and regrouping when interacting with the obstacles.
(a) A crowd splits when interacting with an obstacle. (b) The crowd goes around the obstacle. (c) The crowds start grouping back together. (d) The crowds
continue grouping back together.

(a) (b) (c) (d)

Fig. 8. Snapshots from experiment B using our blobby visualization. (a) A legion heads towards the obstacles. (b) The legion splits due to the obstacles. (c)
The legions go around the obstacles. (d) The legions begin regrouping.



(a) A legion splits when interacting with an
obstacle.

(b) The legions go around the obstacle. (c) The legions start merging back together.

Fig. 9. Snapshots of experiment A. Legions split and merge when interacting with an obstacle. Legions are rendered using eq. 5. The blue regions show the
area occupied by the crowd.

(a) A legion splits when interacting with an
obstacle.

(b) The legions go around the obstacle. (c) The legions start merging back together.

Fig. 10. Snapshots of experiment A. Legions split and merge when interacting with an obstacle. Legions are rendered using eq. 6. The blue regions show the
area occupied by the crowd.
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