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Abstract—The prediction of protein secondary structure has
great relevance in the analysis of global protein folding. In this
work, we present a method for protein secondary structure
prediction using the fusion of BLAST and the ensemble of local
and global classifiers. We used the amino acid sequence and
sequence similarity information available in the datasets and we
explored other amino acid characteristics. In order to evaluate
our method, we used the files from PDB (only from the year
2018), as well as CB6133 and CB513 datasets. We achieved
87.7%, 82.4% and 85.6% Q8 accuracy on PDB 2018, CB6133
and CB513 proteins using the amino acid sequence and amino
acid biological properties, 84.7% and 87.5% Q8 accuracy on
CB6133 and CB513 proteins using the amino acid sequence and
similarity sequence information and 92.5% Q3 accuracy on PDB
2018 proteins using the amino acid sequence and amino acid
biological properties. Our method presented competitive results
using only BLAST and only the ensemble of classifiers. The fusion
of both approaches achieved superior results compared to state-
of-the-art approaches.

I. INTRODUCTION

Proteins are present in several biological processes of living
organisms. They are formed by a sequence of amino acids,
which, due to the physical and chemical interactions of at-
traction and repulsion between them, form three-dimensional
(3D) structures [1]. The local structure that each amino acid
form is called secondary structure.

Secondary structures can be divided into Q3 classification
and Q8 classification. In the Q3 classification, each amino
acid can be transformed into helix (H), strand (E) or coil (C).
With the high accuracy achieved in Q3 classification, the Q8
classification was created. In the Q8 classification, each amino
acid can be transformed into 4-turn helix (H), 3-turn helix (G),
residue in isolated beta bridge (B), extended strand (E), 5-turn
helix (I), hydrogen bonded turn (T), bend (S) and loop (L).
The Q8 classification is more complex and challenging than
the Q3 classification [2].

From the analysis of the secondary structures of proteins, it
is possible to analyze the global 3D structure and the folding of
the proteins. With this, it is viable to understand and to create
possible applications, such as drug and biosensor design [3],
[4].

Due to advances in gene sequencing, there are large volumes
of data on the amino acid sequences that make up proteins,
but determining 3D structures, such as secondary structures,
requires a lot of effort, such as laboratory methods [5]. The
difference in the amount of data on the protein sequence and

secondary structures can be seen in the data volume of UniPro-
tKB, which is the main protein sequence database and has 175
million data from protein sequences, and Protein Data Bank,
which is the main database of secondary protein structures and
has 160,000 data from protein secondary structure.

Due to the high cost to determine the secondary protein
structures through laboratory methods, other methods have
been proposed for the prediction of these structures, with an
emphasis on computational approaches [6].

At the beginning of the interest in predicting secondary
structures, the main methods used statistical concepts, such
as a set of rules [7] and statistical procedures [8], [9].

In the second phase of secondary structure prediction meth-
ods, classifiers such as Support Vector Machines (SVM) [10],
[11], [12] and Neural Networks (NN) [13], [14] with sliding
window achieved rates close to 80% of Q3 accuracy. At
this stage, other characteristics for classification began to be
explored, for instance, sequence similarity information [15]
and amino acid properties [16]. It was also at this stage that
the methods began to use the Q8 classification.

The third phase of the classification of secondary structures
gained space with the advance of deep learning, mainly
with recurrent networks [17], [18], capable of making the
global analysis of protein sequences, and convolutional net-
works [19], [20], generally used for the local analysis of the
sequences. Other methods achieved improvements when using
global analysis with local analysis [2], [21]. Still in the third
phase, several methods in the literature began to study the
effect and the improvement of the results through the ensemble
of several classifiers [22], [23].

In the literature, BLAST [24], used to align local sequences
of proteins, is not commonly used to predict protein secondary
structures. In this work, we present and discuss a method
for predicting protein secondary structures using a fusion of
BLAST with an ensemble of global and local classifiers.

Our main contribution is to present a method that can pre-
dict protein secondary structure using amino acid properties,
sequence and similarity information. BLAST has good results
in the secondary structure prediction, but it cannot predict
the secondary structure for all the amino acids, the ensemble
classifier achieves competitive results compared to the state of
the art, whereas the fusion of BLAST and the ensemble of
classifiers can reach superior results.

The paper is organized as follows. We describe our sec-
ondary structure prediction method in Section II. The datasets,



amino acid additional properties, evaluation metrics and exper-
imental results are shown in Section III. Concluding remarks
and directions for future work are presented in Section IV.

II. PROTEIN SECONDARY STRUCTURE PREDICTION
METHOD

In this section, we describe our method for protein sec-
ondary structure prediction. We divided the method into two
parts, BLAST and a classifier, which we called an ensemble
of classifiers. The fusion was performed using the bag of
optimizers.

A. BLAST

BLAST [24] is a tool that compares the amino acid chain
of proteins and finds the best local alignment. To perform
a BLAST search, it is necessary to have a query, that is, a
protein that serves as the basis for the search, and the database
for searching. BLAST can be seen as an information retrieval
tool.

To generate the alignment, three different cases can occur:
(i) match, that is, the stretch in which there was an alignment,
(ii) mismatch, when the alignment does not occur and (iii)
gaps, when it is more advantageous not to compare the stretch.
Figure 1 illustrates an example of match, mismatch and gap.
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Fig. 1. Example of match, mismatch and gap.

The weight of the matches, mismatches and gaps is given by
a substitution matrix. We used the default substitution matrix,
BLOSUM62 [25]. In the end, the best alignments receive the
highest bit score and the lowest E-value.

We chose to use BLAST to find similar amino acid se-
quences because proteins with similar sequences can have
similar secondary structures. So, we utilized the correspondent
secondary structure from the aligned sequence to predict the
secondary structure from the query.

In order to search for local sequence of proteins, we applied
the PDB as a database, since this dataset is the main bench-
mark with information on secondary structures. To ensure that
the protein found in the PDB is not exactly the same as the
search protein, we removed proteins that were the same size
and that had the same amino acid sequence as the search
protein.

In some alignments, gaps may occur. In these cases, if there
was a match between the amino acid and a gap, the structure
that corresponded to the gap was disregarded.

We tested various configurations in the search for local
protein sequence alignment, such as the selection of the top 5,
10 or 20 alignment of sequences, restriction by E-value and
different voting weights for each alignment. Empirically, the
best configuration found was to use the top 10 alignment of
sequences, employing increasing voting weights for the best
alignments and E-value restriction equal to 0.00001.

Using BLAST to find proteins with similar sequence align-
ment, some amino acids may not have a predicted secondary
structure. With that, we employed the fusion with the ensemble
of classifiers to predict all cases. If the amino acid did not have
a secondary structure predicted by BLAST, the probability
vector of each class was equal to 0, else, the probability vector
sum was equal to 1. The fusion was performed using the bag
of optimizers.

B. Ensemble of Classifiers

The ensemble of classifiers is divided into three parts: local
classification, global classification and ensemble of local and
global classification. The ensemble was made using the bag
of optimizers.

1) Local Classification: In the local classification, we di-
vided the proteins into blocks. Each block contained the
central amino acid and the same number of amino acids on
the right and on the left. We tested different block sizes and
found empirically the best results in block size equal to 3, that
is, a central amino acid with an amino acid on the right and
an amino acid on the left, up to 11.

At the beginning and at the end of proteins, we explored
two different types of padding, values equal to 0 and the
repetition of the first element of the sequence at the beginning
of the protein and the last element at the end of the protein.
Empirically, we obtained better results with the first option in
the Q8 classification and with the second option in the Q3
classification.

For classification, five random forests with different block
sizes were used. Each of the random forests used a sliding
window to traverse each block in the sequence. Then, we
merged the five classifiers using weights for each of the classes
in each of the random forests. The final prediction of the set
of local classifiers was normalized, that is, the sum of the
probabilities of all classes was equal to 1. Figure 2 illustrates
the methodology proposed for the local classification.

We chose the random forest as a classifier since it improved
the fusion with the global classifiers better than the other
classifiers, such as convolutional networks.

2) Global Classification: In the global classification, we
used bidirectional recurrent networks with GRU memory mod-
ules. We chose bidirectional recurrent networks because this
configuration can deal with anterior and posterior amino acids
in relation to the analyzed amino acid.

For the amino acid sequence features, we applied an em-
bedding layer at the beginning of the network, transforming
the sparse vector in the one-hot encoding format into a dense
vector. We tested several dense vector sizes and the best
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Fig. 2. Local classification method.

configuration was using the dense vector with the same size
of the one-hot encoding.

Regarding the number of bidirectional recurrent layers, we
explored several configurations and obtained empirically better
results with networks with 2 up to 6 recurrent layers for
both Q3 and Q8 classification. In the end, the network has a
dense layer with softmax activation. We employed Adam [26]
optimizer, early-stopping and dropout [27] regularization tech-
niques. Figure 3 illustrates the proposed recurrent network
architecture with 2 layers.
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Fig. 3. Architecture of the recurrent network with 2 layers.

For each configuration of the bidirectional recurrent net-
work, we utilized two identical networks, one network ana-
lyzing the protein in the standard direction, that is, analyzing
the protein from the beginning to the end, and another network
analyzing the protein in the reverse direction, that is, analyzing
the protein from the end to the beginning. Finally, the predic-
tion of the two networks were concatenated and normalized,
so the sum of the probabilities is equal to 1. This methodology

proved to be capable of improving the results.
As we did in the local classification, we used weights for

each class of each of the networks. Then, the prediction of
the set of bidirectional recurrent networks was normalized.
Figure 4 shows the methodology proposed for the global
classification.
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Fig. 4. Global classification method.

3) Ensemble of Local and Global Classification: After the
local classification and the global classification, we performed
the ensemble of the two classifications. To perform the fusion,
each of the classification sets had weights for each of the
classes. Finally, the prediction of the ensemble of local and
global classifiers was normalized.

C. Bag of Optimizers

For the local and global classification, the ensemble of local
and global classification and the fusion of BLAST prediction
with the ensemble of classifiers prediction, we applied the bag
of optimizers with three different algorithms. Then, the best
weight found among them was chosen. The bag of optimizers
was used as a black box.

The first algorithm in the bag of optimizers was the genetic
algorithm. Initially, we created a population of size equal
to 2,000 with weights ranging from 0 to 10. The top 100
individuals become parents of the next generation. The parents
generated 900 new individuals from crossover, totaling the first
1,000 individuals of the next generation. The 1,000 individu-
als generated other 1,000 individuals through mutation. This
process was carried out for 100 generations. At the end of
100 generations, the top 100 individuals generated 900 new
individuals through mutation. This process was carried out for
100 generations. In the end, the best individual was chosen.

The second algorithm in the bag of optimizers was the
cuckoo search [28]. Initially we created a population of size
equal to 1,000 with weights ranging from 0 and 10. For each
individual, we obtained the corresponding cuckoo using the
levy flights. For each cuckoo, we checked another random
cuckoo and performed the replacement if the random cuckoo
found was worse than the cuckoo that performed the search.
This process occurred 100 times. With each iteration, the 250
worst cuckoos were reset. In the end, the best cuckoo was
chosen.

The third algorithm in the bag of optimizers was the particle
swarm optimization [29]. Initially, we created a population of



size equal to 1,000 with weights ranging from 0 to 10. For each
individual, we calculated the best result obtained. Then, we
calculated the best overall result obtained by any individual.
In the end, we updated the individuals taking into account the
best personal result, the best global result and the direction in
which the individual was moving. This process occurred 100
times. In the end, the best individual was chosen.

III. EXPERIMENTS

In this section, we present the datasets and the amino acid
properties used in our experiments, as well as the evaluation
metrics and the results obtained.

A. Datasets

In this subsection, we describe the datasets used in the
experiments.

1) PDB: The Protein Data Bank, known as PDB, is the
main repository for 3D structures of proteins. This repository
has more than 150,000 structures of proteins, nucleic acids
and complex macromolecules. It receives weekly updates.

From the PDB, we selected proteins up to 700 amino acids
from the year 2018 (called PDB 2018 from now on). We
applied the same split as proposed by Oliveira et al. [30],
that is, [0, 6478] proteins for training, [6479, 6978] proteins
for validation and [6979, 7478] proteins for testing.

Some amino acids have two letters to represent them.
Therefore, we considered the amino acid “X” as the amino
acid “A”, the amino acid “B” as the amino acid “N” and the
amino acid “Z” as the amino acid “Q”.

To generate the secondary protein structures, we used the
DSSP tool [31], [32]. In the Q3 classification, we considered
the G and H classes from Q8 classification as H, B and E
classes from Q8 classification as E and I, L, S, T classes
from Q8 as C. The classes in Q3 and Q8 classification are
unbalanced.

2) CB6133: The CB6133 database is a set of 6,133 pro-
teins of 50 to 700 amino acids, available on the PISCES
CullPDB [33] server. The proteins that are part of the set have
less than 30% similarity between them [3].

In this database, the amino acid “X” is different from the
amino acid “A”. Therefore, it has 21 amino acid sequence
information in the one-hot encoding format. In addition to
the amino acid sequences, the CB6133 dataset has similarity
sequence information, which was generated using the PSI-
BLAST [24] against the UniRef90 database with a 0.001
threshold and 3 iterations. To transform the similarity data
between 0 and 1, the sigmoid function was applied [3].
Similarity sequence information cannot be produced for large
databases in a timely manner [34].

We employed the same split used in the literature, that
is, [0, 5599] proteins for training, [5877, 6132] proteins for
validation and [5605, 5876] for testing. Classes are unbalanced
and there is no “I” structure in the test set.

A filtered version of this dataset was utilized to train
and validate the testing on CB513. This filtered version has
proteins with less than 25% of similarity to CB513 database.

We split the filtered version into [0, 5277] proteins for training
and [5278, 5533] proteins for validation.

3) CB513: The CB513 dataset [35] has 513 proteins. In
this dataset, a protein has more than 700 amino acids, so we
truncated this protein to 700 amino acids and the remaining
was considered another protein.

We utilized this database for prediction (testing). For train-
ing, we employed the filtered version of CB6133. The CB513
dataset has 21 features from amino acid sequence and 21
features from sequence similarity information. Classes are
unbalanced.

B. Amino Acid Properties

In this subsection, we present the additional amino acid
properties used in the protein secondary structure prediction.

1) Amino Acid Biological Properties: As additional char-
acteristics for classification, we used 8 different biological
properties of amino acids, as employed by Pok et al. [16].

For each amino acid in the sequence, we assigned a feature
vector represented whether or not the amino acid has the
specific feature. We applied the characteristics in relation to
hydropathy, charged or uncharged, size and polar or non-polar.
Values equal to 1 indicated the presence of the characteristic
and values equal to 0 indicated the lack of the characteristic.
In the case of the amino acid “X”, we considered it the same
as the amino acid “A”.

In the padding process, we assigned all 8 different biological
properties with values equal to 0.

2) Distance: For each of the amino acids in the protein se-
quence, we calculated the shortest distance from the analyzed
amino acid with all other different amino acids, checking the
anterior and posterior amino acids. If there was no specific
amino acid in the sequence, the distance to it was infinite.

With the distances calculated for all amino acids, we
normalized the values by applying the hyperbolic tangent
function. In the padding, we set all features with values equal
to 0.

3) Statistical Measures: In order to create statistical mea-
sures as additional characteristics, we used window of size 11,
that is, five anterior amino acids, the analyzed amino acid and
five subsequent amino acids, 21 and 41. For amino acids at
the beginning or at the end of the protein, we considered only
the nearby amino acids and excluded the padding.

Within each window, we calculated the mean, mode and
median, normalizing the values for the interval between 0 and
1. In the padding, we set all features with values equal to 0.

C. Evaluation Metrics

The performance of the proposed method was assessed
through the following evaluation metrics. In their formulation,
TP is the number of true positive cases, FP is the number of
false positive cases and FN is the number of false negative
cases.

Equation (1) presents the precision metric. We used this
metric to evaluate each class.

Precision =
TP

TP+FP
(1)



Equation (2) presents the recall metric. We applied this
metric to evaluate each class.

Recall =
TP

TP+FN
(2)

Equation (3) presents the Q3 accuracy metric. We employed
this metric to evaluate the method in the Q3 classification.

AccuracyQ3 =

∑
iε{Q3 classes}

correct predictions in i

∑
iε{Q3 classes}

residues in i
(3)

Equation (4) presents the Q8 accuracy metric. We utilized
this metric to evaluate the method in the Q8 classification.

AccuracyQ8 =

∑
iε{Q8 classes}

correct predictions in i

∑
iε{Q8 classes}

residues in i
(4)

D. Results

We divided the experiments into three parts: (i) training and
testing on PDB, (ii) training and testing on CB6133 and (iii)
training on filtered CB6133 and testing on CB513.

1) Training and Testing on PDB: In the Q3 classification
and the Q8 classification, we employed BLAST with the
top 10 alignments, using increasing voting weights for the
best alignments and E-value restriction equal to 0.00001.
Since the proteins are the same on Q3 and Q8 classification,
BLAST predicted 122,243 secondary structures from the test
set (84.5%), which has 500 proteins and 144,682 amino acids.
The Q3 accuracy was 93.7% and the Q8 accuracy was 89.3%.

After, we utilized the ensemble of classifiers. In order to
make a fair comparison with the literature, first we employed
only the amino acid sequence. For the Q3 classification, the
ensemble of classifiers achieved 82.6% of Q3 accuracy using
800 neurons in the recurrent network. The best result in the
literature for PDB 2018 proteins was 81.5% [30]. Table I
reports the precision and recall rates for each class.

TABLE I
PRECISION AND RECALL RATES ON PDB 2018 FOR EACH CLASS IN THE

Q3 AND Q8 CLASSIFICATION USING THE ENSEMBLE OF CLASSIFIERS
(EC) AND THE STATE-OF-THE-ART APPROACH [30].

Classification Class Precision Recall
[30] EC [30] EC

Q3
C 0.79 0.81 0.84 0.83
E 0.81 0.80 0.69 0.75
H 0.85 0.86 0.86 0.87

Q8

B 0.82 0.82 0.44 0.41
E 0.72 0.74 0.79 0.80
G 0.81 0.79 0.54 0.55
H 0.78 0.81 0.91 0.92
I 0.85 0.81 0.57 0.56
L 0.66 0.67 0.70 0.71
S 0.79 0.76 0.39 0.40
T 0.64 0.63 0.55 0.58

For the Q8 classification, the ensemble of classifiers
achieved 74.3% of Q8 accuracy using 900 neurons in the
recurrent network. The best result in the literature to PDB
2018 proteins was 73.1% [30]. Table I reports the precision
and recall rates for each class.

After, we utilized the additional features for the classifica-
tion. We used different configurations of the additional features
and the best result was 82.8% of Q3 accuracy and 74.3% of
Q8 accuracy. In both of them, we employed the amino acid
sequence and biological properties.

Then, we applied the fusion of BLAST and the ensemble
of classifiers. In the Q3 classification, we used the amino
acid sequence and biological properties in the ensemble of
classifiers and achieved 92.5% of Q3 accuracy. Table II
shows the precision and recall rates for each class in the Q3
classification of the fusion (BLAST+EC) and the state-of-the-
art [30] approach.

TABLE II
PRECISION AND RECALL RATES ON PDB 2018 FOR EACH CLASS IN THE

Q3 AND Q8 CLASSIFICATION USING BLAST AND ENSEMBLE OF
CLASSIFIERS (BLAST+EC) AND THE STATE-OF-THE-ART

APPROACH [30].

Classification Class Precision Recall
[30] BLAST+EC [30] BLAST+EC

Q3
C 0.79 0.92 0.84 0.91
E 0.81 0.92 0.69 0.92
H 0.85 0.94 0.86 0.95

Q8

B 0.82 0.78 0.44 0.71
E 0.72 0.91 0.79 0.92
G 0.81 0.80 0.54 0.77
H 0.78 0.93 0.91 0.96
I 0.85 0.82 0.57 0.78
L 0.66 0.86 0.70 0.86
S 0.79 0.79 0.39 0.72
T 0.64 0.78 0.55 0.78

In the Q8 classification, we utilized BLAST and the ensem-
ble of classifiers with the amino acid sequence and biological
properties and achieved 87.7% of Q8 accuracy. Table II
presents the precision and recall rates for each class in the
Q8 classification of the fusion (BLAST+EC) and the state-of-
the-art [30] approach.

2) Training and Testing on CB6133: In this experiment,
we performed the Q8 classification with the methods using
BLAST, the ensemble of classifiers and the fusion of both.

Initially, we used BLAST in order to find the similar
alignments of proteins of the test set of CB6133 and the
proteins from the PDB dataset. In the test set, there were
272 proteins and 56,686 amino acids and secondary structures.
With BLAST using the top 10 alignments, using increasing
voting weights for the best alignments and E-value restriction
equal to 0.00001, 45,562 secondary structures were predicted
(80.4%), with a Q8 accuracy equal to 86.5%.

Then, we applied the ensemble of classifiers. First, we
utilized only the features in the dataset in order to make a fair
comparison with the literature. The weights of the ensemble
were found in the validation set. Using only the amino acid



sequence, the ensemble of classifiers achieved 61.6% of Q8
accuracy with 900 neurons in each layer of the recurrent neural
network, surpassing the best result in the literature using only
amino acid sequence (59.1%) [30].

Then, we used the amino acid sequence and sequence
similarity information in the ensemble of classifiers. Empiri-
cally, we obtained the best result with 900 neurons in each
layer of the recurrent neural network. We obtained 75.8%
of Q8 accuracy. Table III presents our result compared to
other results available in the literature. Table IV shows the
precision and recall rates for our method and state-of-the-
art [22] approach.

TABLE III
Q8 ACCURACY ON CB6133 DATASET.

Methods Q8 Accuracy (%)
BLAST+EC (Fusion 2) 84.7
BLAST+EC (Fusion 1) 82.4
Ensemble of Methods [22] 76.3
Ensemble of Classifiers (EC) 75.8
2DConv-BLSTM [6] 75.7
biRNN-CRF [36] 74.8
DeepACLSTM [2] 74.2
CNNH PSS [37] 74.0
Ensemble of RNN and RF [30] 73.4
GSN [3] 72.1

TABLE IV
PRECISION AND RECALL RATES ON CB6133 DATASET FOR EACH CLASS IN

THE Q8 CLASSIFICATION USING THE ENSEMBLE OF CLASSIFIERS (EC)
AND THE STATE-OF-THE-ART APPROACH [22].

Class Precision Recall
[22] EC [22] EC

B 0.66 0.74 0.07 0.20
E 0.80 0.81 0.85 0.85
G 0.54 0.56 0.33 0.35
H 0.87 0.87 0.94 0.95
I —– —– —– —–
L 0.58 0.63 0.68 0.68
S 0.59 0.54 0.23 0.34
T 0.58 0.63 0.59 0.59

After, we evaluated the incorporation of other features
into the model. Initially, we considered only the amino acid
sequence (without sequence similarity information) and we
tested several additional characteristics (amino acid biological
properties, distance and statistical measures). The best result
obtained was using only biological properties, with 900 neu-
rons in each layer of the recurrent network, which achieved
62.0% of Q8 accuracy.

Then, we utilized the amino acid sequence and the sequence
similarity information. We tested several additional features
(amino acid biological properties, distance and statistical mea-
sures), but we did not improve the result (EC) shown in
Table III.

Finally, we applied the fusion of the ensemble of classifiers
and BLAST. The weights were found in the validation set.
Along with BLAST, we used the two best configurations of

the ensemble of classifiers, that is, using amino acid sequence
and biological properties (Fusion 1) and using amino acid
sequence and sequence similarity information (Fusion 2). We
achieved 82.4% of Q8 accuracy with the Fusion 1 and achieved
84.7% of Q8 accuracy with Fusion 2. Table III shows our result
compared to other results available in the literature. Table V
presents the precision and recall rates for Fusion 1, Fusion 2
and the state-of-the-art [22] approach.

TABLE V
PRECISION AND RECALL RATES ON CB6133 DATASET FOR EACH CLASS IN
THE Q8 CLASSIFICATION USING BLAST AND ENSEMBLE OF CLASSIFIERS
(FUSION 1 AND FUSION 2) AND THE STATE-OF-THE-ART APPROACH [22].

Class Precision Recall
[22] Fusion 1 Fusion 2 [22] Fusion 1 Fusion 2

B 0.66 0.67 0.71 0.07 0.63 0.63
E 0.80 0.87 0.91 0.85 0.90 0.91
G 0.54 0.71 0.72 0.33 0.59 0.63
H 0.87 0.90 0.93 0.94 0.93 0.94
I —– —– —– —– —– —–
L 0.58 0.77 0.77 0.68 0.76 0.80
S 0.59 0.68 0.71 0.23 0.62 0.63
T 0.58 0.72 0.74 0.59 0.70 0.73

3) Training on Filtered CB6133 and Testing on CB513:
Initially, we used BLAST to find the similar protein alignments
from the CB513 test set and PDB proteins. In the test set,
there were 514 proteins and 84,765 amino acids and secondary
structures. With BLAST using the top 10 alignments, using
increasing voting weights for the best alignments and E-value
restriction equal to 0.00001, 72,341 secondary structures were
predicted (85.3%), with Q8 accuracy equal to 90.2%.

Then, we applied the ensemble of classifiers, using the
filtered version of CB6133 for training and validate and CB513
for testing. As we did in the training and testing on CB6133,
first we made a comparison with the literature using only the
features of the dataset.

First, we utilized only the amino acid sequence. The weights
of the ensemble were found in the validation set. Empirically,
we obtained the best result with 500 neurons in each layer of
the recurrent neural network and we achieved 57.4% of Q8
accuracy. The best result reported in the literature using only
amino acid sequence was 57.1% [2].

After, we employed the amino acid sequence and the
sequence similarity information. The weights of the ensemble
were found in the validation set. We obtained the best result
with 900 neurons in the layers of the recurrent bidirectional
network. We obtained 71.2% of Q8 accuracy. Table VI
presents our result against the results available in the literature.
Table VII shows the precision and recall rates for our method
and state-of-the-art [38] approach.

Then, we tested the incorporation of additional features in
the model. First, we considered only the amino acid sequence
(without sequence similarity information) and we evaluated
several additional features (amino acid biological properties,
distance and statistical measures). We obtained the best result
using only the biological properties, with 500 neurons in the
recurrent network. We achieved 57.6% of Q8 accuracy.



TABLE VI
Q8 ACCURACY ON CB513 DATASET.

Methods Q8 Accuracy (%)
BLAST+EC (Fusion 2) 87.5
BLAST+EC (Fusion 1) 85.6
Conditioned CNN [38] 71.4
Ensemble of Classifiers (EC) 71.2
DeepNRN [39] 71.1
biRNN-CRF [36] 70.9
Ensemble of Methods [22] 70.9
Ensemble of RNN and RF [30] 68.9
BLSTM [18] 67.4
GSN [3] 66.4
CNF [40] 63.3
BRNN [41] 51.1

TABLE VII
PRECISION AND RECALL RATES ON CB513 DATASET FOR EACH CLASS IN

THE Q8 CLASSIFICATION USING THE ENSEMBLE OF CLASSIFIERS (EC)
AND THE STATE-OF-THE-ART APPROACH [38].

Class Precision Recall
[38] EC [38] EC

B 0.79 0.61 0.05 0.09
E 0.78 0.75 0.84 0.85
G 0.53 0.45 0.29 0.32
H 0.85 0.85 0.94 0.93
I 0.00 0.00 0.00 0.00
L 0.57 0.61 0.71 0.65
S 0.62 0.55 0.24 0.29
T 0.59 0.56 0.54 0.55

After, we utilized the amino acid sequence and the se-
quence similarity information. We evaluated several additional
features, but we did not improve the result (EC) shown in
Table VI.

Finally, we used the fusion of BLAST and the ensemble
of classifiers. The weights of the fusion were found in the
validation set. Along with BLAST, we used the two best
configurations of the ensemble of classifiers, that is, using
amino acid sequence and biological properties (Fusion 1) and
using amino acid sequence and sequence similarity informa-
tion (Fusion 2). We achieved 85.6% of Q8 accuracy with the
Fusion 1 and we obtained 87.5% of Q8 accuracy with the
Fusion 2. Table VI shows our result compared to other results
available in the literature. Table VIII presents the precision and
recall rates for Fusion 1, Fusion 2 and the state-of-the-art [38]
approach.

IV. CONCLUSIONS AND FUTURE WORK

The prediction of secondary protein structures has a major
impact on the analysis of protein folding. Even with several
methods in the literature, there is no method that solves the
problem with great results.

In this work, we presented a fusion of the prediction made
by BLAST with the ensemble of classifiers. The predictions
obtained with BLAST achieved good results, however, it is not
possible to classify all structures. The predictions achieved
with the ensemble of classifiers are competitive compared

TABLE VIII
PRECISION AND RECALL RATES ON CB513 DATASET FOR EACH CLASS IN

THE Q8 CLASSIFICATION USING BLAST AND ENSEMBLE OF CLASSIFIERS
(FUSION 1 AND FUSION 2) AND THE STATE-OF-THE-ART APPROACH [38].

Class Precision Recall
[38] Fusion 1 Fusion 2 [38] Fusion 1 Fusion 2

B 0.79 0.75 0.77 0.05 0.71 0.69
E 0.78 0.88 0.92 0.84 0.92 0.94
G 0.53 0.74 0.74 0.29 0.72 0.76
H 0.85 0.92 0.94 0.94 0.95 0.96
I 0.00 0.00 0.00 0.00 0.00 0.00
L 0.57 0.83 0.84 0.71 0.83 0.86
S 0.62 0.79 0.81 0.24 0.69 0.70
T 0.59 0.77 0.78 0.54 0.75 0.78

to the state-of-the-art results. With the fusion of BLAST
prediction and the ensemble of classifiers predictions, we
achieved results that are superior to those available in the
literature.

The fusion weights of BLAST and the ensemble of classi-
fiers followed the ratio close to 1 for BLAST and 0.8 for the
ensemble of classifiers, showing that both classifiers helped in
the final prediction.

The use of sequence alignment proved to be a path for
future work, as well as the application of other additional
characteristics of the amino acids and the protein sequence.
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