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Abstract—During the image acquisition process, noise is usu-
ally added to the data mainly due to physical limitations of the
acquisition sensor, and also regarding imprecisions during the
data transmission and manipulation. In that sense, the resultant
image needs to be processed to attenuate its noise without losing
details. Non-learning-based strategies such as filter-based and
noise prior modeling have been adopted to solve the image de-
noising problem. Nowadays, learning-based denoising techniques
showed to be much more effective and flexible approaches, such
as Residual Convolutional Neural Networks. Here, we propose
a new learning-based non-blind denoising technique named
Attention Residual Convolutional Neural Network (ARCNN),
and its extension to blind denoising named Flexible Attention
Residual Convolutional Neural Network (FARCNN). The pro-
posed methods try to learn the underlying noise expectation
using an Attention-Residual mechanism. Experiments on public
datasets corrupted by different levels of Gaussian and Poisson
noise support the effectiveness of the proposed approaches
against some state-of-the-art image denoising methods. ARCNN
achieved an overall average PSNR results of around 0.44dB
and 0.96dB for Gaussian and Poisson denoising, respectively
FARCNN presented very consistent results, even with slightly
worsen performance compared to ARCNN.

I. INTRODUCTION

Noise is usually defined as a random variation of brightness
or color information, as shown by Figure 1, and it is often
caused by the physical limitations of the image acquisition
sensor or by unsuitable environmental conditions. These issues
are often unavoidable in practical situations, which turn the
noise in images a prevalent problem that needs to be solved
by appropriate denoising techniques.

Denoising an image is a challenging task mainly because
the noise is related to its high-frequency content, that is,
the details [1]. The goal, therefore, is to find a compromise
between suppressing noise as much as possible and not loos-
ing too much details. The most commonly used techniques
for image denoising are the filter-based ones such as the
Inverse, Median, Kuan, Richardson-Lucy [2], as well as the
Wiener Filter [2]. Besides filter-based techniques, there exist
the non-learning-dependent noise modeling approaches, such
as EPLL [3], Krishnan [4], KSVD [5], BM3D [6], Markov
Random Fields [7], and Total Variation [8]. Such techniques
are based on noise prior modeling, and they figure some
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Fig. 1. An image can be visually degraded when contaminated by noise: (a)
original image, and (b) its noisy version.

drawbacks, such as the computational burden and the need to
fine-tune parameters. Their effectiveness is highly dependent
on the prior knowledge about the type of noise (e.g., Gaussian,
salt-and-pepper, speckle) and its statistical properties (e.g.,
mean and variance) [1].

In an opposite direction, deep learning-based techniques
have become the most effective methods used in many real-
world problems involving digital image processing, and like-
wise have been used as a natural replacement option for
the non-learning dependent filter and prior knowledge-based
denoising approaches. Such learning-based techniques tend to
be less affected by the non-linear characteristics of the noise
generator mechanisms.

Among such approaches, Multilayer Perceptrons (MLPs)
were, for a long time, one of the most explored machine
learning-based techniques for image denoising [9]-[11]. With
the recent advances in computer graphics processing capacity,
MLPs have been replaced by Convolutional Neural Networks
(CNNs), especially concerning image processing tasks (e.g.,
[12]-[16]).

State-of-the-art denoising CNNs have been used in a train-
ing strategy called residual learning, where the network is
trained to assimilate the noise prior distribution. In that
manner, it can almost replicate only the image noise, that
can be removed from the image by a simple point-wise
operation (e.g., [12], [14]-[16]). One main problem with such
an approach regards the noise-equally distribution assumption,



even knowing that the noise tends to be more concentrated in
certain specific parts of the corrupted image, which are usually
related to high-frequency regions.

Another very interesting deep learning training strategy
not yet very explored for image denoising is the attention
learning. Such a mechanism is capable to make the deep neural
network concentrates its learning effort in more informative
components of the input data. The benefits of such a mecha-
nism brings many advances in the areas of natural language
processing [17], recommendation systems [18], health care
analysis [19], speech recognition [20], and image classifica-
tion [21], among others.

In this paper, we propose a robust deep learning denoising
technique that consists of a CNN model that incorporates
residual and attention learning strategies. Indeed, we demon-
strate that attention mechanism is capable of support the
residual learning strategy, thus enhancing the neural network
denoising capacity without the need to increasing the num-
ber of parameters or the network architecture complexity.
Experiments on public datasets corrupted by different levels
of Gaussian and Poisson noise support the effectiveness of
the proposed approach regarding some state-of-the-art image
denoising methods.

The paper is structured into Sections II to V, presenting,
respectively, a brief discussion about the image denoising
problem using learning techniques, such as MLPs and CNNs,
and non-learning-based ones, the proposed approaches, their
training and evaluation methodology, quantitative and qual-
itative results, and the conclusions, also pointing out future
directions of investigations.

II. PROPOSED APPROACH

In this work, we propose a novel image denoising technique
named “Attention-Residual Convolutional Neural Network”
(ARCNN), as shown in Figure 2.
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Fig. 2. Attention-Residual Convolutional Neural Network Architecture, where
I, indicates the input noise image, Iq the output denoised image, Conv(y_ 20
indicates the convolutional layers, BN the Batch Normalization layers, Ryj.20]
the 63rds Residual maps, and Ap.20; the Attention weights.

Influenced by the works of Remez et al. [12], concerning
non-blind residual image denoising using CNNs, and Wang
et al. [21] regarding the usage of attention mechanism for
image classification, our proposal consists in developing a

novel Attention-Residual mechanism for image denoising, rep-
resented by the dashed rectangle in Figure 2. Such mechanism
is divided in two steps: (a) the Attention weights calculation,
described in details by Subsection II-A, and (b) the Noise
estimation process, described in details by Subsection II-B.
As shown by Figure 2, once the Attention-Residual mech-
anism was capable of estimating the noise' present in image
I,,, it can be further removed from the image through a simple
additive process® , which generates the Iy denoised image.

A. Attention Weights

The Attention weights calculation is summarized by Fig-
ure 3, represented by the yellow module A. The calculation
procedure consists in: (a) grouping together each one of the
k = 20 64th linearly activated feature maps into F', (b)
applying a sigmoid activation function to F', which generates
S, and (c) normalizing S content using a softmax activation
function.
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Fig. 3. Attention-Residual Mechanism, where Fjy 29 indicates the 64ths
feature maps extracted from each convolutional layer, and Sy..297 the sigmoid-
activated feature maps.

The softmax activation procedure that generates the Atten-
tion weights A is given by:
e’
A= =k (1)
Zp:l €’r

where ¢ € [1,k], and s; represents each element of S in the
ith depth position.

B. Noise Estimation

The noise estimation process consists in calculating the
noise estimates expectation, summarized by:

k
E[R] =) Ai®R;, 2)
=1

Tn this work, we used Gaussian and Poisson noise distributions to corrupt
the clean images.

2Qur experiments demonstrated that, even so the noise was applied in
a multiplicative manner, considering for example the Poisson corruption
process, such additive noise removal strategy has worked very well.



where R; is the ith residual map and ® stands for the point-
wise multiplication computed between the Attention weight
A; and the Residual map R;.

C. Loss Function

The network training follows the standart backpropagation
optimization procedure with the following loss function:

) 3)

t
1
L(@) = 52 ||161 —1g,
i=1

where ¢ stands for the number of training samples and ||.||%
denotes the Frobenius norm. Notice that we employed a patch-
based metodology, where I., and I, denote the ith patch
extracted from clean and denoised images, respectively. Such
a loss function was also used by Remez et al. [12].

D. Denoising Process

After the network was properly trained, the denoising pro-
cess can be described as follows:

Id = In - E[R]a (4)

where the expected noise value E[R], learned from the pro-
posed approach, is removed® from the corrupted image I,
thus generating the denoised image I;. In such a denoising
approach, different from the work of Remez et al. [12], the
Attention-Residual mechanism, described in Subsection II-A,
do not impose an equiprobable estimation restriction to F[R).
In that manner, the proposed mechanism acts like a point-wise
denoising regulator.

III. EXPERIMENTAL DESIGN

In this section, we present the methodology used to train
and evaluate the proposed ARCNN and FARCNN models. For
the sake of clarification, we divided the section into two parts:
Subsection III-A presents all the relevant information about the
train and test datasets used in this work, and Subsection I1I-B
discusses the train and evaluation procedures applied to the
proposed approaches.

A. Datasets

In this section, we provide details about the datasets used
for training and evaluating the robustness of the proposed
approach:

o Berkeley Segmentation Dataset (BSD500): dataset cre-
ated by [22] to provide an empirical base for research
in image segmentation and boundary detection. The pub-
lic dataset consists of 500 natural color and grayscale
images*. From the dataset, we used 900,000 patches of
sizes 64 x 64 extracted from its 432 images for training
purposes. The remaining 68 images were used to evaluate
the model.

3In Figure 2, such noise removal is treated likewise by a plus sign, which
denotes the residual mechanism itself.

“https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds

e« Common Objects in Context (COCO2017): a large-
scale object detection, segmentation, and captioning
dataset, composed of color images’ and their corre-
spondent foreground object annotations [23]. From the
COCO02017 dataset, we used 900,000 patches of sizes
64 x 64 extracted from all 123,402 images.

o DIVerse 2K high quality resolution images (DIV2K):
created by [24], it is composed of 1,000 images splitted
into subsets of 800, 100 and 100, respectively, for train-
ing, validation and test purposes. From the downscaled
DIV2K version dataset, we used 900, 000 patches of sizes
64 x 64 extracted from its 900 images®.

o Setl2: composed of 12 images,’ such as “Airplane”,
”Barbara”, “Boat”, “Butterfly”’, “Cameraman”, “Cou-
ple”, "House”, ”Lena”, "Man”, ”Parrot”, "Peppers”, and
”Starfish”.

« KODAK?24: dataset consisting of 24 natural images made
publicly available by the Eastman Kodak Company [25].

« Urbanl100: it is composed of 100 real-world indoor and
outdoor high resolution construction images,® such as
buildings and metro stations [26].

B. Evaluation and training procedures

We train the non-blind proposed approaches considering two
types of corruption process i.e, Gaussian and Poisson. The
training was conducted over four different noise intensities
for each individual corruption process. For the Gaussian one,
we trained ARCNNS considering o € {10, 30, 50, 70}, and for
Poisson corruption process we considered peak € {1,2,4,8}.
Note that ARCNN was trained individually for each noise
type and intensity. For the optimization process we used mini-
batches” and Adam optimization technique [28]. The training
step was executed by a maximum of 300 epochs,'® where each
epoch consists of 2,000 iteration steps of optimization.

During the training process, we used a learning rate!! of
0.001 and data augmentation to increase the dataset to eight
folds due to the use of rotation and flipping operations [14].
We also used networks with 20 layers, 64 filters of size
3 x 3 per layer, and batch normalization technique'? [29].
All convolutional operations were applied using zero-padding.
Besides, it is important to mention that, as the receptive field
of the network is of size 24 x 24, the outer 40 x 40 pixels of the
input suffer from convolution artifacts. To avoid these artifacts
in training, we calculate the loss of the network only at the
central part of each patch used for training i.e, not taking into

Shttp://cocodataset.org/#home

6Combination of 800 train images subset with 100 validation subset.

"https://github.com/cszn/DnCNN/tree/master/testsets/Set12

8http://vllab.ucmerced.edu/wlai24/LapSRN/results/SR _testing_datasets.zip

Each mini-batch contains 128 grayscale image patches of 64 x 64 size.

10Depending on the training process convergence the maximum epoch value
can be less than 300.

I'The initial value is reduced by a factor of 0.1 at every time the loss
function hits a plateau.

2Distributed over the network with a ratio of 3 layers of distance between
them.



TABLE I
PSNR RESULTS CONCERING THE GAUSSIAN DENOISING.

Method Set12 Kodak24 BSD68 Urban100
10 30 50 70 10 30 50 70 10 30 50 70 10 30 50 70
BMB3D [6] 34.38 | 29.13 | 26.72 | 25.22 | 34.39 | 29.13 | 26.99 | 25.73 | 33.31 | 27.76 | 25.62 | 24.44 | 34.47 | 28.75 | 25.94 | 24.27
TNRD [27] | 34.27 | 28.63 | 26.81 | 24.12 | 34.41 | 28.87 | 27.20 | 24.95 | 33.41 | 27.66 | 25.97 | 23.83 | 33.78 | 27.49 | 25.59 | 22.67
DnCNN [14] | 34.78 | 29.53 | 27.18 | 25.50 | 34.90 | 29.62 | 27.51 | 26.08 | 33.88 | 28.36 | 26.23 | 24.90 | 34.73 | 28.88 | 26.28 | 24.36
IRCNN [15] | 34.72 | 29.45 | 27.14 | N/A | 3476 | 29.53 | 27.45 | N/A | 33.74 | 28.26 | 26.15 | N/A | 34.60 | 28.85 | 26.24 | N/A
FFDNet [13] | 34.65 | 29.61 | 27.32 | 25.81 | 34.81 | 29.70 | 27.63 | 26.34 | 33.76 | 28.39 | 26.30 | 25.04 | 34.45 | 29.03 | 26.52 | 24.86
RDN+ [16] | 35.08 | 29.97 | 27.64 | 26.09 | 35.19 | 30.02 | 27.88 | 26.57 | 34.01 | 28.58 | 26.43 | 25.12 | 35.45 | 30.08 | 27.47 | 25.71
ARCNN 34.86 | 29.67 | 27.32 | 25.75 | 34.89 | 29.74 | 27.64 | 26.34 | 33.90 | 28.42 | 26.27 | 24.95 | 35.02 | 29.44 | 26.81 | 25.02
FARCNN 34.53 | 29.50 | 27.15 | 25.62 | 34.50 | 29.60 | 27.50 | 26.21 | 33.58 | 28.26 | 26.16 | 24.90 | 34.41 | 29.08 | 26.52 | 24.84

account the outer 40 pixels in the calculation of the loss, as
used by Remez et al. [12].

To train the blind version of our proposal, named FARCNN,
which stands for “Flexible Attention-Residual Convolutional
Neural Network”, we followed the same non-blind training
protocol. The main difference regards the single train adopted
strategy, where single Gaussian and Poisson denoisers were
trained to learn jointly noise prior distributions, ranging from
[0,75] and from [1, 10], respectively.

After training the ARCNN and FARCNN models, we eval-
uate quantitatively their effectiveness using the PSNR (Peak
signal-to-noise ratio) in terms of average improvement'?,
which was calculated over the denoised images of the test
datasets (see Subsection III-A). We also have shown some
qualitative image examples to illustrate the denoising capacity
of the proposed approaches. Both qualitative and quantitative
obtained results were compared against state-of-the art Gaus-
sian denoising techniques, such as BM3D [6], TNRD [27],
DnCNN [14], IRCNN [15], FFDNet [13], RDN+ [16], and
Poisson denoising techniques such as VST+BM3D [30], NL-
SPCAs [31], TRDPD [32], I+VST+BM3D [33], IRCNN [15],
and Class-Aware [12].

IV. EXPERIMENTAL RESULTS

In this section, we present and discuss in detail the quantita-
tive and qualitative results obtained by the proposed ARCNN
and FARCNN modes following the methodology presented in
Section III. For the sake of reading reading, we divided the
discussion into Subsections IV-A and IV-B.

A. Quantitative Results

According to Table I, one can note at first glance that
our proposed non-blind gaussian denoising technique ARCNN
was ranked in second place, considering the six compared
techniques. Overall improvement in PSNR results obtained
for BM3D, TNRD, DnCNN, IRCNN, and FFDNet techniques
were, respectively, about 0.61dB, 1.02dB, 0.22dB, 0.26dB,
and 0.11dB. Apart from that, Table I also shows that ARCNN
performs worst than RDN+ by an overall average of 0.33dB.
However, we highlight that our technique, in terms of quantity

13Results obtained by subtracting the PSNRvalues, like presented in [9].

of parameters, is around 32 x more compact, since RDN+ and
ARCNN have, respectively, about 21,937,000 and 681, 000
parameters each.

Looking more carefully at Table I, it also can be noticed
that, regarding the denoising train-based techniques TNRD,
DnCNN, IRCNN, and FFDNet, ARCNN maintains a sustain-
able improvement of around 0.2dBs, when considering Set12,
Kodak24, BSD68 datasets and o = {10, 30,50} intensities.
Considering only Urban100 dataset, ARCNN performs even
better, since under the same considerations and for the same
set of intensities, the improvement was on average of 0.72dB.
In this last case, the improvement can also be explained by
a more similarity between the training dataset and Urban100
test dataset distributions.

Analyzing the FARCNN results presented by Table 1, it can
be noticed that, as expected, our blind denoising technique
performs worst than the non-blind ARCNN model. Although,
under the same overall improvement analysis, it almost tied
with DnCNN and IRCNN, been only respectively 0.02dB
and 0.01dB worst. In comparison against FFDNet it was
clear that FARCNN was worst, with an overall decreasing
of about 0.12dB. The same ARCNN statements apply to the
comparison against RDN+.

According to Table II, considering the BSD68 dataset,
our non-blind Poisson denoising technique ARCNN performs
better than every other compared technique.

Overall noise improvement in PSNR, in the best case sce-
nario, was about 3.69dB in comparison against the NLSPCA
bin technique and, in the worst-case scenario, about 0.12dB
in comparison against Class-Aware method.

Analyzing the FARCNN results, one can see that the blind
denoising version of our proposal performs better than all other
techniques mostly, since Table II shows that FARCNN had, in
general same performance as Class-Aware technique in all the
experiments considering peak = {1, 2,4, 8}.

B. Qualitative Results

Beginning by Figure 4, one can observe that the Gaussian
denoising results of ARCNN, except for RDN+, outperform
all compared techniques. Different from others, ARCNN was
capable to restore the severed corrupted straight lines without
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Fig. 4. Urbanl00 single image gaussian denoising results for o = 50.
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Fig. 5. BSD68 single-image Poisson denoising results concerning peak = 8.

TABLE II
PSNR RESULTS CONCERNING POISSON DENOISING.

Method BSD68
1 2 4 8

NLSPCA [31] 20.90 | 21.60 | 22.09 | 22.38
NLSPCA bin [31] | 19.89 | 19.95 | 19.95 | 19.91
VST+BM3D [30] 21.01 | 22.21 | 23.54 | 24.84
I+VST+BM3D [33] | 21.66 | 22.59 | 23.69 | 24.93
TRDPD?X 5 [32] 21.49 | 22.54 | 23.70 | 24.96
TRDPDE;X7 [32] 21.60 | 22.62 | 23.84 | 25.14
IRCNN [15] 21.66 | 22.86 | 24.00 | 25.27
Class-Aware [12] 21.79 | 22.90 | 23.99 | 25.30
ARCNN 21.82 | 22.98 | 24.17 | 25.48
FARCNN 21.73 | 22.90 | 24.10 | 25.37

causing to much blurry effect in the surrounding content.
Regarding FARCNN, some of the image is straight lines were
not totally restored, but even so, the resultant denoised image
quality resembles the DnCNN and IRCNN ones.

Figure 5 shows even better ARCNN performance results
obtained in the Poisson denoising task. In comparison against

the second-best Poisson denoising technique, according to
Subsection IV-A analysis, ARCNN was capable to restore
facial regions with more fidelity than Class-Aware technique.
Such a statement can be verified especially in between eye-
brow regions and of the right eye of the man’s face. In
those regions, one can see that the Class-Aware denoising
technique generates a denoised image with some kind of
cartonization effect. The FARCNN technique presented de-
cent results, especially because it also recovered face high-
frequency regions. Like ARCNN, the blind version also did
not generate cartonization effects, but even so, it generated
some distortions in the face image, like the ones above the
left eyebrow and on the right side of the chin.

To better analyze the behavior of the attention mechanism of
the trained ARCNN and FARCNN models, blind we generated
a heat map graphical representations for the attention weights
taken from layers 1, 8, and 20, as shown by Figure 6.
In this same figure, one can note that going deeper in the
network indicates the increasing level of attention in the input
image high-frequency regions, such as the butterfly wings
and antennae contours. Such behavior is evidenced in both
blind and non-blind cases, being, the contour regions more
pronounced in the latter.
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Fig. 6. Heat map representations of ARCNN (first row), and FARCNN (second row) attention weights. From left to right, there are the network input noise
image, (o = 30), followed by the attention weights collected from layers 1, 8, and 20.

V. DISCUSSION AND CONCLUSIONS

In this work, we demonstrated that the residual-attention
mechanism enhances the Convolution Neural Network ca-
pacity of denoising, regarding Gaussian and Poisson noise
corruption processes. The proposed ARCNN method achieves
state-of-the-art results in comparison against six Gaussian and
eight Poisson denoising techniques. The quantitative overall
improvements of our Gaussian and Poisson non-blind learning-
based denoisers, apart from the RDN+ technique, were respec-
tively around 0.44dB and 0, 96dB, on average.

The qualitative results also evidenced the ARCNN capacity
to recover the image corrupted high-frequency regions. Be-
sides that, also apart from RDN+ in the Gaussian denoising
case, we also could show that the blind Gaussian and Poisson
FARCNN denoisers presented results sufficiently closer to
their non-blind denoiser versions. Matter of fact, the great
advantage of the FARCNN denoiser regards its mechanism
of assimilating knowledge about many different noise inten-
sities at the same time, achieving almost non-blind denoiser’s
effectiveness.

Regarding RDN+ comparisons, we verified that, even so
RDN+ was capable to produce the best Gaussian denoising
results, it fails in terms of compactness. Its quantity of
parameters is at least 32 larger than the proposed approaches,
which could generate efficiency bhort comings or even make
impossible the usage of the technique in small-sized memory
devices, such as smartphones and tablets.

In future works, we intend to explore the proposed ap-

proach’s capacity to work with different types of noise, such
as JPEG noise compression, speckle, and blur ones, using
also color images. Besides that, we pretend to investigate
the performance of the attention-residual mechanism in the
context of classification problems.
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