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Abstract—The impact in reducing the radiation dose in com-
puted tomography (CT) exams is directly related to the quality
of the images obtained in these exams. Such images are degraded
by undesirable artifacts, known as noise. In order to improve the
quality of these images and provide an accurate medical diag-
nosis, it is necessary to apply noise reduction techniques. In this
study, a method based on structural segmentation and filtering
through morphological operators along with a BM3D filtering
is proposed to reduce noise and preserve details in low-dose CT
dental images. Experimental results of the proposed method were
compared with several existing methods and validated using the
PSNR, SSIM, MSE and EPI metrics. Our method demonstrated
superior performance among the evaluated filters. In comparison
to the filter that obtained the best results, our method had a gain
of 12.46% on PSNR, 11.11% on SSIM, 14.5% on MSE and 9.63%
on EPI metrics.

I. INTRODUCTION

In the field of medical imaging, computed tomography (CT)
is an extremely important tool that examines internal structures
of a patient and provides accurate medical diagnosis. In this
exam, the dose of radiation is directly associated with the
quality of the image acquired. That is, a high radiation dose
provides a high quality image. However, exposing patients to
high doses of radiation is detrimental to their health. Therefore,
in order to prevent the patient to constant radiation exposures,
the medical community has been focusing on reducing the
dose of radiation applied in CT scans.

Currently, the ALARA (As Low As Reasonably Achievable)
principle has been taken as a reference, which aims to mini-
mize the dose of radiation at a ”as low as reasonably possible”
level, while maintaining an acceptable diagnostic accuracy
[1]. Images acquired in low-radiation CT scans are usually
impaired by noise, where important structures and details are
affected, resulting in poor quality images, which may influence
the final medical diagnosis.

Several filters have been proposed in the literature with
the purpose of reducing noise and preserving the integrity of
important details of the images. A widely used noise filtering
technique is the median filter [2]. This filter attempts to restore
the intensity value of the corrupted pixel by calculating the
median values of the intensities of the neighboring pixels.
However, this type of filtering not only reduces present noise

but also damages structural details [3]. Another well-known
and used technique is the Gaussian filtering. When applied
with optimal parameters, it can be efficient in terms of noise
reduction, however, it tends to erase edges and details and can
lead to ghost edges [4].

Proposed by Tomasi et al. [5], the bilateral filter smoothes
the noise and preserves the structural edges of the images. In
this method, each pixel is replaced by the weighted average of
the values of the intensities of its neighboring pixels, through
their proximity and similarity [5]. The bitonic filter, proposed
by Graham Treece [6], presents better edge preservation and
detail than the median filter and greater noise reduction
capability than the Gaussian filter. It uses the definition of
a signal as being bitonic, containing only one local maxima
or minima within the filter range [6].

The guided filter [7] can be used as an edge-preserving filter,
like the bilateral filter [5] but with better results near edges.
The guided filter considers the content of an input image, a
guidance image and an output image [7]. A sliding window
MxN processes the pixels of the guidance image and applies
the result of this step into the input image. The pixel values
are calculated according to their respective colors and spatial
similarity. After calculating such values, the output image is
obtained.

Based on sparse representation in the transform domain,
the Block-Matching 3D (BM3D) technique was proposed
by Dabov et al. [8]. This technique reduces the noise by
processing similar blocks within the image. It groups these
similar 2D blocks into 3D arrays, called groups, and performs
a collaborative filtering in such groups: initially, through a 3D
transform with a hard threshold and, after, through a collabo-
rative Wiener filter. Finally, the output image is reconstructed
using a weighted average aggregation [8]. In addition to these
examples, several techniques can be found in the literature,
such as wavelet transform filtering, introduced by [9], AWMF
(Adaptive Weighted Median Filter) [10], AMF (Adaptive Me-
dian Filter), PSMF (Progressive Switching Median Filter) [11],
NAFSMF (Noise Adaptive Fuzzy Switching Median Filter)
[12], DBUTMF (Decision Based Unsymmetrical Trimmed
Median Filter) [13], BPDF (Based on Pixel Density Filter)
[14], OCS (Open-Close Sequence) filter [15], among others.



Also, recently, filters based on mathematical morphology
operators are being commonly used. In image processing,
mathematical morphology is used to identify and extract image
information based on shape or contour properties of the image
through a structuring element [16] which is used to determine
the efficiency of the morphological operator. The fundamental
operators of mathematical morphology are dilation, erosion,
opening and closing [15]. Such operators are efficient not
only for noise reduction but also for structural segmentation,
information and details extraction or to compress images.

In this study, a noise reduction method focused on low-
dose computed tomography dental images is presented. Our
method relies on the use of mathematical morphology and has
two main stages: image segmentation and noise filtering. The
first stage is responsible for extracting the foreground from
the background region of the image while the second stage
performs the noise filtering with morphological operators and
BM3D. Experimental results demonstrated that the proposed
method reduced the noise and preserved edges and details
more efficiently than the compared filters. To validate its
effectiveness, PSNR, MSE, SSIM and EPI were used as
quantitative image quality metrics.

The course of this paper is organized as follows: in Section
2 is presented the materials and the proposed method. Exper-
imental results and valiadtion are presented in Section 3. The
results are discussed in Section 4 and the work is summarized
and concluded in Section 5.

II. MATERIALS AND METHODOLOGY

The low-dose CT dental images used in this study were
taken from an anonymized database from the Universitary
Hospital of Santa Maria. These images are contaminated
with natural noise acquired during the scanning process. Our
proposed noise reduction method is presented in two stages:
image segmentation and noise filtering.

A. First Stage: Image Segmentation

Image segmentation is a process in which a given image is
divided into regions in order to select which will be processed
or analyzed separately [17]. To achieve the best performance
in the stage of noise filtering, we divided into two different
regions: background and foreground.

Firstly, the gray scale level image, denoted f2, is obtained
from the input noisy image f1 (see Fig. 1(a)).

Then, a morphological opening by reconstruction is applied
in f2. First, the opening removes bright features which sizes
are smaller than the structuring element and, after that, the
dilation restore the contours of components that have not
removed by the opening operator. The output image after this
reconstruction is denoted f3 and is described as

f3 =
∨
n≥1

δ
(n)
f2

(γf2). (1)

where γBf2 = δB(εB(f2)) is the opening operator in f2
with a diamond shaped structuring element B of size 2, and

(δB(f2))(x) = maxb∈Bf2(x+ b) is the dilation operator. The
image resulted from this step is illustrated in Fig. 1(b).

As the image structures has high contrast with the back-
ground region, Otsu threshold method [18] was applied to
detect the ground truth region in f3. The resulting image f4
is illustrated in Fig. 1(c). In order to extract the foreground
region from the background, an element-wise multiplication
was applied between f4 and the input image F2. Done that,
we obtained the noisy foreground region f5 and the noisy
background region f6, shown in Fig. 1(d) and Fig. 1(e)
respectively. These two noisy regions will be processed in the
next stage of the proposed method, named as noise filtering.

(a) (b)

(c) (d)

(e)

Fig. 1. (a) Gray scale level input image f2. (b) Resulting image f3 from
opening by reconstruction. (c) Ground truth image f4 after Otsu’s threshold.
(d) Noisy foreground f5. (e) Noisy background f6.

B. Second Stage: Noise Filtering

The noise filtering stage of our proposed method takes as
input images to be processed the noisy foreground region
f5 and the noisy background f6. To reduce some of the
noisy artifacts present in the foreground region, we firstly
applied a morphological opening operator γ in f5 with the
same structuring element B used in the segmentation process,



resulting in the image f7 illustrated in Fig. 2(a). This operation
can be understood as

f7 = γB = δB(εB(f5)). (2)

This operation removes objetcs that are smaller than B through
the erosion operator and restore in part the remained objects
through the morphological dilation.

Before completely restoring the components degraded by
the opening operator, we enhanced the preserved details using
the CLAHE (Contrast Adaptive Limited Histogram Equal-
ization) enhancement algorithm, obtaining f8. CLAHE is
an improved version of the adaptive histogram equalization
(AHE) [19]. The algorithm basically divides the image into
regions of nearly the same size, which will form three different
groups. The first group, called corner regions, contains the
four corner regions of the image. The second group contains
the border regions and is called border group and the rest
of the regions are grouped into the internal regions group.
After this grouping process, the histogram of each region is
enhanced. The regions are combined back to their original
positions using bilateral interpolation and the output enhanced
image is obtained. In our proposed method, the result of this
step can be seen in Fig. 2(b).

Now, to completely restore the components degraded by
the morphological opening operator, a morphological recon-
struction by dilation was used. In our case, the mask image
is the foreground image f5 and the marker image is the
image resulting from CLAHE enhancement f8. The resulting
reconstructed image f9 is illustrated in Fig. 2(c) and can be
mathematically expressed as

f9 =
∨
n≥1

δ
(n)
f5

(f8). (3)

However, according to Fig. 2(c), it is possible to notice
that noisy artifacts are still present in the foreground region.
In order to smooth out the noise, we introduced the Block-
Matching 3D (BM3D) filtering technique.

Proposed by Dabov et al. [8], the BM3D is an image de-
noising technique based on an enhanced sparse representation
in the transform domain. The filter can be understood in two
steps: basic estimate and final estimate.

In the first step, the filter processes the noisy image f9 to
find similar blocks, grouping them in a 3D array, called groups.
Then, it applies a 3D transform and its inverse to each formed
group in order to reduce the noise and produce estimates of
each 3D group, returning them to their original positions. To
complete the first step, the technique compute the estimates by
weighted averaging, generating the input image of the second
step.

The final estimate is done by grouping similar blocks
between the noisy image and the output image from the
previously step (basic estimate) into two 3D groups. A 3D
transform is applied in both groups and a collaborative Wiener
filtering is used to filter the noisy image blocks using the
energy spectrum of the basic estimate as the true spectrum,
producing estimates of each group. Then, the inverse transform

is applied and the estimates are returned to their original
positions. The final output image (see Fig. 2(d).) , denoted
as f10, is obtained by aggregating all the estimates using
weighted average.

Now that the foreground region is completely processed,
the noise present in the background region image f6 must be
filtered. For that, we can simply apply another morphological
opening operator with the same parameters used before. Done
that, the filtered background image f11 is obtained and it is
possible to see in Fig. 2(e) that the noise was successfully
erased.

The last procedure of the noise filtering stage and, conse-
quently, of our proposed method, is to compute the filtered
foreground and background regions in order to get the final
noise-free output image f12. For that, it is done an addition
between f10 and f11. Fig. 2(f) shows the final noise-free output
image of our proposed method.

(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) Resulting image f7 from opening operator. (b) Resulting image
f8 from CLAHE enhancement. (c) Resulting image f9 from reconstruction
by dilation. (d) Filtered foreground after BM3D. (e) Filtered background. (f)
Output image f12 of the proposed method.

III. EXPERIMENTAL RESULTS AND VALIDATION

We tested our method on 991 low-dose computed tomog-
raphy dental images. The images are of size 512x512. Our



experiments were performed using an Intel(R) Core(TM) 2
Duo CPU, clock of 2.00 GHz and 4GB of RAM memory.
The algorithms have been implemented in MATLAB R2015a.

The performance of the proposed method is compared with
Standard Median Filter (SMF), Wiener, Gaussian, Average,
Guided, Bilateral and Bitonic filters, BM3D, AWMF, Visu-
Shrink, Anisotropic Diffusion, AMF, PSMF, NAFSMF and
OCS filter. For quantitative evaluation, the metrics PSNR,
SSIM, MSE and EPI were used. The parameters for each
evaluated filter were adjusted to ensure good noise reduction
and detail preservation results in both quantitative and visual
aspects.

The PSNR (Peak Signal-to-Noise Ratio) metric computes
the peak signal-to-noise ratio in decibels between the original
image f and the reconstructed image g and can be described
as

PSNR(f, g) = 10log10(
2552

MSE(f, g)
). (4)

PSNR values tends to be high when the MSE is low. That said,
a higher PSNR value usually means a good image quality [20].

The MSE (Mean-Squared Error) measures the average
squared difference between two images. A value closer to
zero corresponds good results. The MSE between the original
image f and the processed image g, both of sizes MxN, is
computed as:

MSE(f, g) =
1

MN

M∑
i=1

N∑
j=1

(fij − gij)
2. (5)

Structural similarity (SSIM) [21] is used to measure the
similarity between two images, considering three important
factors: loss of correlation, luminance distortion and and
contrast distortion [20]. The SSIM is defined as

SSIM(f, g) = l(f, g) ∗ c(f, g) ∗ s(f, g) (6)

where

l(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1

c(f, g) =
2σfσg + C2

σ2
f + σ2

g + C2

s(f, g) =
σfg + C3

σfσg + C3

(7)

with C1 = (k1L)2, C2 = (k2L)2, C3 = C2

2 , k1 = 0.01,
k2 = 0.02 and L is the dynamic range of the pixels values.
The terms l(f,g) refers to the luminance comparison where µ is
the average of f and g; c(f,g) is the contrast function where σ is
the variance of f and g and s(f,g) is the structure comparison
function. A value of 0 means no correlation at all between
the images and 1 means that the processed image had good
structural preservation and is equal to the input image [21].

The EPI (Edge Preservation Index) [22] evaluate the correla-
tion of the edges between two images, which can be expressed
as

EPI =
Γ(∆s− ∆s,∆ŝ− ∆ŝ)√

Γ(∆s− ∆s).Γ(∆ŝ− ∆ŝ,∆ŝ− ∆ŝ)

Γ(s1, s2) =
∑

i,j∈ROI

s1(i, j).s2(i, j)
(8)

where ∆s(i, j) and ∆ŝ(i, j) are the highpass filtered version
of the region of interest (ROI) in s(i, j) and its transformed
version s2(i, j) obtained with a 3x3 standard approximation
of the Laplacian operator. The terms ∆s and ∆ŝ are mean
values in the ROI of s(i, j) and s2(i, j), respectively.

The performance results of each filter evaluated above are
discussed in Section IV. In addition to quantitative compar-
isons, shown in Table 1, subjective visual comparisons are
also made between images processed by all filters evaluated
which are presented in the next section.

TABLE I
PERFORMANCE OF EACH EVALUATED FILTER.

Filters PSNR SSIM MSE EPI
SMF 21.32 0.33 561.95 0.72

Wiener filter 24.76 0.58 204.31 0.73
Gaussian filter 23.32 0.53 299.64 0.7
Average filter 21.08 0.42 579.03 0.68
Guided filter 21.83 0.48 271.27 0.8
Bilateral filter 23.72 0.57 242.76 0.73

BM3D 25.59 0.63 207.11 0.83
Bitonic filter 21.91 0.48 488.18 0.74

AWMF 22.33 0.38 529.16 0.69
Visu-Shrink 20.74 0.32 673.65 0.51

Anisotropic diffusion 24.02 0.6 288.61 0.79
AMF 21.13 0.49 574.25 0.71
PSMF 21.28 0.45 560.93 0.69

NAFSMF 21.81 0.59 598.32 0.71
OCS 22.95 0.43 466.48 0.75

Proposed 28.78 0.7 177.06 0.91

IV. RESULTS DISCUSSION

Fig. 3 (a) is a noisy low-dose dental computed tomography
image taken as input for each simulation. Fig. 3 (b) is the
denoised image processed by the SMF, which can be noticed
that the noise was well reduced but some small structures and
edges got blurred. In Fig. 3 (c) we can notice that the Wiener
filter left some noise and created an almost transparent line
across the rounded border.

In visual terms, Fig. 3 (d) and Fig. 3 (e) had almost
the same performance, although the Average filter had lower
PSNR, leading to a less noise reduction efficiency. The image
processed by the Guided filter, illustrated in Fig. 3 (f) had
its structures and details blurred, as well as the noise present,
which was not reduced in a proper way. The bilateral filter (see
Fig. 3 (g)) left the image blurred and degraded some small
structures and details. The standard BM3D (Block-Matching
3D) filter reduced in part the noise and had the best edge
and structure preservation performance among the evaluated
filters, proven by its average EPI and SSIM values. The image
resulting from this filtering process is illustrated by Fig. 3 (h).



(a) Original image (b) Median filter (c) Wiener filter (d) Gaussian filter

(e) Average filter (f) Guided filter (g) Bilateral filter (h) BM3D

(i) Bitonic filter (j) AWMF (k) Visu-Shrink. (l) Anisotropic diffusion

(m) AMF (n) PSMF (o) NAFSMF (p) OCS

(q) Proposed

Fig. 3. Noise reduction results of each evaluated filter.

The bitonic filter obtained similar visual results as the
Bilateral filter. However, instead of degrading small structures,

the filter left them with a blurry aspect. The AWMF had similar
results to the Standard Median Filter, however, the resulting



image (see Fig. 3 (j)) obtained a more expressive blurring
aspect in small structures and highlighted some noisy pixels
in the image. According to the results shown in Table 1, the
Visu-Shrink technique had the worst average results among
the compared filters. Also, according to Fig. 3 (k), it had a
poor visual performance.

The Anisotropic diffusion technique had a good edge and
structure preservation efficiency (see Fig. 3 (l)) with an average
EPI and SSIM of 0.79 and 0.6, respectively. On the other hand,
the filter was not effective in reducing noise.

The AMF, PSMF and NAFSMF, Figs. 3 (m), (n), (o),
respectively, computed close quantitative results in all quality
metrics used. Yet, the AMF and PSMF had better visual results
when it comes to noise reduction, compared to the NAFSMF.

The morphological Open-Close Sequence (OCS) filter had
a good visual noise reduction performance, which can be seen
in Fig. 3 (p). Even though its average PSNR value was not
the best, the OCS filter showed a good edge preservation, with
an average EPI of 0.75. However, small structures and details
were poorly preserved, proven by its low average SSIM value
of 0.43.

Our proposed method exceeded all the filters evaluated in
all the quantitative quality metrics used. In Fig. 3 (q) it is
possible to see that our proposed method denoised the image
in a satisfactory way, with the best average PSNR value of
28.78. Also, it preserved structures and details better, proved
by its average SSIM value of 0.7, had less loss of information,
with the lowest average MSE value of 177.06 and obtained
the best efficiency in preserving edges, with an average EPI
value of 0.91. Compared to the filter which obtained the best
quantitative results, the standard BM3D, our method proved
to be 12.46%, 11.11%, 14.5% and 9.63% better on PSNR,
SSIM, MSE and EPI metrics, respectively.

V. CONCLUSIONS

This paper introduces a method based on mathematical
morphology operators and Block-Matching 3D filtering to
reduce noise and preserve details in low-dose computed to-
mography dental images, which is divided into two stages:
image segmentation and noise filtering.

The proposed method was tested on 991 images taken
from an anonymous database. In simulation experiments, the
proposed method is compared with 17 noise reduction filters.
The experiments are validated using PSNR, SSIM, MSE
and EPI quantitative performance metrics. By comparing the
results of each evaluated filter, it is shown that the proposed
method performs better than the other filters on noise removing
performance, with an average PSNR value of 28.78. Also, the
visual results of low-dose CT dental images indicates that the
proposed method preserves the image details, such as edges
and small structures, proved by its average SSIM and EPI
values of 0.7 and 0.91, respectively.
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