
PursuitPass: A Visual Pursuit-Based User
Authentication System

Alex Torquato S. Carneiro∗, Carlos Eduardo L. Elmadjian∗, Candy Gonzales∗,
Flavio L. Coutinho† and Carlos H. Morimoto∗

∗ Institute of Mathematics and Statistics
University of São Paulo, São Paulo, Brazil

Email: {alexc, elmad, candytg, hitoshi}@ime.usp.br
†School of Arts, Sciences and Humanities
University of São Paulo, São Paulo, Brazil

Email: flcoutinho@usp.br

Abstract—As our lives get more deeply submerged in digital
format, ubiquitous access to sensitive data requires more secure
and efficient user authentication procedures. Methods that solely
relied on password entry were lately enhanced with the use
of biometrics. Yet, these techniques can still be tricked by, for
example, recordings of the face, voice, and fingerprint cloning.
In this paper we introduce PursuitPass, a compact, robust, and
efficient visual pursuit-based authentication system. PursuitPass
is a user calibration-free method that requires the user to
enter a password by visually pursuing moving targets on a
small screen, such as a public ATM or a personal mobile
phone. Because eye movements are used as input, passwords
are better protected against shoulder surfing. Also, since targets
can potentially move in unpredictable ways, it naturally imposes
a liveness feature that cannot be counterfeited by recordings
of the eyes. We investigated four pattern-matching algorithms to
match visual pursuit user data with the movement of the targets.
Two experiments were conducted. The first experiment aimed to
define the best performing matching algorithm and configuration
for PursuitPass. The second experiment aimed to evaluate the
performance of our prototype. PursuitPass achieved a 96.82%
accuracy with an average time of 10.42 s on a series of 4-digit
PIN entry trials.

I. INTRODUCTION

To avoid attacks that can expose the user’s credentials such
as smudge [1] and shoulder surfing [2], authentication systems
rely on input methods that are hard to be monitored by a third
party and leave no traces of use. In this scenario, the use
of eye movements as input can be advantageous since it is
harder to observe the users’ eyes in comparison to manual key
presses, and eye movements do not leave any marks behind,
preventing smudge and thermal attacks. Figure 1 shows a
possible scenario of a user interacting with an eye movement-
based interface.

Eye movements can be captured using a video-based eye
tracker [3], a device that uses at least one camera and computer
vision algorithms to detect and track the eyes. Basic eye move-
ments can be classified into fixations (when the eye position is
kept relatively stable), saccades (rapid eye movements between
fixations), and smooth pursuits (when the eye is pursuing
moving objects, such as flying birds and running dogs).

Fig. 1. PursuitPass concept and use case as a secure authentication mechanism
based on visual pursuit.

When it comes to eye-based selection techniques, dwell-
time is typically used to select a target on a computer screen,
i.e., a target is only selected after the user fixates at its location
for a certain dwell-time (usually fixations between 400 ms to
1000 ms). This technique can be used to control virtual keys on
an ATM machine using eye movements, for example. One of
its major drawbacks is that it requires user calibration to map
an eye feature, such as the pupil center, from the eye camera
coordinate system to the computer (or ATM) screen. Smooth
pursuit movements, however, do not require calibration and
have been considered as an efficient and reliable alternative to
select moving targets, though real world applications are still
lacking, such as authentication by entering a PIN code.

The EyePassword, developed by Kumar et al. [2], is an
example of an authentication system that uses dwell-time to
control a virtual keyboard to enter passwords using the user’s
gaze, after calibration. The authors investigated three types of
on-screen keyboards: QWERTY, alphabetic and ATM numeric
keypads. They evaluated the performance of the dwell-time



method and compared it with a multimodal technique that used
a trigger key (spacebar) to select a key instead of dwell-time.
Their results showed that the dwell-based method had lower
error rates (about 3%) than the multimodal method (about 4%).
The average speed to enter 8-character length passwords was
9.2 seconds using the dwell-based method with a 450 ms dwell
on the QWERTY keyboard.

To avoid shoulder surfing attacks, visual feedback must be
avoided. Kumar et al. [2] used audio feedback to indicate that
a key was selected, which reveals the length of the password.
To enhance security and facilitate the task of entering the
password by gaze, Weaver et al. introduced EyeDent [4], a
technique that processes a constant stream of data from the eye
tracker and identifies the main clusters that correspond to the
set of keys gazed by the user. Using a virtual numeric keypad,
users of EyeDent were able to enter a 4-digit PIN (personal
identification number) in about 2.7 s with 83% accuracy.

Eye gestures defined by a sequence of fixations and saccades
can be recognized directly from the eye tracker data stream
without user calibration. One such system was proposed by
Rajanna et al. [5]. Their system displays 36 geometric shapes
on the computer screen and the user must follow the contours
of 3 shapes. In their experiments using a pattern matching
technique to compute a score between the shapes and eye
movements, they obtained 96% of authentication accuracy
with disturbed calibration.

De Luca et al. [6] suggested two gesture-based methods:
EyePIN and EyePassShapes. EyePIN uses one gesture per
symbol, similar to graffiti alphabets used in old palm comput-
ers. Besides the problem of learning each gesture, performing
several of them to complete a password can be slow. To
reduce memory load and facilitate learnability, they proposed
EyePassShapes, where users must replicate geometric shapes
described by a sequence of vertices within a regular grid,
similar to shape passwords used in smart phones.

Though eye gestures can be detected directly from the
eye tracker stream without user calibration, gestures can be
recorded and used by an attacker. A calibration-free alternative
that can be robust to recorded videos of eye movements rely
on smooth pursuits. A key aspect of smooth pursuits is that
a moving stimulus is required to trigger them. They also do
not require any memorization as in gesture-based techniques,
and because the motion of visual targets can be randomized,
pursuit-based methods tend to be more robust against video
recordings of eye movements. Examples of authentication
techniques that exploited pursuits were presented by Cymek
et al. [7] and Liu et al. [8].

Cymek et al. [7] proposed a method with 16 moving targets
that basically corresponded to a numeric keypad commonly
seen in ATM machines. Each key moved along predefined
paths composed of horizontal and vertical strips. In their
experiments, this technique resulted in an average speed of 25
s to enter a 4-digit PIN, with 97.57% accuracy. Because keys
moved in distinct directions, their method requires a larger
screen than available in most ATMs, and because each key
always performs the same pattern, it is vulnerable to recording

attacks.
Liu et al. [8] suggested a visual pursuit technique for mobile

phones. Their proposed interface was composed of 4 visual
targets that could move along a line, either up, down, left,
or right. In their experiments, this technique resulted in an
average speed of 9.6 s to enter a 5 symbol PIN, with 91.6%
accuracy. Due to the simplicity of the trajectories, attackers
could also easily identify the eye movements.

Smooth pursuit-based systems for PIN authentication do
not require users to memorize gestures or fixate targets to
select virtual keys. They just need the user to pursuit a target
associated with an intended symbol with his/her eyes. Because
of that, interaction occurs in a much more spontaneous and
intuitive way, something that motivated us to design and
evaluate PursuitPass, our proposed authentication system for
ATM machines based on smooth pursuit.

PursuitPass is a proof of concept that demonstrates the
advantages of smooth pursuits and matching methods as two
fundamental parts in the problem of private and secure user
authentication. The application’s main purpose is to validate
someone’s credentials without exposing the user to shoulder
surfing and without requiring prior user calibration, which
is the most common downside of other related gaze-based
methods.

Next sections are organized as follows: we describe the
design of PursuitPass in the Section II, detail the theoretical
background employed by us in Section III, describe how
PursuitPass was evaluated in Section IV, present our results
in Section V, discuss about our results and compare to
other similar systems in Section VI, and, finally, make our
conclusions and future intentions in Section VII.

II. PURSUITPASS DESIGN

PursuitPass was designed as an authentication method suited
for both public and personal small displays, such as ATM
machines and mobile phones. Because it is based on visual
pursuits, it is calibration-free and robust to shoulder surfing,
smudge, thermal, and acoustic attacks. We have included
random features in the behavior of the visual targets that
requires user liveness, i.e., the technique is robust against
recorded videos of eye movement patterns.

The interface comprises four targets moving in circular
orbits around a PIN input field. Each target has its own color
and is associated with a label corresponding to two digits,
as it is frequently seen in ATMs. Initially, the targets are
rendered evenly, 90 degrees apart, around the circular track
in a stationary way, as shown in Figure 2. After one second,
the visual targets start rotating along the circular track. All
targets move with the same angular speed, but with two of
them rotating in clockwise direction while the other two rotate
counterclockwise. Targets moving in the same direction also
have a phase gap of 180 degrees between them.

Due to the circular orbits, PursuitPass is appropriate for
small screen devices such as ATMs and mobile phones. We
opted for four pair of digits instead of five in our prototype
in order to maximize the phase difference between targets



Fig. 2. Initial state of the PursuitPass interface: all targets are distributed
evenly across a circular track with randomly assigned pair of digits.

Fig. 3. When a selection is triggered, the leftmost empty input box is filled
with an asterisk and changes its color. Targets rotating in the same direction
(i.e., red-green, blue-yellow) always maintain a 180-degree gap between them.

rotating in the same direction. Figure 4 presents the working
architecture of PursuitPass with the information flow from eye
movement data and the four targets, yielding the similarity
values {m1,m2,m3,m4} for the chosen pattern matching
method.

Digit selection is performed by simply following the asso-
ciated target’s path with one’s eyes. Once a selection intent is
recognized by the system, the leftmost empty square is filled
with an asterisk and changes its color to dark gray in order to
indicate that a PIN number was entered, as it can be seen in
Figure 3. At the same time, all targets stop rotating, return
to their original positions and their labels are randomized,
remaining stationary again for another second before they start
moving once more. When the fourth selection is triggered, the
system performs the authentication procedure, informing the
user whether the entered PIN number was valid or not.

One remaining challenge is how to match the eye movement
data stream with the movement of the visual targets and

Fig. 4. PursuitPass architecture.

detect when the user is performing a pursuit. The next section
describes four algorithms that have been used to detect pursuits
along circular orbits.

III. ALGORITHMS FOR DETECTING CIRCULAR PURSUITS

In 2013, Vidal et al. [9] introduced Pursuits, a technique in
which elements of an interface (displayed on large screens)
can be selected by simply following the desired element
with the eyes. In Pursuits, some moving objects (targets) are
displayed on the screen, and the path described by each object
is compared with the gaze path to determine which object is
being followed by the user.

To measure the similarity between a target path and the gaze
path, the authors resorted to Pearson’s correlation coefficient.
For a sequence of 2D target coordinates (target) and a
sequence of 2D gaze coordinates (eye) in a given time window,
the correlation is defined as:

ρ =

∑
i

(eyei − µeye) (targeti − µtarget)

σeyeσtarget
, (1)

where the sum is calculated with the samples that correspond
to a time window, i.e., ti ≤ i ≤ tf for the time interval
defined by [ti, tf ], whereas µeye, µtarget, σeye, and σtarget
are, respectively, the mean values and standard deviations of
eye and target. The correlation coefficient is calculated for
both axes (eyex, eyey) and (targetx, targety) within a time
window in the range [0.1s, 2s].

In Pursuits, the authors assumed generic paths for moving
targets, but more recent works proposed the use of circular
paths, such as [10]–[13]. In the most recent study on target
selection based on similarity between eye movements and
target paths [13], the authors evaluated 4 distinct methods to
compute the similarity between the eye and target movements:
Basic Correlation, Rotated Correlation, 2D Correlation, and
Profile Matching. Each one of them is described in greater
detail in the following subsections.



A. Basic Correlation

The Basic Correlation method, based on the proposal of
Vidal et al. [9], consists in calculating the Pearson’s correlation
coefficient to both axes of movement. Being ρx and ρy the
correlation coefficients for, respectively, the x and y axis, a
target is considered selected if both ρx and ρy are greater than
a specified threshold. Esteves et al. [10] simplified this pro-
cess by comparing just the smallest correlation value against
the threshold. Hence, this method returns min{ρx, ρy} >
threshold as the result for pursuit detection.

B. Rotated Correlation

Depending on the trajectory shape described by a target,
computation of Basic Correlation can be problematic when the
2D coordinates in a given time window presents no variance
in one of the axes (i.e., the standard deviation for such axis
will be zero). To cope with this limitation, Carter et al. [11]
introduced the Rotated Correlation method. In this method,
both the target and eye coordinates are rotated in order to
maximize the variation in both axes, thus avoiding scenarios
where no variance exists for one of them. To apply the rotation
to both the target and eye coordinates, a rotation matrix
(RotMat) is defined as:

RotMat =


√
2

2
−
√
2

2√
2

2

√
2

2

× [~v1x ~v2x
~v1y ~v2y

]
, (2)

where ~v1 and ~v2 are the eigenvectors computed from the target
coordinates. The rotated values obtained by multiplication
of the eye and target coordinates by RotMat, respectively
(eyeu, eyev) and (targetu, targetv), are then used to calculate
the Pearson’s correlation coefficients ρu and ρv . This method
returns min{ρu, ρv} > threshold as the result for pursuit
detection.

C. 2D Correlation

The basic and rotated correlation methods compute the
correlation for each axis independently. The 2D correlation
method, introduced by Velloso et al. [13], differs from these
previous methods by considering both axes simultaneously
in the computation of the correlation value. The 2D Corre-
lation method first normalizes the i-st sample of the target
and eye coordinates, using σeye = max{σeyex , σeyey} and
σtarget = max{σtargetx , σtargety}, as follows:

eyex,i =
eyex,i − µeyex

σeye

eyey,i =
eyey,i − µeyey

σeye

targetx,i =
targetx,i − µtargetx

σtarget

targety,i =
targety,i − µtargety

σtarget

(3)

where the values of µ and σ are calculated with the time
window. The correlation coefficient c is then computed as:

c =

∑
i

√
(eyex,i − targetx,i)2 + (eyey,i − targety,i)2∑√

eye2x,i + eye2y,i

(4)

Finally, the 2D Correlation method returns c < threshold as
the result for pursuit detection.

D. Profile Matching
The Profile Matching method, also introduced by Velloso

et al. [13], describes a sequence of coordinates (either from a
target or eye) in a time window as an orthogonal profile that
is computed by projecting the coordinates over a baseline.
The baseline is defined as the vector that connects P0 (first
coordinate in the sequence) to Pm (farthest coordinate from
P0). The projected points are also scaled, to normalize the
baseline length.

To compute the similarity between a target and the eye
trajectory, orthogonal profiles are computed for each of them.
Let (targetu, targetv) and (eyeu, eyev) be, respectively, the
target and eye coordinates expressed in the orthogonal profile
representation. A coefficient c, which indicates how similar
they are, is then computed as follows:

c =
∑
i

(eyeu,i − targetu,i)2 + (eyev,i − targetv,i)2 (5)

Due to the projection and normalization process, the com-
parison of two profiles will be both scale and rotation (phase)
invariant. While scale invariance is desirable (since target and
eye coordinates are expressed in distinct coordinate systems if
an uncalibrated eye tracker is used), rotation invariance might
be problematic when targets follow circular paths (two or more
targets following a circular path with the same angular speed,
but shifted from one another will always exhibit the same
profile. Thus, assuming a person is following one of them, all
targets will always be highly correlated to the eye, making
distinction of which one is being observed impossible).

To overcome this limitation, Velloso et al. [13] proposed
combining the baseline vectors associated with both the target
and eye to recover phase information. Given ~btarget and ~beye
the baselines for the target and eye coordinates, respectively,
an adjusted similarity coefficient can be computed by:

cadj =
~beye ·~btarget
1 + ln(1 + c)

(6)

and after computing cadj , the Profile Matching method returns
cadj > threshold as the result for the pursuit detection.

Though these four methods have been evaluated in [13],
with the 2D correlation presenting the best performance in
a scenario distinct of ours, those methods have not been
evaluated in a practical application. To choose which algorithm
to use in PursuitPass and evaluate its performance, we have
conducted user experiments that are described in the next
section.



Fig. 5. Nature photography appreciated by users to represent a non-pursuit
task.

IV. EVALUATION

We conducted one pilot test and one experiment to evaluate
PursuitPass. The pilot test was designed to investigate the
performance of the pursuit detection algorithms described in
Section III, and to decide which algorithm and parameters to
use in PursuitPass based on their speed and accuracy. In the
experiment, the performance of the PursuitPass authentication
system was evaluated based on the findings obtained from the
pilot test.

A. Pilot test

The pilot test was designed to investigate the performance
of pursuit detection algorithms. Four students and researchers
from the local institution (1 female), all able-bodied, with
normal or corrected-to-normal vision, participated in the ex-
periment. Ages varied between 33 and 38 years old (mean: 35).
All of them reported previous experiences with eye tracking
devices.

The pilot test consisted of 2 trials. In each trial participants
were required to pursuit one moving target among four (so that
data related to target pursuit could be obtained) for a total time
of 10 seconds. After that, they were instructed to appreciate a
nature photography (to obtain samples that don’t correspond
to pursuit action), presented to them (see Figure 5), also for
10 seconds.

Participants were positioned between 60 to 70 cm away
from the computer monitor. In this setup, the diameter of the
circular track spanned a total of 12-14 degrees of the user’s
visual angle. After collecting the data from the 4 participants,
we analyzed the pursuit detection efficiency by tracing the
ROC curves for each method. Figure 6 displays the curves
obtained for a time window of 1.5s, considering the pursued
target, the three avoided targets, and the observation of the
nature photography.

True / false positive rates and accuracy for time windows
of 0.5s and 1.0s were also computed, but we decided to use
the 1.5s time window, that corresponds to the ROC curves
presented in Figure 6, since it should reduce involuntary

selection during the visual search for the desired target, and it
also presented the highest accuracy with no false positives in
the pilot test.

B. Experiment

The experiment was conducted with 11 participants (6
females), all able-bodied, with normal or corrected-to-normal
vision. They were either undergraduate or graduate students.
Ages varied between 21 and 46 years old (mean: 30.5). Two of
them also reported some short previous experiences with eye
tracking devices, but they did not consider themselves active
users or experts in any way.

The experiment consisted of 20 trials in which users were
required to enter a 4-digit PIN by following the appropriate
targets with their eyes. Each target was labelled with a pair of
digits, ranging from 1 to 8, with no repetition. The required
PIN was always the same in all sessions — “1-2-3-4” — but
the two digits associated with a target were randomly assigned
following a uniform distribution at the beginning of a trial
and whenever a selection was triggered, allowing for different
pursuit scenarios (e.g., following the same target more than
once).

Participants were placed between 60 to 70 cm from the
computer screen, as in the pilot test. They were also allowed
to practice for three trials before the actual data collection
procedure started so that they could get familiar to the interface
and the task. Additionally, we encouraged participants to enter
the expected and a wrong PIN number to demonstrate the
corresponding application feedback for each case, as well as
assert that the software was working as intended.

C. Data collection

Eye-tracking data was provided by a Tobii 4C 90 Hz remote
eye tracker. The data was streamed through a UDP socket to
the PursuitPass app, which was written in Python, using the
Pygame rendering library. Though the developed code is cross-
platform, we restricted our tests to the Microsoft Windows 10
operating system due to eye tracker compatibility. The same
setup was used in both the pilot test and the experiment. A
desktop computer with an Intel i7-7700 CPU and a NVidia
GTX 1070 GPU was used. The application interface had a
600×600 pixel window size, and was displayed in a 144 Hz
full HD 22” monitor.

Although the pursuit detection methods are calibration-
free (as is PursuitPass) and absolute gaze coordinates are not
required to determine which target a person is pursuing (the
pupil center coordinates in the eye image could be used instead
of the on-screen gaze coordinates), the eye tracker employed
in the experiment only provided the absolute on-screen gaze
coordinates. As a consequence, a user calibration process was
necessary in order to estimate parameters that mapped detected
eye features into gaze points on screen. This was evidently a
requirement from the proprietary tracking software, not from
the pursuit detection technique.

To deal with this limitation while keeping the calibration-
free characteristic of PursuitPass, a calibration procedure was



Fig. 6. ROC curves built to evaluate the methods employed by PursuitPass.

carried out just once with a non-participant in the experiment.
This unique calibration profile, optimized for a specific per-
son, was then used for all participants that took part in the
experiment. Therefore, no prior user calibration was required
from any participant. This evidently implies that accurate gaze
prediction could not be guaranteed, but we opted for this
approach to show that our application does not depend on any
knowledge of absolute gaze coordinates, but rather its relative
movement, rendering it in practice as “calibration-free”.

We employed the best performing method observed in the
pilot test to evaluate participant performance in the experiment
in terms of error rate and average completion time over all
methods detailed in Section III and with a time window of
1.5 seconds. Therefore, we gathered data about user digit
input, PIN entry success rate, and elapsed time per trial. After
the experiment, we also inquired participants concerning their
experience with PursuitPass and whether they were aware of
eventual input mistakes. This latter assessment was important
to discriminate between user and system-related errors.

V. RESULTS

From the pilot test, we collected 4×900 samples of pursuit-
pair points composed by ((eyex, eyey), (targetx, targety)),
3 × 4 × 900 samples of non-pursuit-pair points

((eyex, eyey), (targetx, targety)) that corresponds to
the avoided targets, and 4 × 900 samples of non-pursuit-pair
points ((eyex, eyey), (targetx, targety)) that corresponds
to the appreciation of the photography with an invisible
virtual target used only to produce a similarity value with the
methods detailed in Section III.

Each method was evaluated using the collected data to build
ROC curves considering time windows of 0.5s, 1.0s and 1.5s
(although just the curves considering a 1.5s time window
are presented in Figure 6). In Figure 6, red dots on each
curve are also shown, corresponding to the best threshold with
respective false positive and true positive rates. These values
are summarized in Table I. The best threshold for each method
was defined as the most distant point in the ROC curve from
the identity line.

Method False positive True positive Accuracy
Basic Correlation 0.47% 99.58% 99.53%
2D Correlation 0.0% 99.70% 99.94%

Rotated Correlation 28.89% 99.48% 76.78%
Profile Matching 0.95% 97.85% 98.81%

TABLE I
PERFORMANCE MEASUREMENTS FOR EACH METHOD USING A 1.5S TIME

WINDOW.



Fig. 7. Distribution of elapsed times for each trial to complete the PIN entry.

The false / true positive rates and accuracies for the 2D
Correlation method that we obtained considering time win-
dows of 0.5s and 1.0s, were 1%, 96.3%, 98.37%, 0.3%,
98.4%, and 99.24%, respectively. The false / true positive
rates and accuracies for the Profile Matching method that we
obtained with time windows of 0.5s and 1.0s, were 0.1%,
98.4%, 99.62%, 0.05%, 98.54%, and 99.65%, respectively.
We decided to keep the larger time window to reduce the
probability of involuntary selection occurrences during the
search of the desired target by a naive user, although 2D
Correlation had not produced false positives within the 1.5
time window.

The 2D Correlation method was selected for the experiment
since it showed the best accuracy as well as robustness to
false positives, which in turn meant that this method should
produce the least amount of involuntary selections among the
four tested methods.

For the experiment, 220 password entry attempts were
collected, of which 7 have failed, rendering an accuracy of
96.82% for password entry. The average time to complete the
password entry task was 10.42 seconds (mean SD = 0.886
seconds). Considering individual digits, a total of 880 digit
entries we collected, of which 9 were wrong, meaning that
PursuitPass achieved an accuracy of 98.98% per digit. Figure
7 presents the average elapsed time, as well as respective
standard deviation and limits, for all trials. From Figure 7,
it is also possible to observe that all PIN-entry trials took a
time between 9.17 and 15.01 seconds to be performed.

VI. DISCUSSION

PursuitPass demonstrated the best trade-off so far between
authentication completion time and accuracy in comparison to
the state of the art, as shown in Table II. When compared

to the fastest work in the literature [8], PursuitPass was only
0.8s slower on average, but much more accurate, with a gain
of 5.68% over it. Compared to the approach with highest
accuracy [7], our error rate was only 0.29% larger, but more
than 13s faster in contrast. Observe that these results were
achieved using 1.5s time windows. We expect that we could
easily reduce the windows to 1s, saving therefore about 2s
from the total time to enter a 4-digit PIN, without sacrific-
ing much of the accuracy, since the 2D correlation method
achieved a 98.4% accuracy using a 1s window in the pilot
test, just 1% worse than using the 1.5s window that was chosen
for the experiment. Alternatively, a 0.5s window would also
be a viable choice if we chose the Profile Matching method
since it achieved a 98.4% accuracy for this window size in
the first experiment. Future investigation will reveal if other
combinations of algorithms and window sizes would create
even better performing authentication systems.

The interviews after the second experiment also provided us
with some grounds to believe that our technique could be even
more robust than already reported. Among participants who
made an entry mistake, only one claimed to have entered the
correct PIN despite being told otherwise by the application.
All the others acknowledged to have selected wrong targets
due to some distraction, and they would willingly have fixed
those entries should they had been given the opportunity to do
so. This means that PursuitPass could have achieved 99.55%
of accuracy — possibly at the expense of a slightly longer
average completion time — if an “undo” option had been
implemented.

It should also be noted that because PursuitPass requires
only 12-14 degrees of visual angle, it means that the ap-
plication could be embedded in mobile or wearable devices



to be used at comfortable distances as an authentication
mechanism, something that might not be possible with other
related methods.

Method Pin Time Error rate Calibration free
PursuitPass 4 10.4s 2.7% yes

Look & Shoot [14] 4 12s 23.8% no
Dwell-time [14] 4 13s 20.6% no

Eye Gestures [14] 4 54s 9.5% yes
Smooth Pursuit [7] 4 25s 2.4% yes
Smooth Pursuit [8] 5 9.6s 8.4% yes

TABLE II
COMPARISON BETWEEN PURSUITPASS AND OTHER SIMILAR SYSTEMS.

VII. CONCLUSION

In this paper we have introduced PursuitPass, a visual
pursuit-based user authentication system designed to be suited
for both public and personal small displays, such as ATM
machines and mobile phones. Because it is based on vi-
sual pursuits, our method is calibration-free and robust to
shoulder surfing, smudge, thermal, and acoustic attacks. We
have included random features in the visual target behavior
that ensures user liveness and improves the security of the
technique against eye movement video recordings.

Another contribution of this paper is the evaluation of 4
different algorithms for pattern matching of the eye tracker
data with the circular target trajectories. We have conducted
an experiment to determine the best performing matching
algorithm and configuration parameters for PursuitPass. We
concluded that the 2D correlation method using 1.5 s windows
provided the best accuracy, close to 99%. Using this method, a
second experiment was conducted to evaluate the performance
of PursuitPass. The results show that PursuitPass can achieve a
96.82% accuracy when entering a 4-digit PIN, with an average
completion time of 10.4 s. These results improve the state of
the art, since no other system presents, simultaneously, both
high accuracy and fast authentication as PursuitPass does.

In a future work we will evaluate PursuitPass with more
targets to enable more complex passwords, test the perfor-
mance using shorter time windows, such as 0.5s or 1.0s, and
investigate how accuracy might drop with higher detection
speeds.

ACKNOWLEDGMENTS

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001. The authors also would like
to thank Prof. Eduardo Velloso for provinding support for the
development of the algorithms evaluated in this paper, and
the financial support from the São Paulo Research Foundation
(FAPESP), grants 2016/10148-3 and 2015/26802-1, and the
Google LARA program.

REFERENCES

[1] A. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. Smith, “Smudge attacks
on smartphone touch screens,” in Proc. of USENIX2010. USENIX
Association, 2010, p. 17.

[2] M. Kumar, T. Garfinkel, D. Boneh, and T. Winograd, “Reducing
shoulder-surfing by using gaze-based password entry,” in Proceedings
of the 3rd Symposium on Usable Privacy and Security, ser. SOUPS ’07.
New York, NY, USA: ACM, 2007, pp. 13–19. [Online]. Available:
http://doi.acm.org/10.1145/1280680.1280683

[3] C. Morimoto and M. Mimica, “Eye gaze tracking techniques for
interactive applications,” Computer Vision and Image Understanding,
vol. 98, no. 1, pp. 4–24, 2005.

[4] J. Weaver, K. Mock, and B. Hoanca, “Gaze-based password authen-
tication through automatic clustering of gaze points,” in 2011 IEEE
International Conference on Systems, Man, and Cybernetics, Oct 2011,
pp. 2749–2754.

[5] V. Rajanna, S. Polsley, P. Taele, and T. Hammond, “A gaze gesture-
based user authentication system to counter shoulder-surfing attacks,”
in Proceedings of the 2017 CHI Conference Extended Abstracts on
Human Factors in Computing Systems, ser. CHI EA ’17. New
York, NY, USA: ACM, 2017, pp. 1978–1986. [Online]. Available:
http://doi.acm.org/10.1145/3027063.3053070

[6] A. De Luca, M. Denzel, and H. Hussmann, “Look into my
eyes!: Can you guess my password?” in Proceedings of the 5th
Symposium on Usable Privacy and Security, ser. SOUPS ’09.
New York, NY, USA: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1572532.1572542

[7] D. Cymek, A. Venjakob, S. Ruff, O. Lutz, S. Hofmann, and M. Roetting,
“Entering pin codes by smooth pursuit eye movements,” Journal of Eye
Movement Research, vol. 7, pp. 1–11, 08 2014.

[8] D. Liu, B. Dong, X. Gao, and H. Wang, “Exploiting eye tracking
for smartphone authentication,” in Applied Cryptography and Network
Security, T. Malkin, V. Kolesnikov, A. B. Lewko, and M. Polychronakis,
Eds. Cham: Springer International Publishing, 2015, pp. 457–477.

[9] M. Vidal, A. Bulling, and H. Gellersen, “Pursuits: Spontaneous
interaction with displays based on smooth pursuit eye movement and
moving targets,” in Proceedings of the 2013 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, ser. UbiComp
’13. New York, NY, USA: ACM, 2013, pp. 439–448. [Online].
Available: http://doi.acm.org/10.1145/2493432.2493477

[10] A. Esteves, E. Velloso, A. Bulling, and H. Gellersen, “Orbits: Gaze
interaction for smart watches using smooth pursuit eye movements,”
in Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. ACM, 2015, pp. 457–466.

[11] M. Carter, E. Velloso, J. Downs, A. Sellen, K. O’Hara, and
F. Vetere, “Pathsync: Multi-user gestural interaction with touchless
rhythmic path mimicry,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’16. New
York, NY, USA: ACM, 2016, pp. 3415–3427. [Online]. Available:
http://doi.acm.org/10.1145/2858036.2858284

[12] E. Velloso, M. Carter, J. Newn, A. Esteves, C. Clarke, and
H. Gellersen, “Motion correlation: Selecting objects by matching
their movement,” ACM Trans. Comput.-Hum. Interact., vol. 24,
no. 3, pp. 22:1–22:35, Apr. 2017. [Online]. Available: http:
//doi.acm.org.ezp.lib.unimelb.edu.au/10.1145/3064937

[13] E. Velloso, F. L. Coutinho, A. Kurauchi, and C. H. Morimoto, “Circular
orbits detection for gaze interaction using 2d correlation and profile
matching algorithms,” in Proceedings of the 2018 ACM Symposium on
Eye Tracking Research & Applications. ACM, 2018, p. 25.

[14] A. De Luca, R. Weiss, and H. Drewes, “Evaluation of eye-
gaze interaction methods for security enhanced pin-entry,” in
Proceedings of the 19th Australasian Conference on Computer-Human
Interaction: Entertaining User Interfaces, ser. OZCHI ’07. New
York, NY, USA: ACM, 2007, pp. 199–202. [Online]. Available:
http://doi.acm.org/10.1145/1324892.1324932


