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Abstract—Video segmentation consists of a frame-by-frame
selection process of meaningful areas related to foreground
moving objects. Some applications include traffic monitoring,
human tracking, action recognition, efficient video surveillance,
and anomaly detection. In these applications, it is not rare to
face challenges such as abrupt changes in weather conditions,
illumination issues, shadows, subtle dynamic background mo-
tions, and also camouflage effects. In this work, we address
such shortcomings by proposing a novel deep learning video
segmentation approach that incorporates residual information
into the foreground detection learning process. The main goal
is to provide a method capable of generating an accurate
foreground detection given a grayscale video. Experiments con-
ducted on the Change Detection 2014 and on the private dataset
PetrobrasROUTES from Petrobras support the effectiveness of
the proposed approach concerning some state-of-the-art video
segmentation techniques, with overall F-measures of 0.9535 and
0.9636 in the Change Detection 2014 and PetrobrasROUTES
datasets, respectively. Such a result places the proposed technique
amongst the top 3 state-of-the-art video segmentation methods,
besides comprising approximately seven times less parameters
than its top one counterpart.

Index Terms—Video Segmentation, Deep Learning, Fore-
ground Object Detection, Residual Map

I. INTRODUCTION

V IDEO segmentation refers to the process of highlighting
some specific video image parts that belong to regions

of interest, mostly associated to moving objects. Such a task
is pretty much complicated to be solved in computer vision,
presenting a great number of challenging situations that need
to be considered such as extreme weather conditions, camera
motion, subtle illumination changes, shadows cast by fore-
ground objects, dynamic background motion, and camouflage.
Therefore, addressing these challenges is crucial for the correct
functioning of such a variety of computer vision applications
including traffic monitoring [1], human tracking [2], action
recognition [3], efficient video surveillance [4], and anomaly
detection [5].

In the last decades, many non-learning and learning-
dependent techniques have been developed to deal with the
video segmentation problem. Amongst the non-learning de-
pendent techniques we can highlight simple background sub-
traction [6], [7], statistical [8]–[10] and fuzzy models [11],

†These authors contributed equally to this paper.

subspace learning approaches [12], and robust Principal Com-
ponent Analysis-based models [13]. Amongst the learning-
dependent techniques, we shall cite Quintana and Murguia [14]
that proposed a bio-inspired neural system based on Self-
organizing Maps and Cellular Neural Networks, called SOM-
CNN, to detect dynamic objects in normal and complex
scenarios. We can also refer to the work of Schofield et
al. [15], that dealt with the problem of people segmenta-
tion and counting using a three-stage process: image pre-
processing, background identification, and object search. Their
method was designed to provide accurate counts, even when
the background scene was allowed to vary.

Convolutional Neural Networks (CNNs) have gained quite
an attention mostly because of their efficiency in solving
tasks involving non-structured data [16], as well as learning
translational invariant properties, which is a key point for
dealing with background motion detection. Learning-based
video segmentation techniques that make use of CNNs are
frequently emerging, such as the semi-automatic method for
segmenting foreground moving objects proposed by Wang
et al. [17], which consists in two main objectives: (i) to
produce segmentation maps sufficiently accurate to be used as
a ground truth, and (ii) to avoid, as much as possible, user
interventions. Another example concerns some state-of-the-
art video segmentation techniques such as FgSegNet_S and
FgSegNet_M [18], which are characterized mainly for being
robust deep convolutional autoencoder networks that can be
trained in an end-to-end model using a few video frames.

Some years ago, the concept of “residual learning" arose
to highlight the importance of considering skip connections to
avoid a variety of deep network problems, such as vanishing
gradients and overfitting. In this paper, we proposed a robust
deep learning video segmentation technique that consists in
a cascade CNN model that incorporates residual informa-
tion [19]–[21] into the learning process for foreground object
detection. To the best of our knowledge, such an approach
has never been investigated in the video segmentation domain.
Experiments conducted in the public Change Detection 2014
(CD2014) and in the private PetrobrasROUTES datasets sup-
port the effectiveness of the proposed approach when detecting
changes in indoor and outdoor camera-captured videos.
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Fig. 1. Architecture of the proposed CRCNN approach.

II. PROPOSED APPROACH

In this work, we proposed a novel approach named
“Cascade-Residual Convolutional Neural Network" (CRCNN)
for video segmentation purposes, which was highly influenced
by the works of Zhang et al. [19] concerning non-blind de-
noising using residual learning, and Wang et al. [17] regarding
segmentation issues. Besides, we also considered concepts
from the work of Zhang et al. [22] with respect to blind
denoising learning. Figure 1 depicts the proposed approach.

The deep learning video segmentation pipeline adopted in
this paper is the same one proposed by Lim and Keles [18],
and consists in three main steps: (i) to annotate foreground
objects in a small subset of frames collected from the video
of interest, (ii) to train the CRCNN model in a supervised
fashion, and (iii) to further apply the trained model over each
image frame extracted from the video of interest to generate
its correspondent binary foreground detection mask.

The proposed CRCNN uses a two-stage video processing
strategy. In the first step, given a grayscale version of the
video image frame to be segmented, a first deep residual
CNN, hereinafter called “Background Convolutional Neural
Network" (BCNN), is used to generate the correspondent
residual map. Further, this output combined with its residual
map is presented to a second CNN, named “Segmentation
Convolution Neural Network" (SCNN), which is then used
to generate the foreground detection mask. The next sections
describe more details about the proposed CRCNN model.

A. Background Convolution Neural Network
The proposed Background Convolutional Neural Network

learns how to infer, given an input grayscale video frame,
which parts do not correspond to the background areas. To
create a robust background image, we used the approach
proposed by Bevilacqua [23] to allow BCNN modeling the
input non-background information in the form of a residual
map.

The BCNN training step consists of two phases: the first
one takes an interval I = {β1, β2, ..., βn} of consecutive

frames from the video and uses it to calculate the deterministic
background image, which stands for an image b that represents
the median of such an interval. The second phase consists of
minimizing the mean square error between the deterministic
background image and the approximated background image a,
which is represented as follows:

a = σ(f −BCNN(f ; Θ1)), (1)

where σ(·) stands for the logistic-sigmoid function, f denotes
the input image normalized between [0, 1], Θ1 refers to the
BCNN trainable parameters, and BCNN(·; ·) refers to the
residual map learned during the training process. In light
of that, the BCNN training process aims at minimizing the
following equation:

LB(b, f ; Θ1) =
1

2m

m∑
i=1

||bi − ai||2F , (2)

where m stands for the number of training samples and || · ||2F
represents the Frobenius norm. Notice that we employed a
patch-based methodology, where bi and ai denote the ith patch
extracted from images b and a, respectively.

B. Segmentation Convolutional Neural Network

The Segmentation Convolutional Neural Network learns
how to detect foreground objects present in the video frames.
For such purpose, it uses the information provided by the
image frames and also their residual maps. The detections are
presented in the form of binary images, in which white pixels
correspond to the foreground object locations.

The SCNN training process differs from the BCNN one in
basically two points: (i) the network input, that is composed
of a concatenation between the grayscale image frame and
its residual map counterpart (i.e., the output generated as a
result of forward propagating the grayscale image through
the trained BCNN), and (ii) the training process, which aims
at minimizing the average binary cross-entropy measured



between the network output and the ground-truth binary de-
tection mask. Such an image corresponds to the pre-annotated
true foreground objects present in the grayscale input image.
Therefore, the SCNN training process aims at minimizing the
following equation:

LS(g, c; Θ2) = − 1

m

m∑
i=1

[gi log(ĝi)+(1−gi) log(1− ĝi)], (3)

where
ĝ = SCNN(c; Θ2). (4)

Notice that g is the ground-truth pre-annotated binary mask,
Θ2 stands for the SCNN trainable parameters and c indicates
the SCNN depth concatenation input between f and its resid-
ual map. Besides, gi and ĝi denote the ith patch extracted
from images g and ĝ, respectively.

C. Cascade Residual Convolutional Neural Network

As depicted in Figure 1, the proposed Cascade Residual
Convolutional Neural Network is composed of two main mod-
els, i.e., the BCNN and SCNN, which are connected by the
residual map generated by the former network. Table I presents
a summary of the CRCNN configuration parameters, where
the dimensions of the convolution kernels are represented by
three-dimensional vectors. The first and second dimensions
represent the kernel width and height, respectively, and the
third dimension denotes the number of outputs that will be
generated after the convolution step.

TABLE I
CRCNN ARCHITECTURE SPECIFICATION. THE TABLE USES THE SAME

COLOR CODES AS IN FIGURE 1 TO REPRESENT THE DIFFERENT CRCNN
LAYERS.

Orange Blue Green Yellow
Kernel szs. 3 x 3 x 64 3 x 3 x 64 3 x 3 x 1 3 x 3 x 1

Activation ReLU ReLU Linear Sigmoid

Batch norm. No Yes No No

Three different kinds of activations were used, i.e., a linear
function (applied to the convolution layers only), a rectified
linear unit (ReLU), and a sigmoid function. Batch normaliza-
tion [24] was also applied in all 15 layers, placed at the middle
of the BCNN and SCNN models, i.e., before the application
of the ReLU activation function.

III. METHODOLOGY

In this section, we present the methodology used to train and
evaluate the proposed CRCNN model. For the sake of clarifi-
cation, we divided the section into three parts: (i) Section III-A
presents all the relevant information about the datasets used
in this work, (ii) Section III-B details the CRCNN training
process, and (iii) Section III-C discusses the detection and
evaluation procedures.

A. Datasets

1) Change Detection Dataset 2014: The Change Detection
Dataset 2014 (CD2014) is a large and freely available dataset
of videos collected from different realistic, camera-captured,
and challenging scenarios [25]. Such a dataset contains 11
video categories with 4 to 6 video sequences each, as presented
in Table II.

TABLE II
CD2014 DATASET SPECIFICATION.

Category Qnt. Videos Qnt. Frames
Baseline 4 6,049

Dynamic Background 6 18,871

Camera Jitter 4 6,420

Intermitt. Obj. Motion 6 18,650

Shadow 6 16,949

Thermal 5 21,100

Bad Weather 4 20,900

Low Framerate 4 9,400

Night Videos 6 16,609

PTZ 4 8,630

Turbulence 4 15,700

Total 53 159,278

The CD2014 categories include:
• Baseline: combines mild challenges present in Dynamic

Background, Camera Jitter, Intermittent Object Motion,
and Shadow categories. It serves mainly as a starting
point to adjust the segmentation technique.

• Dynamic Background: includes scenes with so much
background motion, e.g., cars and trucks passing in front
of a tree shaken.

• Camera Jitter: contains indoor and outdoor videos cap-
tured by unstable video devices, for example vibrating
cameras.

• Intermittent Object Motion: contains objects that move
and then stop for a short while producing “ghosting"
artefacts.

• Shadow: indoor and outdoor videos containing objects
surrounding by a strong shadow that could be miss
detected as real moving objects.

• Thermal: videos that have been captured by far-infrared
cameras.

• Bad Weather: includes outdoor videos captured from
challenging winter weather conditions, e.g., snow storms,
and fog.

• Low Framerate: videos captured varying frame-rates
between 0.17fps and 1fps.

• PTZ: videos captured by pan-tilt-zoom cameras.
• Turbulence: outdoor videos that show air turbulence

caused by rising heat.



2) PetrobrasROUTES: The PetrobrasROUTES is a private
dataset which consists of 281 high-resolution color images
collected from an indoor Petrobras1 workspace. The main
challenge of such dataset regards the detection of objects
obstructing escape routes.

B. Training procedure

To train the proposed CRCNN model over CD2014 dataset,
we employed the following protocol:

1) to select 300 color images and their 300 correspondent
binary images, which were ground-truth manually anno-
tated.

2) to convert the 300 color images to their grayscale
versions and use the first 100 images to calculate the
deterministic background.

3) to normalize the remaining 200 grayscale images2 by
subtracting them the average grayscale value.

4) to subdivide the images into small patches using 50%
to 75% of overlap depending on the image height and
width dimensions3.

5) to subdivide the deterministic background image into
small patches and then replicate them so that every
input grayscale patch has its deterministic background
grayscale patch counterpart.

We employed the following protocol to train the proposed
CRCNN model over PetrobrasROUTES dataset:

1) to select 51 color images and their 51 correspondent
binary images, which were ground-truth manually an-
notated.

2) to convert the 51 color images to their grayscale versions
and use one of them as the deterministic background.

3) to normalize the remaining 50 images by subtracting
them the average grayscale value.

4) to subdivide the training and deterministic background
images following same steps 4) and 5) from CD2014
dataset training protocol.

The BCNN and SCNN models were trained using the Adam
method [28] by a maximum of 50 epochs4 using a learning
rate5 of 0.001 and batches of size 128. We trained the BCNN
and SCNN models with 80% of the patches, and used the
remaining 20% to evaluate the convergence of the training
process.

1Petrobras is a publicly-held company on an integrated basis and specialized
in the oil, natural gas, and energy industry [26].

2We used the same set of training images from [27] to train the proposed
CRCNN model.

3The sizes and the overlapping rates were empirically defined taking into
account the usage of larger overlaps for small images and dimensions of
the patches limited to 50 pixels (i.e., for both height and width). Besides
avoid much slowness during the training process, the usage of patches works
like a natural data augmentation that prevents deep learning issues such as
overfitting.

4Depending on the training process convergence the maximum epoch value
can be less than 50.

5The initial value is reduced by a factor of 0.1 every time the loss function
hits a plateau.

C. Evaluation procedure

The evaluation process consists in to apply the trained
CRCNN model over each video test image as follows:

• Deep Segmentation: such a step consists in first forward
propagating the test images through the trained BCNN
model, and further using the residual input (i.e., the
input grayscale image and its residual counterpart) to
feed the trained SCNN. Later, we binarized6 the SCNN
probabilistic output.

• Misclassification Rate: in such a step, we calculated the
number of correct and incorrect detections encoded by the
True Positives (TPs), i..e, the number of pixels correctly
classified as foreground, the True Negatives (TNs), i.e.,
the number of pixels correctly classified as background,
the False Positives (FPs), i.e., the number of background
pixels incorrectly classified as foreground, and the False
Negatives (FNs), i.e., the number of foreground pixels
incorrectly classified as background.

• Detection Measurements: in such a step, the classifica-
tion rates are combined into four different measures that
provide a more clever way to measure the robustness
of the proposed CRCNN model. Those measures are
computed as follows:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F −measure = 2.0× Recall × Precision
Recall + Precision

, (7)

and

PWC = 100.0× FN + FP

TP + FP + FN + TN
(8)

where PWC denotes the percentage of wrong classifications.

IV. EXPERIMENTAL SECTION

In this section, we present the experimental results regarding
the methodology described earlier considering each dataset.

A. Results over CD2014 Dataset

Table III presents the overall and per-category F-measure
values. One can observe the proposed CRCNN model over-
comes the supervised learning methods Cascade [17] and
DeepBS [29], being also more accurate in comparison to the
non-learning-based techniques, i.e., SuBSENSE [30], IUTIS-
5 [31], and PAWCS [32]. According to Table III, the proposed
technique achieved results that are pretty much close to the

6In the majority of the experiments, the best threshold value was set to 0.8,
but in some rare cases, it has been set to 0.6.



TABLE III
A COMPARISON OF F-MEASURE RESULTS OF 11 CATEGORIES FROM CD2014 DATASET

Methods Baseline C.Jitter B.Waet Dyn.Bg. Int.Obj. L.Frame N.Videos PanTZ Shadow Thermal Turbul. Overall

FgSegNet_S 0.9980 0.9951 0.9902 0.9902 0.9942 0.9511 0.9837 0.9837 0.9967 0.9945 0.9796 0.9878

FgSegNet_M 0.9975 0.9945 0.9838 0.9838 0.9933 0.9558 0.9779 0.9779 0.9954 0.9923 0.9776 0.9865

CRCNN 0.9919 0.9799 0.9569 0.9687 0.9755 0.8498 0.9388 0.8967 0.9852 0.9818 0.9637 0.9535

Cascade 0.9786 0.9758 0.9451 0.9451 0.8505 0.8804 0.8926 0.8926 0.9593 0.8958 0.9215 0.9272

DeepBS 0.9580 0.8990 0.8647 0.8647 0.6097 0.5900 0.6359 0.6359 0.9304 0.7583 0.8993 0.7593

IUTIS-5 0.9567 0.8332 0.8289 0.8289 0.7296 0.7911 0.5132 0.5132 0.9084 0.8303 0.8507 0.7820

PAWCS 0.9397 0.8137 0.8059 0.8059 0.7764 0.6433 0.4171 0.4171 0.8934 0.8324 0.7667 0.7477

SuBSENSE 0.9503 0.8152 0.8594 0.8594 0.6569 0.6594 0.4918 0.4918 0.8986 0.8171 0.8423 0.7453

state-of-the-art ones, as one can notice in the categories “Base-
line", “Camera Jitter", and “Shadow", where CRCNN results
are quite similar to the FgSegNet_S and FgSegNet_M [18]
techniques, with F-measure differences of only 0.01 (approx-
imately). Notice the proposed approach comprises 1, 112, 770
parameters, which turns out to be a more compact architecture
with respect to FgSegNet_S, which has 7, 622, 465 parameters.

Table IV highlights the robustness of the proposed CRCNN
model, placing it as the third best approach concerning the
measures used in this work, only behind FgSegNet_S and
FgSegNet_M models. Also, the precision results differ from
FgSegNet_S and FgSegNet_M by around 0.02, while recall
values differ by around 0.03.

TABLE IV
COMPARISON OF PRECISION, RECALL AND PWC OVERALL RESULTS

FROM CD2014 DATASET.

Methods Avg. Precision Avg. Recall Avg. PWC

FgSegNet_S 0.9751 0.9896 0.0461

FgSegNet_M 0.9758 0.9836 0.0559

CRCNN 0.9604 0.9602 0.1348

Cascade 0.8997 0.9506 0.4052

DeepBS 0.8332 0.7545 1.9920

IUTIS-5 0.8087 0.7849 1.1986

PAWCS 0.7857 0.7718 1.1992

SuBSENSE 0.7509 0.8124 1.6780

Additionally to the results presented in Tables III and IV,
Figure 2 depicts three foreground detection masks, each one
from a different category. Notice the gray-tone areas presented
in Figure 2c stand for regions that do not belong to the region
of interest. From the ground-truth presented in Figure 2c, one
can observe the proposed CRCNN model produced a more
accurate and precise detection binary masks for the “Shadow"
category (Figure 2d). These results are better than the ones
obtained by FgSegNet_S, Cascade, and DeepBS techniques.

Concerning the “Thermal category", CRCNN outperformed
Cascade and DeepBS models.

One can also observe that CRCNN exhibited false negative
detections to a greater extent when compared to FgSegNet_S
and Cascade techniques in the “Night Videos" category. How-
ever, such a category poses a challenge to all compared
methods either, since Cascade and FgSegNet_S results exhibit
false positive detections both, and DeepBS was not capable of
detecting the moving cars in the video frame. A closer look
at the second row from Figure 2 evidenced that BCNN model
smoothed areas corresponding to foreground regions during its
learning process. We hypothesized that such regions are used
by SCNN during its learning process as a clue indicating which
locations are the most probable to encode scene changes.

B. Results over PetrobrasROUTES Dataset

Table V presents the overall results comparing FgSegNet_S
with the proposed technique. One can observe the proposed
CRCNN achieved the best results in almost all measures, with
differences of around 0.1 and 0.2 in terms of recall and PWC,
respectively.

TABLE V
COMPARISON OF PRECISION, RECALL AND PWC OVERALL RESULTS

FROM PETROBRASROUTES DATASET.

Avg. Measures FgSegNet_S CRCNN

F-measure 0.9221 0.9619

Precision 0.9770 0.9611

Recall 0.8732 0.9627

PWC 0.4287 0.2218

Additionally to the results presented in Table V, Figure 3a
depicts a video frame of a scape route containing an unde-
sirable object. Regards its ground-truth (Figure 3b), one can
observe the proposed CRCNN has been more accurate than
FgSegNet_S (Figures 3c and 3d), with the detection results
limited only to the object central region.



V. CONCLUSIONS

In this work, we proposed a novel cascade convolutional
neural network which uses a residual learning strategy in
an attempt to solve video segmentation problems. Regarding
CD2014 dataset, the proposed CRCNN model achieved re-
sults close to the state-of-the-art ones, which were obtained
by FgSegNet_S and FgSegNet_M techniques. Besides, the
method was capable of overcoming two supervised learning
methods and three other non-supervised segmentation tech-
niques in terms of F-measure, precision, recall, and PWC
overall results. Concerning PetrobrasROUTES dataset, the
proposed CRCNN model outperformed the state-of-the-art
FgSegNet_S method in terms of F-measure, recall, and PWC
overall results. Besides, we state that better results can be
possibly achieved by fine-tuning the patch sizes.

Regarding future works, we pretend to investigate the
CRCNN behavior under such a fine-tuning process carefully,
and also search for other possible ways to apply the residual
learning in video segmentation tasks. As a starting point, we
intend to investigate the usage of color images and possibly
other CNN architecture configurations.
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Fig. 2. Qualitative results considering the categories “Night Videos",
“Shadow", and “Thermal" from CD2014 dataset: (a) input grayscale frame,
(b) residual maps, (c) ground-truth detection masks, results concerning (d)
proposed CRCNN, (e) FgSegNet_S, (f) Cascade, and (g) DeepBS models.
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Fig. 3. Qualitative results considering an obstructed route video scene
from PetrobrasROUTES dataset: (a) input grayscale frame, (b) ground-truth
detection mask, and results concerning (c) CRCNN and (d) FgSegNet_S
techniques.


