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Abstract—Communication through gestures plays a relevant
role in human life, in which a non-verbal language is used to
propagate information among individuals. To recognize gestures,
computers need to represent and interpret human appearance
and motion, involving hands, arms, face, head and/or body, in
a mathematical sense. Despite the high applicability in different
contexts, most gesture recognition approaches in literature are
not designed to deal with unsegmented videos. That is, most
approaches do not temporally detect when a gesture occurs,
which prevents to explore correlations between detection and
recognition tasks, besides their application on real-world scenar-
ios. In this sense, we propose the Multi-Loss Recurrent Residual
Network (MLRRN), a multi-task based approach that performs
both the recognition and temporal detection of gestures at once.
It employs a dual loss function which takes into account the
class assignment of each frame of a video to a gesture class and
also determines the frame interval associated to each gesture.
Our model counts with a dual input, gathering information from
appearance and human pose on frames, besides bidirectional
recurrent layers and residual modules. According to experiments
conducted on ChaLearn Montalbano and ChaLearn ConGD
datasets, our approach achieves results comparable to state-of-
the-art methods considering average temporal Jaccard metric.

I. INTRODUCTION

Gesture recognition (GR) corresponds to a mathematical
interpretation of a human motion by a computer device, involv-
ing hands, arms, face, head and/or body [1], with applicability
in different contexts, such as navigation on virtual environ-
ments, development of aid systems for hearing impaired, sign
language recognition, surveillance monitoring and biometric
validation [2]–[4]. This applicability led GR to be investigated
by a wide range of approaches, which vary in terms of features
and learning algorithms employed to perform the task [5]–[7].

Spatial and temporal information are key elements for
gesture recognition systems, since they represent changes in
appearance and motion over time. In addition, the temporal
domain provides information about gesture’s structured time
disposition of events, where the order of them, also referred
as sub-actions, is relevant to determine their labels [5].

Despite major advances achieved [8], GR remains a chal-
lenging task due to problems such as illumination variation
and acquisition conditions, inconsistent behavior among users,
cultural gesture specificities, and large vocabularies [9]. In ad-
dition, assembling gesture recognition datasets is an expensive
task and most of them presents a major issue regarding the
absence of unsegmented videos comprising multiple gestures.
As a consequence, gesture recognition approaches usually do

not handle unsegmented input streams, leading to models that
are unsuitable for real-life communication scenarios.

Focusing on the aforementioned issues, we present Multi-
Loss Recurrent Residual Network (MLRRN). The approach
employs a novel deep architecture for gesture recognition, with
focus on the performing of two correlated tasks at once: (i)
gesture temporal detection and (ii) gesture recognition. With
that, we intend to create a model that deals with unsegmented
input videos, beside exploring the complementarity of these
tasks. In addition, MLRRN counts with two input modalities,
corresponding to video frames and human joints computed
over them, representing the pose of the gesture performers.
From these input modalities, information is gathered through
the employment of different type of layers, such as 2D
spatial convolutional, 3D spatiotemporal convolutional and
bidirectional-LSTM. The latter is responsible for exploiting
information from the gesture temporal well-defined structure.
In addition, it captures the long-term dependency that exists
on inputs, taking into account past and future information to
assign labels to each input frame.

To evaluate MLRRN, tests were conducted on the ChaLearn
Montalbano [10] and ChaLearn ConGD [11] datasets, for
which the approach achieves 0.919 and 0.621 as average
temporal Jaccard, respectively. On ChaLearn Montalbano,
MLRRN obtains a slight improvement over state-of-the-art
approaches considering this metric.

II. RELATED WORK

Most gesture recognition approaches are based on the
extraction/learning of spatiotemporal features from videos [9].
This highlights the importance of two main factors for the
recognition of gestures: (i) appearance, which brings infor-
mation from gesture parameters such as hand configuration,
body/facial expression and inflection point [12]; and (ii) mo-
tion, which represents the movement executed by the per-
former [13].

The applicability in several contexts led gesture recognition
to be studied by literature work in the last decades. These
approaches, initially based on the employment of handcraft
spatiotemporal feature descriptors [14]–[16], tend to capture
shape, appearance and motion clues, mostly via image gradi-
ents and optical flow [5].

Despite good results achieved by handcrafted-based ges-
ture recognition approaches, the advance of GPUs led to a



growing trend toward the application of deep neural networks
on the task. These approaches are able to efficiently learn
representations to characterize gestures and classify them with
high accuracies [5], [6], [9], [17], stimulating the development
of increasingly complex and effective models, which usually
apply spatiotemporal operations to learn features that better
distinguish dataset classes [5].

The approach proposed by Duan et al. [18], for instance,
considers several input modalities, such as optical flow, RGB,
depth and saliency to gather richer information from gesture
inputs. Each modality generates a voting representation (con-
sidering the classes of the dataset), which are fused to produce
the output class. This research achieved accurate outcomes for
gesture recognition on ChaLearn IsoGD dataset [11].

Differently from Duan et al. [18], many approaches exploit
the strong temporal correlation between sub-events in gesture
videos through the employment of recurrent models. These
models have achieved state-of-the-art results for most ges-
ture recognition datasets. Molchanov et al. [5], for instance,
proposed a model that extracts spatiotemporal features from
video clips through spatiotemporal convolutions; propagating
such information with the employment of a recurrent layer.
Although simplistic, this architecture proved to be effective
for recognition of gestures on datasets such as SKIG [19],
ChaLearn IsoGD [11] and Multimodal Dynamic Gesture [5].

Aiming at capturing the temporal correlation in gesture
videos, Nishida and Nakayama [6] investigated an architecture
composed by LSTM layers to handle videos with variable-
length gestures. To create a spatiotemporal representation,
multiple temporal modalities are fused, which produced a high
accuracy outcome on the SKIG dataset [19].

The accurate results achieved with recurrent models led
to the development of even more complex approaches based
on the employment of bidirectional recurrent layers. The
research proposed by Zhang et al. [9], for instance, employs
bidirectional LSTM layers to produce a rich representation
from video frames, achieving accurate outcomes. In turn,
Pigou et al. [13] employed these layers in a model to detect
and recognize gestures on unsegmented videos. On their
research, residual modules are employed to conserve gradients;
important point on the training of deeper networks.

Zhu et al. [20] also invested on an approach to detect and
recognize gestures on unsegmented videos. However, instead
of producing a single model to do both tasks, Zhu et al. [20]
used an isolated temporal recognition network based on Res3D
architecture [21] able to produce isolated videos through the
recognition of boundaries (transition frames). To poise the two
classes employed in this task (boundaries and non-boundaries),
a balanced squared hinge loss function is applied. In addition,
temporal dilations are included on the convolutional layers of
this network to gather contextual information.

Even though the literature approaches present accurate
results for gesture recognition, some gaps are still noticed,
mainly regarding the existence of very few techniques that
consider unsegmented videos, with none of them using de-
tection and recognition tasks to improve the outcomes of

each other. Thus, despite similarities with some previously
recurrent detection/recognition methods, our approach, named
Multi-Loss Recurrent Residual Network (MLRRN), differs
from them due to the employment of a single model to
perform detection and recognition of gestures, using a dual-
output loss to execute these tasks simultaneously. Besides that,
the accurate outcomes of MLRRN are also provided by the
combination of elements such as our dual modality input,
bi-directional LSTM layers and residual modules, which is
innovative in relation to literature methods.

III. HANDLING UNSEGMENTED VIDEOS

Most gesture recognition approaches are designed to handle
segmented videos, i.e., a single gesture is presented on the
entire video. Despite the existence of accurate methods applied
to segmented gesture recognition datasets, such as SKIG [19]
and ChaLearn IsoGD [11], they are not suitable to perform
gesture recognition on real-life scenarios where there exists a
fluid conversation that is less and less dependent of any control
over the communication scenario [22]. In this sense, to handle
unsegmented gesture videos, two tasks must be considered: (i)
gesture detection and (ii) gesture recognition.

Gesture Detection. Determining the start and the end of a
gesture in an unsegmented video corresponds to mark the
frame interval comprised by this gesture. This task is named
gesture detection or gesture temporal detection [5]. Despite
simulating a real-life scenario (i.e., unsegmented stream of
data), few approaches tackle temporal detection due to its
high complexity. The assignment of the label gesture or no-
gesture to each frame is a difficult task since the positive class
(i.e., gesture) tends to present high intraclass variation and the
negative class (i.e., no-gesture) tends to suffer from the lack
of standard postures, producing inconsistent behavior among
users and even similarities with the gesture class [5], [13].
In addition, it is important to consider the three temporal
phases on the gestures: preparation, nucleus and retraction.
The nucleus, core of the gesture, is associated to motion
and postures executed by the performer that characterize
each gesture. In turn, preparation and retraction are transition
phases that regard assuming a posture to start the gesture or
going to relaxed postures, respectively. While the nucleus is
the discriminative phase [23], the other two phases can be
similar for different gesture classes and hence less useful or
even detrimental to classification, just representing transitions
between no-gesture frames to gesture frames and vice-versa.

Gesture Recognition. Gesture recognition corresponds to the
assignment of a label to a gesture sequence. This task has
been tackled by several works and is the main task of gesture
recognition approaches [5], [17], [22]. Gesture recognition is
a typical classification task in which frame sequences are
associated to one of the trained classes. Differently from
the gesture detection, the complexity of gesture recognition
presents two main points: similarity between different classes
and possible large number of classes.



IV. PROPOSED APPROACH

To perform gesture recognition on unsegmented videos, we
propose a model, the Multi-Loss Recurrent Residual Network
(MLRRN), that presents three main characteristics:
Recurrent layers: As aforementioned, gestures present a well-
structured time disposition of events, making room for an
efficient application of recurrent models. Since state-of-art
results are mostly achieved by these models and we intend
to handle unsegmented videos, recurrent layers are extremely
suitable for this task. With recurrent layers, our model is able
to extract long-term dependencies and to establish relations
between different frames of the input.
Frame-level input: The MLRRN model was developed with
a frame-level input, i.e., the input corresponds to one frame
of the video per timestep. However, to provide local temporal
information, for each input frame, we also provide the previous
and the next four frames, producing a 9-frame tensor.
Multi-task (Detection and Recognition): Our model outputs
labels for each frame of a video, performing both detection
and recognition tasks at once. These tasks present a com-
plementary behavior and when considered in a jointly way,
they enhance the outcomes of the other. The detection task,
for instance, gives a negative response for no-gesture frames,
evidencing that these frames cannot be associated to any class
of recognition task. In turn, the recognition task emphasizes
transition frames, revealing margins of gestures and no-gesture
intervals. Thus, we developed a multi-task model to perform
both tasks at once, counting with a dual-loss that weights both
detection (binary cross-entropy) and recognition (categorical
cross-entropy) responses. Figure 1 illustrates the proposed
MLRRN and Sections IV-A and IV-B detail the method.

A. Input Data

The main input of the MLRRN consists of frames of a
video sequence. For each time offset (timestep), a next frame
from the sequence is fed to the approach. However, instead
of using the raw RGB frame, we extract activations from the
fully connected layer 7 (fc7) of VGG-16 trained on ImageNet
to produce a spatial description. This feature contains 4096
dimensions and was reshaped to a 64x64 representation before
feeding our model (model spatial input). With VGG-16 activa-
tions, we obtained better results than adding spatial layers to
the model, leading to a reduction on the number of parameters
and a model that is less prone to overfitting, with lower training
data requirement and easier convergence.

As showed in Figure 1, we consider a secondary input
(model joint input). This input corresponds to human body
joints computed with the pose estimation technique proposed
by Cao et al. [24], which uses a nonparametric representation
to learn to associate appearance of body parts with individuals
in images. This information is used to produce a pose signature
of individuals that are performing gestures on the video.

B. MLRRN Model

The Multi-Loss Recurrent Residual Networks (MLRRN) is
a multi-task architecture that performs two different tasks:

gesture temporal detection and gesture classification. Since
the inputs of the architecture corresponds to frames of a video,
detection and classification labels are generated for each frame,
considering both losses of the model, as depicted in Figure 1.

The first point to notice on MLRRN model is the Spatial
Input which corresponds to VGG-16 activations for every
frame. As aforementioned, MLRRN takes into account the
previous and subsequent frames, empirically determined as a
9-frame input for every frame of the video. For each new
timestep, an 1-frame offset is performed and the current frame
is updated, as illustrated in Figure 2. According to this strategy,
the first and last four frames are never considered as the main
input but are used as auxiliary inputs for adjacent frames.

The second block of MLRRN model is called Multi-scale
Spatial Convolutions. It corresponds to spatial convolutional
layers that consider different filter dimensions. With that, we
try to gather information from different scales. In addition, this
multi-scale block intends to mitigate the fact that MLRRN per-
forms convolutions over fully-connected activations (reshaped
to 64x64) from the VGG-16. With that, we enforce a spatial
relation that is spread over the fully-connected representation
and, with these convolutions considering different scales, we
tend to better capture information from that. Furthermore, it
is important to mention that these convolutions are performed
over each frame information (activations from current and
auxiliary frames) isolated. We do this to increase the capacity
of the model at this point, with the aim of producing richer
representations from each frame separately. This contributes to
provide wealthier information regarding the frame differences
along the input frames for each timestep.

The next block is the Tensor Assembling, where feature
maps obtained from convolutional layers of individual frame
responses are concatenated in different ways. With that, a ten-
sor is produced by each combination of these maps, allowing
the performing of spatiotemporal convolutions since the maps
from different frames represent a time variation on the input.
Figure 3 illustrates the combinations that are performed and
the tensors produced from MLRRN inputs. One could notice
3- and 9-input tensor combinations, experimentally assembled,
from what spatiotemporal (3D) convolutions are performed. At
end of this block, responses of convolutions over all tensors
are concatenated and propagated through the network.

With the tensor in hand and spatiotemporal convolu-
tions performed, residual blocks are employed. These blocks,
adapted from the research proposed by Pigou et al. [13], are
important to maintain the gradient in a deep network, such as
MLRNN. In addition, it allows the employment of operations
(mostly convolutions), over representations with lower and
higher degree of semantics.

The bi-recurrent layer is the next block on our model.
This layer presents a crucial importance since it explores the
temporal structure of gestures, in which there is an order of
events that is relevant to determine their labels. In addition,
with this layer it is possible to obtain a response for each frame
considering the high dependency that exists on other frames.
In the case of MLRRN, a bi-recurrent layer is employed,



Fig. 1. Illustration of the proposed MLRRN approach.

Fig. 2. Input of MLRRN for different timesteps.

gathering information from previous and future frames. Ac-
cording to our tests, bi-LSTM layers presented better results
than vanilla RNNs or GRUs, which is expected due to the long-
term dependency that exists between a frame and its previous
and future instances. Finally, the secondary input of the model
(human joints) is concatenated to the representation obtained
from residual blocks, being both fed to this recurrent layer.

At end, the MLRRN model presents a stack of fully
connected-layers that act over the recurrent representation.
These layers result in two output layers, one responsible for the
class prediction (output is the label of a frame considering ges-
ture classes) and the other corresponds to temporal detection
(determines if a frame is part of a gesture or not). The complete
MLRRN model is showed in Figure 4. One can notice that the
outputs of the model are a binary and a (n+1)-class softmax
layers, which apply binary and categorical cross entropy
loss functions, respectively. The binary output corresponds
to temporal detection, classifying frames as gesture and no-
gesture. The other output has its dimensionality associated to
the number of gesture classes of the dataset added by one.
This addition of an extra class regards the existence of the no-
gesture class also for this output. However, this class receives
no-weight on the training of the model.

V. EXPERIMENTAL RESULTS

To evaluate MLRRN, experiments are conducted on
ChaLearn Montalbano [10] and on ChaLearn CongGD [11]
datasets. For both, detection and recognition of gestures are
performed following the standard evaluation protocols.

Experimental Setup. Most parameters of the MLRRN ar-
chitecture (shown in Figure 4), such as the choice for a
bidirectional LSTM layer, the employment of residual modules
and activation function of layers, were determined by tests on
the validation set of the ChaLearn Montalbano [10]. However,
since ChaLearn ConGD [11] is a complex dataset, containing
more videos and gesture classes, the architecture depicted on
Figure 4 was adjusted before conducting experiments on it,
with the insertion of one extra residual block and the incre-
ment of the number of feature maps in some layers. Finally,
the output of the softmax layer responsible for the gesture
recognition had its size adjusted in order to contemplate the
classes of the ChaLearn ConGD and the no-gesture class.

To train the model shown in Figure 4, the learning rate
was set experimentally to 0.0001. All convolutional layers
employ ReLU activation (shown in blue), except for some
on residual blocks (shown in green), which employ ELU.
LSTM and fully-connected layers employ sigmoid activation
(shown in purple). The model evaluated on ChaLearn Montal-
bano contains 53.1Mi parameters while the one evaluated on
ChaLearn ConGD contains 60.2Mi parameters, both trained
on a NVIDIA GeForce 1080Ti.

The evaluation of MLRRN considered the average temporal
Jaccard metric, which takes into account both the accuracy of
the network responses and the overlap between the responses
and ground-truth annotations. It is defined by

Amplitude(Js,n) =
As,n ∩Bs,n

As,n ∪Bs,n
, (1)

where As,n denotes the ground truth of gesture n at sequence
s and B s,n is the prediction of such gesture at sequence n.



Fig. 3. Assembling of tensors on MLRRN architecture.

Fig. 4. MLRRN architecture. Layers employ ReLU (blue), ELU (green), sigmoid (purple) and softmax activations (brown).

Datasets. ChaLearn Montalbano [10] is a public dataset
composed by 970 RGB, depth and user-segmented videos,
simulating a continuous recognition scenario. Each video con-
tains multiple gestures, resulting in more than 14, 000 from 20
Italian sign gesture categories executed by 20 performers. This
dataset employs a protocol with mutually exclusive training,
validation and testing subsets. All videos are annotated with
the beginning and end of each gesture, besides the class they
belong. These gestures are separated by intervals of frames in
which the performers relax, being associated to none of the
20 classes of the dataset (no-class frames).

ChaLearn CongGD [11] is a public dataset comprising
249 different gesture classes and more than 56, 000 ges-
ture performances disposed into 22, 535 videos. Similarly to
ChaLearn Montalbano, this dataset presents a standard evalu-
ation protocol with mutually exclusive training, validation and
testing subsets. ChaLearn ConGD is considered a challenging
dataset due to the variability introduced by a high number of
classes, performers, backgrounds and illumination constraints.
Additionally, the gesture recognition in this dataset requires
an initial temporal detection of gestures. Differently from
ChaLearn Montalbano, ChaLearn ConGD dataset is annotated
with no intervals (no-class frames) between gestures, with a

1-frame difference between gestures.

A. Evaluation on ChaLearn Montalbano

Since MLRRN relies in frame-level inputs, it is not neces-
sary to perform any adjustment on the length of the data. For
each frame, a RGB input tensor is assembled along the joint
response of the technique of Cao et al. [24]. Moreover, once
MLRRN presents a bidirectional recurrent layer, it considers
previous and future frames on the response produced for every
input frame. An important point on this approach is the batch
size, since it must be large enough to provide information
that reflects long-term dependency that exists between frames.
However, the larger the batch size, the larger must be the
number of parameters of this recurrent layer, leading to
problems such as higher time to train and training data require-
ment, proclivity to overfitting and struggling convergence. On
ChaLearn Montalbano, a batch size of 50 is used, along Adam
optimizer with a learning rate value of 0.0001.

Since ChaLearn Montalbano comprises 20 gesture classes
and one non-gesture class, it was necessary to train a 21-
class classification model for the recognition task. For the
detection task, this model acts as a binary classifier, outputting
labels that indicate whether a frame is part of a gesture or



Fig. 5. Post processing on MLRRN response. Colors indicate the label of
the frame.

TABLE I
AVERAGE TEMPORAL JACCARD SCORE ON CHALEARN MONTALBANO

DATASET.

Approach Jaccard Score

Results

MRF, KK, PCA, HOG [14] 0.827
AdaBoost, HOG [15] 0.834
Multi-scale DNN [25] 0.870
TempConv + LSTM [13] 0.906
3DCNN + ConvLSTM [20] 0.915

Our Results

MLRNN 0.914
MLRRN + 3-size mask 0.916
MLRRN + 5-size mask 0.919
MLRRN + 7-size mask 0.912
MLRRN + 9-size mask 0.908

not. Based on that, we evaluated our approach on the test
subset of ChaLearn Montalbano, which provided frame-level
recognition accuracy of 96.87%. This accurate result led to a
high average temporal Jaccard response of 0.914 considering
the output of the recognition task of the model.

We also executed a post-processing on MLRRN recognition
output, performing a majority voting around each frame re-
sponse. To do that, masks with different sizes were employed,
making the label of each frame to be the most common
response of the own frame and its neighbors. The employment
of this post-processing regards the frame-level output of ML-
RRN what makes the approach sensible to wrongly recognized
frames, as depicted in Figure 5, where colors indicate the class
label of a frame. One could notice incorrect responses (purple)
among the frames of a gesture (represented in orange).

Table I shows the results of the proposed MLRRN and state-
of-art approaches on ChaLearn Montalbano [10] considering
the conventional and post-processed outputs with different
mask sizes. According to the results, it is possible to see
that larger masks tend to degrade the Jaccard response of
the model, since transition zones (between different gestures
and gesture to non-gesture frames) are corrupted. With a 5-
size mask, we achieved state-of-art results, outperforming the
method proposed by Zhu et al. [20]. It is important to remark
that the research proposed by Molchanov et al. [5] achieved
a higher Jaccard score on this dataset. However, since that
approach uses ground-truth annotations to perform gesture
detection, their outcomes cannot be compared to ours.

B. Evaluation on ChaLearn ConGD

The evaluation of MLRRN on ChaLearn ConGD presented
few changes in comparison to ChaLearn Montalbano. Most
of them, as aforementioned, are related to the increment of
the model capacity to handle a more complex dataset and the
increase on the number of classes for classification, which goes
to 250. In addition, since ChaLearn ConGD contains shorter

TABLE II
AVERAGE TEMPORAL JACCARD SCORE ON CHALEARN CONGD DATASET.

Approach Jaccard Score

Results

Two-Stream ConvNets + Ensemble learning [26] 0.5307
Faster-RCNN + Heterogeneous networks [12] 0.5950
Faster RCNN+ C3D [27] 0.6103
TS1-Res3D + Multiply Fusion [20] 0.6435
TS1-Res3D + Average Fusion Fusion [20] 0.7163

Our Results
MLRNN 0.5627
MLRRN + 5-detection classes 0.6204
MLRRN + 5-detection classes + 5-mask 0.6231

videos, the batch size was experimentally set to 40. Adam
optimizer was employed along a learning rate of 0.00015.

Since ChaLearn ConGD presents a 1-frame distance be-
tween different gestures, the impact of the detection task
was mitigated. MLRRN achieved a frame-level recognition
accuracy of 73.23%. In turn, the model reached a temporal
Jaccard score of 0.5627, as showed in Table II with results
of other state-of-art approaches on the ChaLearn ConGD. We
performed an additional evaluation on this dataset with the
aim of enhancing the outcomes of MLRRN, in which we
assigned five different labels for classes on the detection task.
For instance, classes 0-49 are assigned to label 1, classes 50-99
to label 2, and so on. With that, the detection task could deter-
mine intervals related to these classes, gathering information
about their lenght and transitions that exist between them. As
a consequence, a significant improvement on temporal Jaccard
score was noticed, evidencing the impact of detection task for
the proper recognition of gestures.

On the ChaLearn ConGD, we can notice similar problems as
the ones found on ChaLearn Montalbano, such as the existence
of some noise between frames outputs of a class. Besides that,
since the annotation of this dataset does not include no-gesture
frames, the performance of MLRRN is deteriorated with our
model acting in a similar way to a standard classifier, with no
contribution coming from the detection task. However, with
the assigning of five classes for detection, the impact of this
multi-task was greatly enhanced, even this 5-class separation
being performed with a very simple criterion.

C. Ablation Study of MLRRN

Since MLRRN is composed by several components, an
ablation study shows to be valuable. Table III presents out-
comes obtained with the ablation evaluation of MLRRN on
ChaLearn Montalbano for recognition and detection tasks. The
results obtained with this study justified our choices on the
assembling of the final MLRRN architecture. From this study,
some points need to be highlighted, as: (i) the huge impact
of recurrent layers, indicating the importance of temporal
information and disposition of events for gesture recognition,
(ii) the complementarity of appearance and skeleton inputs
and (iii) detection and recognition losses, with improvements
obtained from the combination of them. Detection outcomes
do not correspond to the final response of the approach.
Presenting them intends to highlight the improvement, even for
this complementary task, obtained with our multi-task strategy.



TABLE III
ABLATION STUDY PERFORMED ON CHALEARN MONTALBANO DATASET.

Approach variation Jaccard Score (recognition)

Results

Only appearance input 0.830
Only skeleton input 0.659
No residual blocks (skip-connections removed) 0.881
No recurrent layers 0.547
Single-directional recurrent layers 0.861
Only recognition task (no detection) 0.806
Full model 0.919
Approach variation Jaccard Score (detection)

Results Only detection task (no recognition) 0.949
Full model 0.982

Fig. 6. Detection responses of MLRRN. Dashed red line represents the
threshold used to approximate responses.

VI. DISCUSSION

Results on ChaLearn Montalbano and ChaLearn ConGD
evidenced the high performance of MLRRN and the positive
impact of the employment of correlated tasks. The superiority
on ChaLearn Montalbano, for which we achieved state-of-art
performance, is greatly related to the gesture disposition of
this dataset and their annotations, which provide no-gesture
frame intervals between the gesture instances. On ChaLearn
ConGD, the performance of MLRRN is mitigated mostly due
to annotations. On that, frames associated to relaxing postures
of performers that should be annotated as no-gesture frames,
are still annotated as part of gesture intervals.

In addition to the quantitative results showed, it is interesting
to notice, in a qualitative way, how the method performed
for both tasks. Figure 6 depicts the response of the temporal
detection task for a video of ChaLearn Montalbano compared
to the ground-truth response. In this figure, low-responses
(next to 0) indicate the absence of gesture and high-responses
(next to 1) indicate the presence of a gesture. One can notice
the existence of some noise on the detection, which is filtered
by the employment of an empirical threshold (0.5) used to
approximate the responses to 0 or 1. It is interesting to notice
that abrupt transitions between non-gesture and gesture frames
are well-detected by the model in most cases in this dataset.

The detection and recognition tasks produced accurate out-
comes for most videos in the dataset. However, the last frames
of some gestures were predicted as no-class frames, what
produced a shortening effect on recognition. This point can be
associated to the similarity, in terms of appearance and motion,
between frames of retraction phase (final part of a gesture) and
relaxing phase (post gesture), with this latter being associated

Fig. 7. Shortening effect on the recognition of gestures by MLRRN.

Fig. 8. Frame-level confusion matrix of MLRRN on ChaLearn Montalbano.
Indexes represent different dataset classes. Class-0 represents no-gesture.

to no-class frames. In addition, the lack of no-class standard
postures and inconsistent behavior of performers could have
contributed to this outcome, illustrated on Figure 7.

On the evaluation of the proposed MLRRN, we could notice
that, even on ChaLearn Montalbano for which the approach
presented very accurate results, some frames belonging to all
classes of the dataset are recognized as class-0 (i.e., no-gesture
class). This result is mostly associated to the retraction frames
of each gesture, since these frames are similar, in terms of
appearance and even motion, to the relaxing postures that are
common on post-gesture frames. Figure 8 depicts the frame-
level confusion matrix of MLRRN responses on ChaLearn
Montalbano, for which the approach presented more than 96%
of accuracy. It is possible to see that for almost all classes,
some frames are predicted as no-gesture (class 0).

Finally, we performed a cross-dataset test, where we used a
model trained on ChaLearn Montalbano to act over videos of
ChaLearn ConGD. Since the class-recognition labels make no
sense in this scenario, we only qualitatively verified whether
the detection task was able to produce reasonable results.
Figure 9 depicts the detection task on videos of ChaLearn
ConGD. For that, we manually annotated the preparation,
nucleus and relaxing phases of gestures. According to the
results, the model presents high responses for the nucleus
part of the gestures, with oscillating responses on preparation
and retraction and low responses on the relaxing postures,
annotated on ChaLearn Montalbano as the non-gesture class.
Even though not completely accurate, the results suggest that
the trained model is able to indicate the separation between



Fig. 9. Detection responses of MLRRN on ChaLearn ConGD.

gestures in a different dataset, which is promising once that
experiment emulates conditions similar to real-life scenarios.

Since the model trained on ChaLearn ConGD presents
no impact on detection task due to the lack of annotations
regarding the no-gesture frames, this detection task makes no
sense to be evaluated on ChaLearn Montalbano dataset.

VII. CONCLUDING REMARKS

This paper presented a gesture detection/recognition ap-
proach, the Multi-Loss Recurrent Residual Network (ML-
RRN), based on the application of multi-task, residual
blocks and recurrent layers. Experiments were conducted on
ChaLearn Montalbano, for which the approach achieved state-
of-art performance, and on ChaLearn ConGD datasets, both
evaluated considering the average temporal Jaccard metric.
Even not surpassing the outcomes of methods such as the
one proposed by Zhu et al. [20] on ChaLearn ConGD, the
method presented accurate responses, with tests indicating
how correlated tasks could enhance outcomes of each other.
On this dataset, a more sophisticated separation of detection
classes, instead of our 5-class simple strategy on ChaLearn
ConGD, could improve the results of MLRRN. Finally, since
our model handles unsegmented input streams and needs
no detection/pre-processing steps before the recognition of
gestures, it presents a straight forward applicability in real-
life scenarios, which comprises a fluid communication.
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