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Abstract—Face Super-Resolution is a subset of Super Resolu-
tion (SR) that aims to retrieve a high-resolution (HR) image of a
face from a lower resolution input. Recently, Deep Learning (DL)
methods have improved drastically the quality of SR generated
images. However, these qualitative improvements are not always
followed by quantitative improvements in the traditional metrics
of the area, namely PSNR (Peak Signal-to-Noise Ratio) and SSIM
(Structural Similarity Index). In some cases, models that perform
better in opinion scores and qualitative evaluation have worse
performance in these metrics, indicating they are not sufficiently
informative. To address this issue we propose a task-based
evaluation procedure based on the comparative performance of
face recognition algorithms on HR and SR images to evaluate
how well the models retrieve high-frequency and identity defining
information. Furthermore, as our face recognition model is
differentiable, this leads to a novel loss function that can be
optimized to improve performance in these tasks. We successfully
apply our evaluation method to validate this training method,
yielding promising results

I. INTRODUCTION

Single Image Super Resolution (SISR) is the task of retriev-
ing a high-resolution (HR) image from a low-resolution (LR)
input. It is an ill-posed problem, since a high-resolution image
can generate various low-resolution counterparts and vice-
versa. Evaluation and comparison of methods is thus a difficult
task. The most commonly used metrics, the Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
both presuppose a ground-truth example and act on a pixel-
by-pixel or window-by-window basis, characteristics deemed
problematic. It is also known that these metrics correlate
poorly with human perception [1f, [2]].

An emblematic case of the insufficiency of current metrics is
that of the use of Generative Adversarial Networks (GANs) [3]]
and Perceptual Losses [4]. While yielding results that were
clearly superior qualitatively, these techniques had a lower
quantitative performance on those metrics. Mean Opinion
Scores (MOS) [5]] were then used to confirm these methods
generate more aesthetically pleasing and overall more credible
images. However these experiments are hard to replicate, prone
to biases and deviations due to sample size and selection and
are ultimately still based purely on human subjectivity. It has
become common to report new developments in SISR with
two versions: one trained with GANSs for visually compelling
examples and qualitative evaluation and one trained alone for
quantitative analysis [6]]

In this context we study ways to use other Computer
Vision (CV) tasks as proxies for the quality of generated

images, a framework known as task-based evaluation. The
benefits of this approach is twofold: it helps integrate SR
with other fields of CV, approximating model evaluation to
the practical, actual use cases of the model, and defines new
hard quantitative metrics that may bring new insight and more
powerful justification for present and future models.

Face Super Resolution, sometimes called Face Hallucina-
tion, is the specific subset of SR that deals with resolving
LR images of human faces. As so, there are a number of
applications under the Face Recognition umbrella that can be
aided with SR [7], [8], such as face verification (defining
whether two images belong to the same person) or face
identification (attributing an identity to an image of a face) [9].
We then also study Face Recognition models and methods to
build an evaluation procedure based on the performance of
super-resolved images in these tasks.

As we have found that most of the current state-of-the-
art methods for face recognition are based on differentiable
models [10], [11]], we are also able to optimize our SR models
specifically to perform well on these tasks. Using a pre-
trained Face Recognition (FR) model we build a ”"FR Loss”
based on the distance between the super-resolved image and
the ground-truth on the FR model’s representation. Our loss
function would express how well our super-resolution model is
recovering identity-defining information. We evaluate it under
our evaluation procedure and get motivating results.

The main contributions of this work are then:

o we develop a robust task-based evaluation protocol for
Face Super-Resolution models using FR tasks and apply
it to state-of-the-art models

« we develop a new method of training, involving minimiz-
ing a "FR Loss” that aids SR Models to recover identity-
defining information

The rest of the paper is structured as follows: we perform

a literature review in Section II, formalize our proposal in
Section III, describe our experimental design in Section IV,
present results and brief discussion in Section V and conclude
in Section VI

II. RELATED WORK

A. Single Image Super-Resolution and Face Super-Resolution

Since Dong et al’s introduced the Super-Resolution Con-
volutional Neural Network (SRCNN) [12]], deep learning
methods became the state-of-the-art for single image SR.



Further developments on upsampling techniques [[13]], network
architectures [3|] and others have continued to improve results
both in quantitative and qualitative ways. Wang et. al. [14]
presents a more in-depth review of the development of the
area.

Recently, researchers have found that minimizing a pixel-
by-pixel loss function alone may lead to over-smooth results,
i.e., images that lack high-frequency details [3]], [4]. To address
this problem, more complex loss functions have been devised
to take into account image quality in a more global way,
such as the perceptual loss [4], the adversary loss [3]], or
losses based on the wavelet transform [[15]. Most of the time,
these innovations yield worse results quantitatively, in terms
of PSNR and SSIM, but better qualitatively, and subjectively,
through Mean Opinion Scores (MOS).

Although methods of general SR still work on face images,
techniques exploiting unique properties of these images ex-
ist [6].

B. Deep Face Recognition

Taigman et al’s work in 2014 [10] introduced a Deep
Learning-based Face Recognition approach that beat and
quickly became the state-of-the-art for various FR tasks. It
consisted of a Deep Neural Network trained first on a closed-
set scenario as a multiclass classifier, using the softmax
activation function and minimizing cross-entropy. Since the
classifier must have learned an useful representation of faces
in order to separate the classes, the authors hypothesize that
this representation may be useful for an open-set scenario.

The authors validate this hypothesis empirically by using
an intermediate layer of the classifier as an embedding for
general face images. Simple models for face verification were
trained using the classifier’s embedding as input and achieved
results far greater than the state-of-the-art then, on datasets
with different faces than the ones used in training. Impressive
results were achieved even using simple methods such as the
euclidean distance as a verification metric.

Further developments in Deep Face Recognition were made
in order to take advantage of large-scale face datasets. Parkhi
et al [11]] develop a new loss function that can be used to train
the embedding on an open-set scenario, based on the distance
between positive and negative examples of generic identities.
Developments in the softmax loss [16] were also made for
increasing discriminability and also facilitating training.

C. Neural Networks as Kernel Functions

The idea of using pre-trained neural networks as “em-
beddings” or “kernel functions” is not new, specially the
idea of using distance metrics in these embeddings as loss
functions or evaluation metrics. Johnson et al [4] use the
output of a VGG16 network pre-trained to classify examples
on ImageNet to define a “Feature Reconstruction Loss” and
a ”Style Reconstruction Loss” that are then used for SR and
style-transfer.

The output of an intermediate layer of an Inception-like
network [17] also pre-trained on ImageNet is commonly used

as an evaluation metric for generative models. It is generally
refined into the Inception Score (IS) [18]], or Frchet Inception
Distance (FID) [19]

While these losses and metrics are intuitive and, more
importantly, experimentally successful, there is no clear the-
oretical justification in using these determinate networks and
not other ones for distance metrics.

The approach proposed in this paper can be thought of as
a variant of these methods, but with a crucial difference. In
our case, the embedding space and the distance chosen are
already semantically meaningful, as they express differences
or similarities in face characteristics.

D. Task-based evaluation and training

Dai et al [20] previously argued that SISR is mostly
evaluated perceptually. They proceeded to do a review of the
state-of-the-art methods and their effects on other CV tasks,
with generally positive conclusions about the effect of SR in
other CV tasks, and asking for further integration between
SISR and other subfields of CV.

Since Face Super-Resolution has a natural use-case in
surveillance applications, task-based evaluation seems to be
more common in this area. Before the emergence of Deep
Learning, Hu et al [21] investigate the effects of SR on
surveillance applications. Rasti et al 7] train CNNs for super-
resolution of faces and evaluate them using the performance of
a Hidden Markov Model (HMM) model for face recognition.
These works focus more on face verification tasks, while our
work extends also into face identification, as described in
Section

There are previous works using information from other
CV tasks to aid SR. This idea can also appear under the
framework of multi-task learning. Bulat et al [22] train a
network to perform both facial landmark estimation and SR
at once. Haris et al [23] develops an approach similar to
ours but in regards of general object-detection instead of
Face Recognition. They train a SR Network to minimize both
the reconstruction loss and the error of a pre-trained neural
network for object detection on the super-resolved images. We
instead focus on face images and Face Recognition and define
our loss function in a different way, presented in Section [T

Zhang et al. [24] propose to jointly optimize separate Face
Recognition and Super Resolution models and develop tech-
niques for this joint training, that would result in FR models
robust to differences in resolution and SISR models that can
recover identity information. The joint training leads to some
confusion in the experimental design, though, which overlooks
the generated images in favor of evaluating the jointly trained
FR model. They present three evaluation protocols: Visual
Quality, quantitative and qualitative analysis of generated im-
ages, Identity Recovery, which measures the cosine similarity
of super-resolved images and original images on the trained
FR model’s embedding, and Identity Recognizability, which
trains a new FR Model on super-resolved images and test its
performance on traditional FR benchmarks



As most of these evaluation protocols involve both the
generated images and the trained embedding, there is little
evidence about the quality of the super-resolved images. When
they are considered on its own they use only the traditional
SISR metrics and the image’s distance on the jointly trained
FR Model, which may be biased in favor of the network it was
trained with. Our evaluation protocols, defined on Section
produce a more fine-grained view of the amount of information
present in the super-resolved images by considering them on
their own.

III. METHOD

In this section we formally define our models, training and
testing methods.

A. Single Image Super-Resolution Networks

A SISR Network is a neural network that aims to retrieve
a high-resolution image from a low-resolution input. It can be
thought of as a parametrized mapping, M,

Isg = M(ILR,9), )]

that produces a super-resolved image (Igr) from a low-
resolution image (I1r), where 6 represents the Neural Net-
work’s parameters. On a real-world scenario we generally do
not have access to the high-resolution version of the image
(I r)- Therefore, for training we usually model a degradation
process D that produces low-resolution images, I1r, from
high-resolution ones, Irr, presented in the original image
datasets:

Itr = D(Inr,9), 2)

where  represents the degradation parameters such as scale.
In this work we use for degradation model a simple down-
sampling operation via interpolation alongside with an anti-
aliasing blur kernel.

This degradation model is used to produce pairs of low-
resolution and ground-truth high-resolution images. A SISR
Network then receives the LR image and produces a super-
resolved proposal.

Through comparison between the super-resolved image and
the HR ground truth, we can then define a loss function
that express the distance between the model’s output and the
desired output, that turns learning feasible.

The most common loss function is simply the normalized
L2 norm between each image, also called MSE (Mean Squared
Error) loss or pixel-loss:

MSE = ||Isr — Iur||2 3)

B. Face Recognition Networks

A Deep Face Recognition Network (FR Network) is a
CNN that produces a real-valued vector representation of face
images. It can be thought as an embedding, ¢, given by:

¢:1— R", “4)

where [ is a set of images.

This embedding is trained in such a way that proximity for
a certain similarity measure means proximity of face charac-
teristics, and can be used to determine whether two images
are from a shared identity or to classify images according to
different identities.

C. Face Recognition Loss

Using an FR model we can define then our novel FR Loss.
Similarly with a perceptual loss, given an FR network ¢, the
FR Loss is defined as:

FR=||¢(Isr) — ¢(Iur)|* ®)

This FR Loss is different from the task-based loss of Haris et
al [23] in the sense that it is not oriented towards an specific
task, but to Face Recognition as a whole. We understand that
by being more abstract our loss leads our models to recover
facial characteristics in general, and not only characteristics
relevant to a specific task.

D. Training for FR Loss

Experimentally, we have found that training SISR Networks
exclusively on the FR Loss may lead to instability, poor local
optima and overfitting that causes color aberrations, artifacts
and other non-optimal behavior that seems to help minimize
the FR Loss. In order to mitigate this we developed a training
procedure that is illustrated in Fig. [T] First, we train a base
network to minimize MSE exclusively. On a second phase,
we fine-tune the base network to minimize a weighted sum
of the FR Loss and MSE. We carefully define the weights so
as to each one of the losses contribute approximately 50%
of the total loss at the beginning of training. To provide
fair comparison we also fine-tune the base network solely
on MSE. We have used for network architecture the Super
Resolution Residual Network (SRResNet). It is a version of
the Residual Network architecture [25] adapted to perform
Super Resolution by Ledig et al [3]. We have used 10 residual
blocks.

During training we keep the weights for the FR model
frozen. However we have found that it is necessary to let
the Batch Normalization parameters update during training as
not doing so leads to color distortions on the final results.
We hypothesize that keeping those parameters frozen leads
the network to trying to make the image intensity distribution
match the one from the original dataset the FR model was
trained on.

E. Evaluating Information Recovery of SISR Networks

Besides using classic metrics for evaluation of our method,
we devise a testing procedure that is able to quantify how
much identity-defining information the neural network is able
to retrieve from the low-resolution image.

For a high-resolution test dataset we produce a degraded
version through our degradation model and a super-resolved
version through our SISR Networks. We then produce embed-
dings of these versions of the test dataset using an FR Model,
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and these embeddings are then evaluated on classical FR sce-
narios, which we describe more in depth on subsection [[V-B]
This procedure is illustrated in Fig.

A natural hypothesis for this procedure is that loss of reso-
lution leads to loss of identity discriminability. The embedding
produced by a good FR Model on high-resolution images
should separate different identities on different clusters of the
embedding space, in a way that allows the embedding to be
used for identification and verification effectively.

If this hypothesis is correct, the embedding produced by
the low-resolution version of the dataset should have a worse
performance when used for the same tasks. Furthermore, the
better a super-resolution model is on retrieving high-frequency
and identity information, the closer the embedding of the
super-resolved test dataset should act as the original high-
resolution one.

IV. EXPERIMENTS

In this section we present the datasets and the experimental
design to assess the proposed method.

A. Datasets

1) CelebFaces Attributes Dataset: The CelebFaces At-
tributes Dataset (CelebA) [26] is the main dataset used in our
work. It contains 202,599 face images from 10,177 distinct
identities, the number of images per individual identity varies
between one and thirty. The dataset is manually annotated
to face landmarks and binary characteristics and there is
a previous proposed partition into train, validation and test
dataset containing strictly non-intersecting identities. We train
our SISR Networks exclusively with the training partition of
the dataset. For face identification testing and traditional SISR
evaluation we select the identities of the test dataset which
have exactly thirty image examples.

2) Labelled Faces in the Wild: The Labelled Faces in the
Wild (LFW) Dataset [27] is a classical Face Recognition
dataset that is comprised of 13,233 images pertaining to 5,749
different identities. It has become famous for providing a series
of test protocols for diverse scenarios, some of which have
become widely used benchmarks. In our work we follow the
“unrestricted with labeled outside data” protocol for testing
face verification. Besides the faces themselves, this protocol
offers a list of pairs of images of faces available in the dataset
alongside with a classification of whether they belong to the
same person or not.

3) Datasets used Indirectly: We indirectly take advantage
of the VGGFaces2 dataset [28], which is a large scale FR
dataset that was used to train the pre-trained FR Model we
used in this work.

B. Metrics

In this section we present some metrics used to assess the
methods.

1) SISR Metrics: For intrinsic evaluation of the super-
resolved images we used the two most common SISR metrics:
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM). PSNR is a metric based on the MSE measured
in decibels. For a given MSE, the formula for the PSNR is:

MAX?
MSE

where MAX is the maximum pixel intensity possible for the
image.

The higher the measure, the more similar the images are.
When the images are equal, PSNR is infinite and when the
images are such that the sum pixel by pixel is equal to the
maximum value of a pixel can reach, then PSNR is zero. RGB
images are generally transformed to the YCbCr format for
calculation of the PSNR, which is then done exclusively on
the luminance channel [12] [13].

The SSIM metric uses image moments to calculate statis-
tical approximations for the difference in luminance, contrast
and structure between two images [29]. The SSIM consists
then on a weighted geometric mean of these statistics, and
ranges from O to 1, where 1 means a perfect match. The SSIM
is generally calculated on a series of small windows of both

PSNR = 10 * log;o( ) (6)



images that is then averaged. As with the PSNR, SSIM is
calculated exclusively on the luminance channel.

The FR Loss function we defined on Section [II] can also
be used as a metric during test time. It is expected that our
model trained to minimize the FR Loss will naturally present
lower FR Loss scores on test images and this in itself is not a
powerful argument for the effectiveness of our method. We still
choose to report it to verify generalization to unseen images
and to compare how it behaves on different degradation scales.

2) Face Verification Metrics: Face Verification is an FR
task to evaluate whether a pair of images belongs to the same
person or not. If the output of the FR model is a simple scalar
metric, then different thresholds can be used as criteria for
determining positive or negative matches. Furthermore, one
can plot the relationship between false and true positives over
variations in threshold in a Receiver Operating Characteristic
(ROC) Curve. This gives a more fine-grained view of the
behaviour of our model, since not always the most accurate
threshold is the most desirable for most applications (specially
those in which the damage of a false negative and false positive
greatly differs). Common statistics based on the ROC Curve
are the AUC (Area Under Curve) and the EER (Equal Error
Rate), the value for which false acceptance and false rejections
is equal. [30] [31].

A fixed threshold can also be determined by cross-
validation. In this work we use 10-fold cross-validation to de-
termine the best threshold as well as calculate mean accuracy
and variance.

On most Deep FR applications [[10] [16] the metric used
for face verification is a distance metric between faces in the
embedding space learned by the model. We use the simple
Euclidean distance to produce a vector of distances for each
pair and evaluate the embedding using the metrics described
above. As discussed in Section the performance of the
embedding can be used to gauge how much information the
SISR Network could retrieve.

3) Face Identification Metrics: Face Identification is an FR
task to associate an identity to an individual image based on
an available existing group of images of diverse identities.
If we have a closed-set of identities that are known to the
model beforehand, this task simply reduces to a classification
problem. On most real-world applications, though, the set of
matching identities are more likely to be open and unknown.
To simulate this we adopt a test protocol based on the identifi-
cation task of the Face Recognition Vendor Test 2002 [9]. For
an embedding of a test set with different identities associated
to each point, we test a k Nearest Neighbor (kNN) model on
leave-one-out cross-validation, which amounts to classifying
each point using all the others.

As with face verification, there are more fine-grained met-
rics to understand a model’s performance. We investigate not
only if the nearest neighbor belongs to the same class of the
data point, but also if the class is present at all on the nearest
k points. If so, the probe is said to have a rank k. A graphic
called Cumulative Match Characteristic (CMC) shows how
many searches have rank & or lower.

C. Pre-processing and Post-processing

All face images are aligned using Multi-task CNN
(MTCNN) [32]. For training SISR Networks we convert all
pixel values to [0, 1] range. Before passing images through the
FR models we do a simple pre-whitening, which normalizes
each image by their own mean and standard deviation. In the
evaluation we convert the outputs of the network back to the
[0, 256] range.

To acommodate the low-resolution images to the FR Model
we used, which has a fixed input size of 160x160, we
upscale the low-resolution images using bi-cubic interpolation
beforehand. As this is an up-scaling method that adds no new
information to the image, it does not significantly compromise
our hypothesis test that resolution loss implies loss of identity-
defining information.

D. Training

We trained SISR Networks to retrieve high-resolution im-
ages from the CelebA training partition after degrading them
on a 4x and 8x scale. We trained both the base and fine-
tuned versions with Adam [33], and a learning rate of 10~*
and 1075, respectively. We compare the results between the
network trained solely on MSE (”VanillaSRResNet”) and our
model ("FRSRResNet”).

The Face Recognition Model we used to both calculate the
embeddings at test time and to calculate the FR Loss was
a pre-traine(ﬂ model, trained on the VGGFace2 Dataset [28|
using simple softmax loss.

E. Testing

We conduct standard SISR evaluation on the test set of the
CelebA Dataset, reporting average MSE, SSIM and FR Loss
between the super-resolved images and the original images.

We build also a face identification test on our test subset of
the CelebA dataset to evaluate the performance of our SISR
Networks in retrieving identity defining information. To further
evaluate this we also perform a face verification test following
LFW’s "unrestricted with labeled outside data” protocol. This
experiment allows us to test whether our proposed method
leads our networks to retrieve more information from faces
in general or if it is just overfitting to CelebA-style faces in
particular.

V. RESULTS AND DISCUSSION

In this section we show the results obtained by the tested
models and discuss them considering the performance in terms
of the retrieval metrics and classification.

A. SISR Evaluation

Table [I| shows that, considering only classical SISR evalua-
tion metrics and methods, our model performs slightly worse
when it is optimized for the FR Loss. The super-resolved
images for the FRSRResNet are generally closer than the
ground-truth on our embedding space but this should come

! Available at: |https://github.com/davidsandberg/facenet/
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as no surprise, as this is what the model was trained to do.
Otherwise, the images have less PSNR and SSIM. It is very
common to models trained on different losses to behave like
this while yielding seemingly better-looking images (6.
What usually follows is a qualitative argument, or the use of
opinion scores to justify the model.

Figure [3] presents a high-resolution image (top left) and
its low-resolution downsizing (top right). It also presents the
output of the VanillaSRResNet (botton left) and our FRSRes-
Net model (botton right). As expected, the VanillaSRResNet
presents a more pleasant image than our FRSRResNet model,
that preserves better the characterists of the person being

Ground Truth

Input

Output Vanilla output FR

Ground Truth Output Vanilla Output FR

Fig. 5. Comparison of results and specific inset

PSNR (dB) SSIM FR Loss
VanillaSRResNet (8x)  27.49 +- 2.07 0.875 +- 0.04 8.83 +- 1.53
FRSRResNet (8x) 27.30 +- 2.03  0.870 +- 0.04  8.37 +- 1.49
VanillaSRResNet (4x)  32.82 +- 2.56  0.956 +- 0.02  4.16 +- 0.95
FRSRResNet (4x) 32.57 +- 249 0953 +- 0.02  3.96 +- 0.91
TABLE I

RESULTS FOR INTRINSIC SISR EVALUATION. BEST RESULTS FOR EACH
SCALE BOLDED

imaged. Figure [] presents another result of the same methods
(in the same relative positions) and an inset where we can
see that our model does a better job than the state-of-the-
art at recovering characteristics associated with an Asian face
structure, such as epicanthic folds on the eyes. Indeed this is
an advantage that can be seen on numerous other examples
omitted for the sake of brevity.

The advantages observed are not limited to geographical
characteristics, though. We also call attention to the recon-
struction of face contours in both previous examples and
specifically on Figure [5] (using the same location pattern) and
an inset showing a more accurate reconstruction of mouth and
nose contours. Finally, one can notice some checkerboard-like
artifacts that appear in the images generated by our method.
This is something that was also reported by Johnson et al.
for their models trained with the Perceptual Loss, and is
assumed to be the cause of the degradation of PSNR/SSIM
performance.

B. Evaluation on Face Resolution Tasks

Beyond the qualitative argument, our evaluation procedure
allows us to make quantitative arguments about the usefulness
of our model despite the loss of performance on traditional



INN 5NN 10NN
High Resolution 09714 09736  0.9729
FRSRResNet (4x) 0.9542 09595  0.9587
VanillaSRResNet (4x)  0.9523  0.9569  0.9574
Low-Resolution (4x) 0.9106 0.9227 0.9212
FRSRresNet (8x) 0.8087 0.8333  0.8346
VanillaSRResNet (8x)  0.7779  0.8058  0.8157
Low-Resolution (8x) 0.4194 0.4381 0.4496

TABLE 11

KNN RESULTS FOR EMBEDDING EVALUATION ON FACE IDENTIFICATION
TASK. BEST RESULTS FOR EACH SCALE ARE BOLDED

Model Accuracy AUC  Equal Error Rate
High Resolution 0.988 +- 0.005  0.999 0.012
FRSRResNet (4x) 0.980 +- 0.005  0.997 0.018
VanillaSRResNet (4x)  0.980 +- 0.003  0.997 0.018
Low Resolution (4x) 0.969 +- 0.004  0.995 0.029
FRSRResNet (8x) 0.934 +- 0.008 0.981 0.065
VanillaSRResNet (8x)  0.922 +- 0.016  0.976 0.079
Low Resolution 0.826 +- 0.015  0.906 0.174
TABLE III

ACCURACY, AUC AND EER FOR EMBEDDING EVALUATION ON FACE
VERIFICATION TASK. BEST RESULTS FOR EACH SCALE ARE BOLDED

metrics. Observing Tables [ and we can see that our
hypothesis is correct and indeed the loss of resolution hinders
the embedding’s performance on Face Resolution tasks. This
effect is more visible on higher scales of degradation, though.
In the case of the LFW face verification task, which seems to
be all-around easier, the loss of performance in 4x scale is so
little the results are not conclusive.

Our method of training gives better results in both tasks
on all metrics reported. The amount of improvement seems
to be related to the scale as well. While there are decisive
improvements in 8x scale, these improvements are more timid
on 4x scale. This may be indicative of the kind and scale of the
information the FR Model uses to determine proximity. The
CMC plot for the 8x scale presented on Fig.[/|also shows that
our method is consistently better than the traditional MSE, and
not only on average (such as AUC, Accuracy) or on special
cases of hyperparameter selection (Accuracy of selected cases
of k-Nearest-Neighbors).

There seems to be an overall correlation between lower FR
Loss scores and higher scores on FR related tasks, as expected.
This relation seems to be non-linear, with decreasing marginal
gains. We can observe that the improvements yielded by our
method in terms of FR Loss is relatively the same in 4x and 8x
scale but these do not translate in gains of the same magnitude
on other evaluated FR tasks.

C. Limitations and Future Work

Our evaluation method proved to be useful to quantify
information recovery beyond both classical metrics and opin-
ion scores. It could be applied to a variety of methods in
the state-of-the-at that produce qualitatively and subjectively
better results but lack quantitative justification that is not
based on PSNR/SSIM. A more varied sample of different
SISR Networks with distinct PSNR/SSIM results could also be
studied on how much these metrics correlate with our proposed
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task-based ones, and ultimately whether one can be used as a
proxy for another. A more in-depth comparison of our training
method to the state-of-the-art could bring more credibility to
it as well.

Our training method has shown significant improvements
upon the standard training procedure for a common SISR
Network in Face Recognition tasks. As our method consists
of a loss function and a method to optimize it, it could be
directly applied to a wider range of network architectures.
This would be useful to investigate the relationship between a
network’s representational power and how much our method
can improve its performance. It could be the case that networks
with more representational power can improve more, as they
learn to represent identity-defining characteristics, or it could
be the case that they improve less, as they are able to learn
these without our method.

Likewise, the use of different FR models could bring more
evidence for the quality of our method or even information
about which characteristics determinate FR Models take more
into consideration. Defining a "training FR Model” exclusively
for the FR Loss and a “test FR Model” exclusive for the task-
based evaluation could also bring light to whether our method
learns identity characteristics in abstract or only the specific
characteristics used by a certain FR model.

The way the FR Loss was constructed can also be improved.
We have defined the loss as the distance between the original
and reconstructed image on the FR embedding. However, as
we have seen, this distance is more informative on greater
scales of resolution loss. This may not be the case if we use the
distance between the reconstructed image and different images
belonging to the same identity instead. Iteratively minimizing
the distance between the reconstructed image and a random
picture from the same identity or the centroid of all identities
of the same person could then be a more effective optimization



strategy for greater improvements even in lesser degrees of
degradation.

VI. CONCLUSIONS

In this work we have built an evaluation framework that can
give more fine-grained information about a super-resolution
model’s performance and behavior and successfully applied it
to argue in favor of a training method inspired by the same
framework. Further investigation about our training method is
necessary, while our testing framework can already be easily
applied for other models.
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