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Abstract— Convolutional networks have been extensively ap-
plied to obtain features spaces for classification tasks. Although
those achieve high accuracy in many scenarios, typically only
the top layers of the network are explored. Hence, a relevant
question arises from this fact: are initial layers useful in terms
of discriminative ability? In this paper, we leverage the com-
plementary description offered by such first layers. Our method
consists of features extraction in multiple layers, followed by
feature selection, fusion of feature maps from the different layers,
and space alignment. Through an extensive experimentation with
different datasets and studying different training strategies, our
results show that local information, coming from the first layers,
may significantly improve the classification performance when
merged with a global descriptor extracted from a top layer
of the network. We report different methods for reducing the
dimensionality of the local descriptors, and guidelines on how to
align them so that to perform fusion. Our study encourages future
studies on combining feature maps from multiple layers, which
may be relevant in particular for transfer learning scenarios.

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have been widely
used for image classification tasks in several applications,
such as relevance sampling [1], plant identification [2], remote
sensing scene [3], and medical diagnosis [4], [5]. CNNs
are composed of a hierarchical and sequential architecture,
in which the output of one layer is the input of the next
layer. In this composition, the coupled layers may have
different functions, from filtering (convolution) and dimen-
sionality reduction (pooling) to normalization [6]. One of
the great advantages of the employability of the CNN is
its abstraction capacity, which provides different descriptors
for low-level features (shapes, edges, and colors) and high-
level features (texture and semantics) [7]. In this scenario, a
valuable resource is to consider a pre-trained CNN, e.g using
ImageNet [8]. Hence, since the network parameters are already
weighted, each layer provides a different feature map. This
prior training is important because, in practice, a dataset rarely
have enough examples to provide a convergence during the
network training [9].

Another possibility is to fine-tune the network with a dataset
similar enough to provide additional semantics to parameters
already weighted in the network [10]. Consequently, feature
learning methods, such CNNs, are more advantageous than
handcrafted descriptors due to the feature space generalization.

To fine-tune a CNN it is necessary to change its prediction
layer (the last one) to contain the same number of classes from
the dataset applied. In sequence, the network is retrained for a
number of epochs [6]. Regardless of the approach chosen, the
attributes extracted can be transformed by different methods to
reduce the dimensionality [5], [11], concatenation of feature
maps [12], [13], and alignment of the data distributions for
transfer learning tasks [14].

Despite the great applicability of CNNs in classification
tasks, the great percentual of methodologies focus on selecting
one of the last layers (global descriptors) of the network to
provide the feature spaces [5], [14]–[17]. This occurs due to
the hierarchical structure and the loss functions applied in the
network, in which the convergence of the model propagates
from the last layer to the first one [6]. Therefore, the last layers
are results of transformation and combination of the attributes
existing in the previous layers. Consequently, these layers (the
last ones) incorporate descriptors capable of distinguishing
classes, in addition to having dimensionality smaller than the
first layers (local descriptors). This property is effect of the
receptive fields propagation from a region located in a previous
layer and that will result in a specific attribute in a subsequent
layer [18]. However, whenever there is dimensionality reduc-
tion there is loss of information. Also, we can not assume that
only the last ones as good descriptors while first layers do not
provide representativeness for classification. On the contrary,
because they offer a low-level description of shapes, borders,
and colors, they may play an important role in the task [10].
This is the main motivation for this paper.

Using a pre-trained ResNet-50 [19], we extracted features
from the pre-prediction layer (as global descriptor) and ex-
plored some of the first layers (as local descriptors) to merge
them in a single feature map (as fusion descriptor). Due to
the larger amount of features coming from the first layers, we
selected the attributes by three different methods. This process
is performed for the dataset which will be the training set
of the classifier (source) and for the test set (target). Hence,
with the multi-layer attributes, from source and target, we
aimed to reduce the discrepancy and increase the correlation
between both data distributions (source and target) [20] using
Transfer Component Analysis (TCA) [21]. As result, the new
features spaces are applied to Support Vector Machine (SVM)



Fig. 1. Feature extraction and manifold alignment structure. Considering two datasets, source and target, each one are passed on to ResNet-50 for feature
extraction. Initially, an initial layer (the red ones) provides local attributes (shape, border, and color) and the pre-prediction layer (the blue one) provides global
attributes (texture and semantics). Consequently, with these two feature spaces and by means of map concatenation one obtains the fusion of the multiple
layer activations for both datasets, source (green) and target (purple). After that, TCA transforms both resulting fusion space and assigning the source features
to train the classifier (SVM) and the target features to be classified. Our experiments were performed in two scenarios: (i) using ResNet-50 pre-trained with
ImageNet; and (ii) performing fine-tuning with the source dataset. In both cases the process of obtaining the features is the same. For comparison purposes,
local and global attributes are also transformed and classified. Local attributes undergo feature selection prior to fusion.

for training and classification, as illustrated on Fig. 1.
Consequently, our contribution includes: (i) a sequential

novel that aggregates multi-layer features fusion from a
convolutional network, applying fine-tuning or using a pre-
trained model, and manifold alignment of the data distribution
for image classification; (ii) practical evidence that multi-
layer features fusion provides better performance for transfer
learning in low-level appearance datasets; and (iii) extensive
experimentation in different scenarios of images.

II. STATE-THE-ART CONTEXT

To obtain features spaces using CNNs it is common to
use the end-layers of the architecture alone, due to they are
receptive fields from previous ones [5], [6], [18]. However, the
multi-layer feature fusion methodology has spread to several
areas of image processing, including classification [22], [23],
segmentation [24], and even for edge detection [25]. The
feature fusion can be performed using distinct extractors, such
as a CNN layer for global descriptor and handcrafted methods
to describe low-level features for edges and shapes [26].
Another possible approach is to combine layers from different
CNNs, however, in this case it usually applies only the high-
level layers [27].

Considering the initial and mid-level layers of CNNs, Yu
et al. [23] present the importance of these units showing
that they only need to be extracted, represented, and fused
properly. However, only the mid-level layers were exploited
in their method for network flow unification to compose
the pre-prediction layer for feature extraction. In the same
context, building new branches within CNN from a low-level
layer can generate special combinations of features to provide
multiple outputs [28], [29]. In a more related manner to this
study, Zheng et al. [22] evidenced the training and image

classification of different CNNs by comparing the low-level
attributes (local features) in relation to the high-level attributes
(global features). Based on their experiments, using geometric
shapes datasets, it is noted that the low-level features spaces
stand out when the data distribution between the datasets
(source and target) are more similar. This evidence is proven
in our results by using different scenarios in which images
range from fruits (where shapes and colors are most relevant
descriptors) to photos (where scenes have different objects).

In addition to the approaches that only extract features in
a selected layer, the attributes can undergo post-processing
as an alignment of the data distribution. This methodology
was explored by We et al. [30]. In this study the features
were extracted in the last convolutional layer of the VGG [18]
to describe the local attributes followed by the alignment.
One of the foundations underlying their study is that low-
level layers are more general than top-layers, even for dif-
ferent image domains. Consequently, our method relates the
descriptive ability of multi-layer attributes followed by the data
distribution alignment to favor image classification, especially
in transfer learning tasks.

III. ALIGNMENT OF MULTI-LAYER FEATURES

Residual Networks [19] are CNN models that introduced the
concept of residual blocks that allow training networks with a
larger number of layers. They aim to preserve features from the
input vector before its transformation, adding it to the output
after some convolutions of delimited block, as illustrated in
Fig. 2. Its version with 50 layers, ResNet-50 is widely used
for transfer learning. Another interesting property of ResNets
is the absence of intermediate representations learned on dense
layers: an average pooling is used after the last residual block
before the prediction/output layer [19].



Using the ResNet-50 we extracted features from two layers
simultaneously: (i) activation maps from the first layers of
the network that encode local features, and referred to as
local descriptor, and (ii) a global descriptor that is the
activation map obtained after the Average Pooling layer, just
before prediction. This layer is commonly selected to offer
representativeness of the images to be classified [5], [27], [31],
providing 2048 attributes. As a local descriptor, we select
the outputs of the first three residual blocks contained in
the initial part of the network, individually, providing 774400
attributes each feature map. Consequently, three scenarios are
presented for the multi-layer features fusion: global descriptor
with each local descriptor. The fusion process is based only
on the concatenation of attributes. The selection of layers in
different stages of the network provides an evolution view of
the features transformation and their combination.

A. Local features selection

Due to the large number of parameters from the residual
blocks, 774400 in total, feature selection methods were ap-
plied to choose attributes for the fusion. Three methodologies
were adopted, see Fig. 3, aiming a comparative analysis of
performances: Principal Componentes Analysis (PCA); Flatten
Pooling; and Pooling 2D.

a) PCA: is a classic dimensionality reduction technique
in which the principal attributes are selected. In this context,
for each feature its variance is calculated and those with
greater discriminative capacity are chosen. PCA has a restric-
tion on the number of attributes: the maximum number of
components desired is the minimum value between samples
and attributes. In our approach, PCA is applied only to the
source dataset for definition of components. In sequence, the
chosen components are applied to the target dataset.

b) Flatten Pooling: is a simple attribute selection
method in which the feature maps are fully converted from
matrix to vector without any spatial relationship. After that, a
value x will split the vector into small symmetric segments.
For each of these segments the average is calculated. Then,
the final attributes are compounds by these averages.

c) Pooling 2D: considers a square region in the attribute
space, calculating the average of this region. Consequently,
location dependency inside of same feature map is considered
in this method.

The layers that constitute the output of the residual blocks
have the same shape: 256 maps of size 55 × 55, resulting in
774400 attributes. Empirically, we adopted 256 components
for PCA and x = 100 for the Flatten Pooling, which provides
7744 initial attributes. For Pooling 2D, the adopted region
was 55 × 55, where each map only provides one attribute.
However, due to the PCA constraint, some datasets do not
have 256 examples in the test set. For this specific case were
determined 128 components. This variation in the amount of
components is suppressed with the TCA that defines the real
amount of attributes to be used in the classification.

Fig. 2. Residual blocks perform sum of an input x with a data transformation
f(x), where w represents a convolutional layer. Bottleneck proposes to
compress the input depth by a reduced number of filters and restore it before
the sum. After each convolutional w there is a batch normalization layer with
activation by ReLU.

Fig. 3. Feature selection methods: PCA considers the features of all images to
find the principal components. In contrast, the selection of features by Flatten
Pooling and Pooling 2D is performed in an invidual manner.

B. Transfer Components Analysis (TCA)

TCA [21] attempts to learn a common set of underlying
transferable components from both domains in which the
difference in data distribution can be dramatically reduced with
properties preserved in subspace projection. Assuming that
P (Ys|Xs) and P (Yt|Xt) are two probability distributions that
shape domains X and Y from a source s and a target t, there
is a transformation Φ which P (Φ(Xs)) ≈ P (Φ(Xt)). There-
fore, TCA proposes to find Φ by two pre-definitions: (i) the
distance between the two distributions generated P (Φ(Xs))
and P (Φ(Xt)) is small enough; and (ii) transformation Φ
preserves important properties of Xs and Xt. With these
statements, Φ ensures P (Ys|Φ(Xs)) ≈ P (Yt|Φ(Xt)). In this
new transformed space a classifier should be trained using
the space from Φ(Xs) and applied in the target feature space
Φ(Xt) for predictions. Due to its theoretical basis being
derived from the PCA, for the feature space transformation
to be performed it is also necessary to define the amount of
attributes desired for the output [14].



IV. EXPERIMENTS

A. Datasets

In transfer learning tasks it is essential that the datasets em-
ployed be similar in their data distribution and with equivalent
classes [14]. Due to this factor, our results were obtained con-
sidering a dataset as source (the larger one) and another similar
dataset as the target (the smaller one). In our experiments
we applied four sets of different domains, considering fruits,
objects, skin lesions, and photos. This diversity is extremely
important to emphasize the contribution of this study, due
to variation of styles, scene composition, and degree of task
difficulty. These sets are described in the following:

a) Fruits: Considering the fruit domain, see Fig. 4,
Fruits-360 [32] is a dataset formed by images of 100 × 100
resolution in which its training set has approximately 53000
images divided in 103 classes. These images were obtained
by placing a white sheet as background and having large
illumination differences. Supermarket Produce [33] is a dataset
that also contains images of fruits, however, with only 11
categories and approximately 2000 images of 1024 × 768
pixels. Supermarket Produce also has variation in lighting and
poses in which the amount of elements vary in the composition
of the image. Additionally, this dataset contains images with
packed fruits, which causes reflection of luminosity. Due to the
variation in the number of classes between these two datasets,
we have selected 9 common labels and, consequently, reducing
the amount of images. In a specific configuration, Fruits-360
has several classes containing specific types of red apples and,
in our experiments, we considered as one single class.

b) Object: Amazon and Webcam [34] are part of the
same dataset, widely used in domain adaptation tasks. Amazon
is formed by images downloaded from the web that have white
background and studio lighting, totaling 2817 images of 300 ×
300 pixels categorized into 31 categories. Webcam has exactly
the same categories, however, the images (795 in total) have
resolution variation from one example to another, presence of
noises, and artifacts in the background with great difference of
illumination. The Fig. 5 presented some examples from these
two datasets.

c) Skin lesions: HAM10000 [35] is a dataset that con-
tains skin lesions images of 600 × 450 pixels of resolution
with 7 distinct classes. With only two classes, PH2 [36] has
only 200 images of 768 × 574 pixels. Both datasets have
variance of brightness and confusing objects, such as hair,
bubbles, and black margins, in which the malignancy of a
lesion is defined by the uniformity of shapes, colors, and
texture, as shown in Fig. 6. We consider only the two com-
mon categories of the two datasets (nevus and melanomas),
reducing the amount of HAM10000 images to approximately
7800 images.

d) Photos: Corel1000 [37] is a dataset widely used
in classification tasks because it has fully balanced classes.
Comprising 10 classes of 100 examples, its images have a
resolution of 384 × 256 pixels. In the experiments performed
with Corel1000 we splitted randomly the images in training

and test sets, in the proportion of 80/20, respectively. Some
images that composed this dataset are displayed in the Fig. 7.

With these datasets, Fruits-360, Amazon, and HAM10000
were used as source for Supermarket Produce, Webcam, and
PH2, respectively. Due to the input configured in ResNet-50,
all images were resized to 224 × 224 pixels.

B. Fine-tuning setup

For a more effective comparison of the representativeness
capability from ResNet-50 pre-trained with ImageNet [8], we
also fine-tuned the same network with one dataset source. The
fine-tuning setup was basically the same used in the original
ResNet-50 training: SGD with mini-batch size of 256, learning
rate of 0.1 with weight decay of 0.0001, and momentum of
0.9 [19] during 100 epochs. However, only the last seven layers
were allowed to adapt with the new domain. This configuration
was adopted with the objective of maintaining the descriptors
from initial layers frozen, offering a better observation of the
global and fusion performances.

C. Evaluation

With the feature spaces provided by ResNet-50 (pre-trained
with ImageNet or fine-tuned with the source domain), TCA
was applied aiming to highlight the similarities and reduce
the discrepancies between the data distributions. Five different
scenarios were tested, choosing 256, 192, 128, 96, and 64
attributes with RBF kernel. After the feature transformation
by TCA, we employed Linear SVM to verify how linearly
separable are the classes in the feature space [38]. Linear SVM
was chose due to capacity of guarantee stronger learning and
for ensuring a more restricted bias [39]. To train the classifier,
only the feature space obtained from the source dataset is
applied, without any knowledge of the test examples.

In summary, we have features extracted from the same layer
for both (source and target) datasets. One dataset is used to
train the classifier (source) and the other one to test it (target).
The accuracy of classfication is used to evaluate and compare
the methods. The same protocol is used when evaluating global
features; local features; and combining those features.

V. RESULTS AND DISCUSSION

Based on the chosen datasets, fine-tuning setup, and evalua-
tion, Tables I-IV present the results obtained for our novel. We
emphasize here that the objective of this experiment is not to
overcome the competing methods in the literature, but rather
to present the importance of more investigation of initial layers
from a CNN that frequent is neglected in the conception of
the methods. Also, due to the application of TCA the fusion
and global performances have the same number of attributes.

Table 1 shows that, on average, the global descriptor is
better when the network does not incorporate the new se-
mantics contained in Fruits-360 (30.79% vs. 27.17%). How-
ever, in general terms, either with fine-tuning or without, the
multi-layer fusion performance is highly applicable to this
dataset. Considering the average of multi-layer fusion features
selection (PCA, Flatten Pooling, and Pooling 2D), when the



Fig. 4. Examples from: (top) Fruits-360; (bottom) Supermarket Produce. Although both datasets contain only fruits, they differ in the amount of elements in
each image, the size of the objetcs, and illumination. From the left to the right: red apple; green apple; kiwi; lime; nectarine; orange; peach; pear; and plum.

Fig. 5. Examples from: (top) Amazon; (bottom) Webcam. Although both datasets contain office items, they differ in the background, perspective, and presence
of clutter. From the left to the right: backpack; calculator; desk chair; desktop computer; keyboard; laptop; monitor; pen; and phone.

Fig. 6. Examples from: (top) HAM10000; (bottom) PH2. Although both datasets contain skin lesions, they differ due to different margins and presence of
clutter as hair. The fisrt four images (left) indicates common nevus and the others (right) represent melanomas.

Fig. 7. Examples from Corel1000 dataset. From the left to the right: food; indian; beach; architecture; bus; dinosaur; elephant; flower; horse; and montain.

TABLE I
CLASSIFICATION ACCURACY (%) OF SUPERMARKET PRODUCE DATASET COMPARING FEATURE EXTRACTION FROM RESNET50 PRE-TRAINED WITH

IMAGENET VERSUS RESNET-50 FINE-TUNED WITH FRUITS-360 DATASET. VALUES IN BOLD (FUSION) REPRESENT HIGHER ACCURACY WHEN
COMPARED WITH GLOBAL RESULTS. THE * INDICATES WHEN THE FINE-TUNING PERFORMANCE OVERCOMES ITS RESPECTIVE IMAGENET RESULT.

Supermarket Features Global Fusion 1th block Fusion 2th block Fusion 3th block
Produce PCA Flatten Pool. 2D PCA Flatten Pool. 2D PCA Flatten Pool. 2D

ImageNet

256 28.24 20.41 36.48 26.35 19.96 37.18 25.3 19.61 37.33 26.35
192 30.24 20.11 36.08 29.64 20.31 37.33 29.09 20.46 37.48 29.44
128 34.23 21.61 38.32 32.98 21.31 38.87 32.19 20.46 37.77 32.83
96 33.63 22.01 39.42 32.24 22.36 40.52 31.74 21.36 40.27 32.39
64 27.59 19.86 37.77 27.84 20.51 39.62 27.4 19.91 38.92 27.79

Avg. 30.79 20.8 37.61 29.81 20.89 38.7 29.14 20.36 38.35 29.76

Fine-tuning

256 23.75 41.37* 36.33 35.73* 37.97* 36.98 35.83* 33.63* 37.18 35.83*
192 25.65 41.22* 36.48* 36.48* 38.37 36.93 36.58* 30.44* 36.58 36.58*
128 31.39 41.47* 38.87* 38.82* 37.48* 39.27* 38.77* 32.58* 37.43 38.77*
96 29.74 41.37* 39.97* 39.52* 38.42* 40.67* 39.47* 29.14* 39.52 39.52*
64 25.3 41.87* 37.97* 39.87* 38.62* 39.37 39.92* 31.59* 38.37 39.92*

Avg. 27.17 41.46* 37.92* 38.08* 38.17* 38.64 38.11* 31.48* 37.82 38.12*



TABLE II
CLASSIFICATION ACCURACY (%) OF WEBCAM DATASET COMPARING FEATURE EXTRACTION FROM RESNET50 PRE-TRAINED WITH IMAGENET VERSUS

RESNET-50 FINE-TUNED WITH AMAZON DATASET. VALUES IN BOLD (FUSION) REPRESENT HIGHER ACCURACY WHEN COMPARED WITH GLOBAL
RESULTS. THE * INDICATES WHEN THE FINE-TUNING PERFORMANCE OVERCOMES ITS RESPECTIVE IMAGENET RESULT.

Webcam Features Global Fusion 1th block Fusion 2th block Fusion 3th block
PCA Flatten Pool. 2D PCA Flatten Pool. 2D PCA Flatten Pool. 2D

ImageNet

256 40.63 42.01 47.04 42.01 40.25 47.17 42.14 41.64 45.79 41.89
192 48.18 46.67 52.08 48.81 45.79 51.95 48.81 46.16 50.69 48.3
128 51.95 51.45 56.86 53.08 48.55 53.58 53.46 52.7 53.58 53.46
96 55.35 54.47 59.37 55.22 53.46 58.99 55.72 53.21 55.85 55.6
64 60.13 59.12 63.4 62.01 58.99 65.53 61.64 60.0 63.14 61.64

Avg. 51.25 50.74 55.75 52.23 49.41 55.44 52.35 50.74 53.81 52.18

Fine-tuning

256 39.37 40.63 46.04 40.0 41.38* 46.67 40.0 39.75 45.53 40.13
192 47.55 44.65 51.45 46.54 45.91* 52.7* 46.54 45.91 49.43 46.67
128 48.55 48.43 54.34 49.31 49.06* 52.83 46.56 50.44 54.47* 49.18
96 55.47* 53.84 60.13* 55.72* 54.34* 58.49 56.35* 45.91 57.48* 56.1
64 60.88* 61.51* 64.91* 60.88 60.0* 64.91 60.75 61.51* 62.77 61.13

Avg. 50.36 49.81 55.37 50.49 50.14* 55.12 50.04 48.7 53.94* 50.64

TABLE III
CLASSIFICATION ACCURACY (%) OF PH2 DATASET COMPARING FEATURE EXTRACTION FROM RESNET50 PRE-TRAINED WITH IMAGENET VERSUS

RESNET-50 FINE-TUNED WITH HAM10000 DATASET. VALUES IN BOLD (FUSION) REPRESENT HIGHER ACCURACY WHEN COMPARED WITH GLOBAL
RESULTS. THE * INDICATES WHEN THE FINE-TUNING PERFORMANCE OVERCOMES ITS RESPECTIVE IMAGENET RESULT.

PH2 Features Global Fusion 1th block Fusion 2th block Fusion 3th block
PCA Flatten Pool. 2D PCA Flatten Pool. 2D PCA Flatten Pool. 2D

ImageNet

256 88.0 – 88.5 87.5 – 86.5 87.5 – 88.0 87.5
192 86.0 – 88.0 86.5 – 89.5 87.5 – 87.5 86.5
128 83.0 84.0 85.5 83.5 83.5 86.5 83.5 84.0 85.5 83.5
96 85.0 84.5 86.0 85.0 85.5 86.0 85.0 84.0 85.5 85.0
64 86.5 84.0 86.5 86.0 85.0 87.0 86.0 83.5 87.0 86.5

Avg. 85.7 84.17 86.9 85.7 84.67 87.1 85.9 83.83 86.5 85.8

Fine-tuning

256 87.5 – 88.0 87.0 – 89.0* 87.0 – 89.0* 87.0
192 86.5 – 89.0* 87.5* – 88.0 87.5 – 86.5 87.5*
128 85.0* 84.5* 87.5* 83.5 83.5 85.5 83.5 84.5* 84.0 83.5
96 86.0 84.5 84.0 85.5 84.5 84.0 85.0 85.0* 84.0 85.0
64 85.0 85.5* 87.5* 85.5 84.5 86.0 85.5 84.5* 87.0 85.5

Avg. 86.0 84.83* 87.5* 85.8* 84.17 86.5 85.7 84.7* 86.1 85.7

TABLE IV
CLASSIFICATION ACCURACY (%) OF COREL1000 DATASET (TEST SET) COMPARING FEATURE EXTRACTION FROM RESNET50 PRE-TRAINED WITH

IMAGENET VERSUS RESNET-50 FINE-TUNED WITH COREL1000 DATASET (TRAINING SET). VALUES IN BOLD (FUSION) REPRESENT HIGHER ACCURACY
WHEN COMPARED WITH GLOBAL RESULTS. THE * INDICATES WHEN THE FINE-TUNING PERFORMANCE OVERCOMES ITS RESPECTIVE IMAGENET

RESULT. THE DATASET WAS SPLITED IN 80% FOR TRAINING AND 20% FOR TEST.

Corel1000 Features Global Fusion 1th block Fusion 2th block Fusion 3th block
PCA Flatten Pool. 2D PCA Flatten Pool. 2D PCA Flatten Pool. 2D

ImageNet

256 91.5 – 92.0 91.5 – 93.5 91.0 – 93.5 91.0
192 93.5 – 95.5 94.0 – 96.0 94.0 – 95.0 94.0
128 94.5 96.0 96.5 95.0 96.0 95.0 95.0 96.5 95.5 95.0
96 95.0 95.0 95.5 95.5 96.0 96.0 95.5 95.5 96.5 95.5
64 95.0 95.0 96.0 95.0 95.5 96.5 95.0 96.0 95.5 95.0

Avg. 93.9 95.33 95.1 94.2 95.83 95.4 94.1 96.0 95.2 94.1

Fine-tuning

256 92.5* – 93.5* 92.0* – 95.0* 92.0* – 92.5 92.0*
192 94.0* – 95.5 94.5* – 95.5 94.5* – 96.5* 94.5*
128 95.5* 96.0 96.5 96.0* 96.0 94.5 95.5* 96.5 95.5 95.5*
96 95.0 95.5* 95.5* 95.0 95.5 96.0 95.0 95.5 96.5 95.0
64 95.0 95.5 95.5 95.0 95.5 95.5 95.0 96.5* 95.5 95.0

Avg. 94.4* 95.67* 95.3* 94.5* 95.67 95.3 94.4* 96.17* 95.3* 94.4*

network is fine-tuned the performance increases in 8.36% with
the first residual block. Specifically, these results show that
Fruits-360 and Supermarket Produce are datasets with pre-
dominantly low-level features, such as shapes and edges. This
is evidenced when the global descriptor has its performance
reduced with fine-tuning. Analyzing the methods of multi-

layer fusion features selection it is observable that Pooling
2D is practically constant in all layers, 29% without fine-
tuning and 38% with fine-tuning. PCA has a larger variation
when the network is fine-tuned (20.66%), reaching its peak
in the first block (41.46%), then gradually decays. However,
Flatten Pooling has a better performance in the second block,



as illustrated in the Fig. 8.
Considering Amazon (source) and Webcam (target) in Ta-

ble II, we noticed a decrease in the performance of the multi-
layer fusion features, although it is better at about 1.25%
on average when compared with global (52.52% vs. 51.25%
with ImageNet and 51.58% vs. 50.36% with fine-tuning).
This is because Webcam is a dataset with greater variance
(background, perspective, and presence of clutter), requiring
more representation from the global descriptor. However, the
multi-layer fusion features still offers accuracy gain on average
using Flatten Pooling (55.75% vs. 51.25%) in the first block
without fine-tuning. Similar to the results of Supermarket
Produce, Pooling 2D remains practically constant and PCA
has better performance with fine-tuning in the second block.

Images of skin lesions present different texture, being this
a decisive factor to diagnose an injury as malignant or not.
Consequently, and evidenced by the results presented in Ta-
ble III, the adoption of global and local features do not increase
the accuracy (85.7% vs. 85.62% for ImageNet and 86.0% vs.
85.67% applying fine-tuning network) on average. Despite a
slight superiority in few multi-layer fusion features methods
(PCA, Flatten Pooling, and Pooling 2D), all of them presented
themselves in an equivalent form in all residual blocks.

Contrary to previous results of Webcam and PH2, PCA
stands out in relation to the global descriptor and other multi-
layer fusion features methods for Corel1000, in Table IV.
This is because all examples, both training and testing, have
similar data distribution due to they belong to the same dataset.
Consequently, the components selected in the training set are
practically the same as those that should be selected in the
test set, increasing the accuracy. However, almost all fusion
methods excel at their global performance, except Pooling 2D
in the second and third block with fine-tuning, which maintains
the same result (94.4%).

To show the importance of the most initial layers of a CNN
for representativeness of the feature spaces, Fig. 9 presents
a comparative of differences between the performance of the
local descriptors in relation to the global one. These values
are the average among TCA performances (256, 192, 128, 96,
and 64 attributes). It is interesting to note that the first block
offers better performance than the others and, as the layers
become more mid-level, the accuracy decreases gradually.
These results confirms that layers at the end of the network
offer more representative feature spaces when they are used
alone. Evidently, the performance gain by performing fusion
of multiple layers activations is achieved with the increase
of computational cost. PCA presents greater computational
complexity due to the need to evaluate the variance in all
features present in the space. However, the other two methods
are simpler, requiring only delimitation of a region and cal-
culation of the average among these values. Consequently, its
computational cost is more linked to the number of examples
in the training and testing set than to the complexity of the
task. The adoption or not of this novel is directly related to
the need for precision in the classification, in cases where the
correctness is more important than the computational cost.

Fig. 8. Classification accuracy (%) difference on average between multi-layer
fusion and global results using Fruits-360 as source dataset and Supermarket
Produce as target dataset in ResNet-50 fine-tuned.

Fig. 9. Classification accuracy (%) difference on average between local and
global results using Fruits-360 as source dataset and Supermarket Produce as
target dataset in ResNet-50.

VI. CONCLUSION

In this study we investigate descriptors from low-level layers
of a convolutional neural network to complement those of
top layers in scenarios of transfer learning. Performing a
fusion and alignment of data distributions from local (first
layers activations) and global (top layers activations), our
novel approach has been evaluated in different datasets with
different domains. We have shown that images with well
behaved objects are better classified by merging attributes
from different layers. For images with more clutter or with
larger intra-class variance, the global CNN descriptors are
more adequate and the addition of local information becomes
less effective. We show that even with few examples used
to fine-tune the network, our approach significantly improves
transfer learning when compared to using ImageNet initialized
weights. Our results represent a step towards improving a more
efficient feature extraction, taking into account local and global
CNN descriptors. We also offer guidelines for future studies
to investigate initial and mid-level layers. A methodology to
identify most discriminative layers is also a matter of future



investigation. Future work can also study complementary in-
formation from handcrafted features in comparison with global
and local CNN features.
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