Injured hand therapy evaluation using hand tracking
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Abstract—Hand tracking is a challenging problem in computer
vision that has recently gained relevance with the development of
cheap consumer-level depth cameras and virtual reality devices.
The objective is to identify a hand model in a scene and track the
model accurately in a sequence of frames. The main proposal of
this project is the development of a framework for hand tracking
and gesture analysis, using a 3D model able to express different
patterns of hand pose. Methods for data acquisition, learning
model parameters, hand tracking/detection in video sequences
and movement analysis will be developed. Here we describe
the formation of the dataset and the first tests with hand pose
estimation methods. Future steps include the development of
hand detection, pose estimation and tracking methods based on
state-of-art, as well as the assessment of movement quantities
using the joint angles from the skeletons estimated by the pose
estimation methods.

Keywords: hand tracking, hand pose estimation, computer vision,
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I. INTRODUCTION

Hand gesture recognition is a challenging problem in com-
puter vision. The objective is to accurately identify patterns
of hand gestures through an input stream, usually 2D or
3D video (Intel® RealSense, Microsoft® Kinect). This prob-
lem has applications in robotics, activity recognition, human-
computer interaction (HCI) among others. Limitations and
challenges commonly cited in this problem are: the high
dimensionality of the hand structure, ambiguities on the model,
self-occlusions and abrupt motion [1].

Gestures can be classified as static or dynamic. Static
gestures (or hand poses) are recognized in a single frame,
relying on geometric features of a model. Static hand gesture
recognition can be divided in hand pose estimation and hand
pose recognition. Those variants differ in the sense that hand
pose estimation is a regression problem, while hand pose
recognition is a classification problem. Dynamic gestures are
variable in time. Their characterization rely in movement
information and hand tracking. This work addresses static
gestures and hand pose estimation. Given a static frame, our
goal is to localize the hand and estimate joint positions.

Our research is related to the project "Hand tracking for
occupational therapy" (proc. FAPESP 14/50769-1) , which
aims to study computer vision techniques capable of providing
support to patients on hand injury recovery. In our research,
we focus on rheumatoid arthritis (AR) recovery. Rheumatoid

Figure 1.

Example of hand with finger ulnar deviation (on the right) in
contrast with a normal hand (on the left). Courtesy of Prof. Valeria Elui.

arthritis is an autoimmune chronic disease with inflammatory
character, characterized by peripheral polyarthritis leading to
joint deformities due to bone and cartilage erosion [2]. It
affects motion functionality of the hand and the treatment re-
quires dynamic and functional evaluations. Typically, Disabili-
ties of the Arm, Shoulder and Hand (DASH) questionnaires are
used to assess hand function during the recovery process and
quantitative evaluation uses range of motion measurements.
The project aims to investigate the use of computer vision
techniques in order to optimize the feedback of the treatment
and to produce quantitative evaluations about their movement
function and evolution. Figure 1 shows an example of hand
with ulnar deviation that should be handled by our framework,
in contrast with a normal hand. Our framework should handle
both types of hand movements.

The project development should follow the pipeline pro-
posed in Figure 2. The pipeline starts with data acquisition
(RGB/RGBD), i.e. the acquisition of RGBD sequences from
different patients. An initial step is the definition of a 3D
hand pose estimation method, which should be applied to the
captured data for the creation of a training set. The RGBD
sequences with annotated joints form our dataset, which should
be used for the training of a predictor capable of estimate the
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Figure 2. Pipeline proposed.

joints for an input in similar capture conditions. To estimate
accurately the hand pose from a RGB/RGBD input using the
pre-trained model is the most crucial step of the project.

II. RELATED WORKS

In recent years, the development of deep learning algo-
rithms led to significant advances in machine learning and its
applications, particularly in Computer Vision. The advent of
those algorithms combined with the development of accurate
solutions for 2D joint detection based on CNNs [3], [4] led
the community of hand pose estimation to design methods
based on convolutional neural networks, reaching good results
[5]-[9]. Those methods differ among themselves in the neural
network architecture and type, the input image type, the hand
representation used and the use of prior constraints. As an ex-
ample, the DeepPrior++ [5] uses a Residual Neural Network,
a deep network whose training is based on minimizing residual
weights in each layer and uses data augmentation in the train-
ing, such that realistic samples can be generated from simple
geometric transformations over the original training samples.
Guo et. al. [9] use an ensemble-based neural network, which
integrates the results of different regressors in different regions
of the image. Chen et. al. [10] compute a feature map for each
joint and fuse those maps using a structured region ensemble
network (named Pose-REN), reaching consistent results. Wan
et. al. [11] propose the use of Generative Adversarial Networks
(GAN) and Variational Autoencoder (VAE), two strong ideas
in the recent wave of advances in machine learning. This
method allows training and learning from unlabeled data.

The development of deep learning methods brought the
necessity of larger datasets. As a consequence, new million-
scale datasets have been made available in 2017: the Big-
Hand2.2M [12] and First-Person Action dataset [13]. With
these datasets, deep learning methods can use a much larger
training set and reach better results. To consolidate the trend of
using CNNss, the International Conference on Computer Vision
board organized the HANDS in the million 2017 challenge
on 3D pose estimation, a competition on a benchmark using
the BigHand2.2M dataset. The results of this challenge were
presented in the form of a survey by [14], in which design
choices are discussed, as well as the corresponding evaluation
results. Aspects evaluated and taken into account were:

o The nature of the input images (2D or 3D): while depth
images can be seen as 2D points with depth, some
methods perform joint detection in a 3D voxel grid; 3D
volumetric representation presents high performance;

« If the method uses probability density maps (detection-
based) or regresses the parameters directly from the depth
image (regression-based); detection-based methods tend
to outperform regression-based methods, but regression
methods can reach good results using explicit spatial
constraints;

o Whether the regression is hierarchical (made by subtasks,
usually branches of joints are detected separately and con-
catenated) or holistic (the whole hand pose is regressed
directly in one optimization step), and whether structural
constraints and priors are incorporated in the network:
the error on occluded joints is narrowed in methods with
explicit modeling of structure constraints and hierarchical
joints;

o Whether the training is divided in stages and one stage
is used to enhance the result of the subsequent stages:
cascaded methods performed better in general;

« In general, discriminative methods still generalize poorly
to unseen hand shapes, and the use of models with better
generative capacity can be a promising choice.

The current panorama of the area indicates that there is
room for improvement on methods based on deep CNNs for
depth images and that there are efforts of many research groups
around the world in this direction. In parallel, new meth-
ods based on learning-based 2D joint detection and Inverse
Kinematics are being proposed to estimate hand pose based
exclusively on RGB image [15]-[17].

III. PROPOSED APPROACH
A. Dataset acquisition

As first step of the project, our goal was to acquire data
from patients with rtheumatoid arthritis. An acquisition setup
was created using different depth sensors, in order to obtain
frames in multiple views.

Initially three different sensors were studied to mount an
acquisition setup: the Intel RealSense® R200, suitable for
acquisitions in medium range; the Intel RealSense® SR300,
that can capture points at a closer range, and the Leap
Motion®, which generates a coarse hand tracking result, and
can be used as interface for gesture recognition.

The setup was built in a way to maximize the amount of
relevant information extracted from the three sensors, such that
the sensors are positioned at their minimal depth range that
produces stable results. This was a concern especially in the
R200, since it is a medium range sensor. It was positioned to
capture the hand from a frontal view with a larger distance.
The SR300 captures the hand from top viewpoint, and the
Leap Motion in an even shorter distance, from a bottom view.
The hand is captured in an uniform background environment.
Figure 3a shows a representation of the setup from a side,
with the measurements of the distances used in the sensor
positioning. Figure 3b shows the back view of the setup, after
mounted.

In some of the captured sequences the patient used an
orthosis, a mechanical device used on the recovery in order to
enhance the movement capability.
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Figure 3. Setup used on the acquisition process.
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Figure 4. Example of an acquisition from a patient with orthesis, from sensors
SR300 and R200.

Table I presents a summary of the dataset obtained during
all visits, with the number of patients, sequences, frames and
insights made in the process.

B. Preliminary results

After the data acquisition, we sought to generate initial
hand pose estimation results on our dataset with two methods:
Zimmerman’s color-based approach [15] and Guo’s Region
Ensemble Network [9]. Since our data is still not annotated,
we could only train the methods using standard datasets made
available by the authors, doing the tests in our data. Thus, the
preliminary results presented here are merely qualitative and
lack statistical analysis.

1) RGB method: First we took particular interest in Zim-
mermann et. al.’s [15] approach, due to the similarity to our
initial idea and the fact that the source code is available and
intuitive to use. This method uses three networks in order to

Table I
SUMMARY OF THE OBTAINED DATA (NOT CONSIDERING CONTROL
SEQUENCES).
Summary
Patients 9
Sequences 26
Frames 10318
Size (MB) 5306.4
Sequences with orthosis 9

Figure 5. Sample result from Zimmermann et. al. in one frame of our dataset.
Top left: result with respect to the whole frame, bottom left: HandSegNet
result, top right: pose estimation in the cropped image after the segmentation,
bottom right: 3D hand pose with respect to the global frame.

compute probability maps. The first network (HandSegNet)
is based on the person detector provided by [3], casting the
hand localization as a segmentation problem. The second
network identifies 2D keypoints on the segmented region,
using an architecture similar to the Pose Network (PoseNet)
also presented in [3]. The following step is the application of
the PosePrior network, in order to estimate the most likely 3D
configuration given the 2D keypoints. This network is trained
with respect to a canonical frame, and this makes the training
more efficient. In our evaluation of this method no parameter
tuning was done, and this might have affected significantly
this output. Figure 5 presents a result of the method in one
sample of our dataset.

2) PoseREN: The other method we evaluated on our images
was Region Ensemble Network [9]. This method computes
implicit feature maps using Convolutional Neural Networks
(ConvNets). The basic idea is the generation of multiple
feature maps in regions of the image. Those feature maps are
combined using an ensemble network, in order to generate a
coherent hand pose. In our tests, we used the Realsense real-
time demo provided by the authors, available on GitHub!, in
order to obtain primary results on 3D hand pose estimation.
No parameter tuning was done, and the network was trained
with ICVL dataset frames. This method can cope well with
the orthosis, but struggles in some cases, especially when the
scene is not well segmented.

3) Discussion about the results: Although promising results
were obtained for simple examples and the orthosis has
little influence on depth images, the method would require
modifications in order to cope well with instances of our
dataset. Our preliminary results presented in this chapter show
that dealing with non-annotated data is a hard task with deep
learning algorithms. Considering that our dataset is composed

Uhttps://github.com/guohengkai/region-ensemble-network



Figure 6. Result obtained for the Pose-REN method. Even with the high
self-occlusion of the posterior joints the result is coarsely correct.

of different hand poses and shapes, algorithms trained in
standard datasets do not reach good results. The lack of
annotated data also hinders quantitative analyses with our data,
which is why we are taking into account the annotation of our
dataset, so that we can use it as training set to deep learning
methods.

IV. FUTURE STEPS

The next steps of the project are to develop a new 3D hand
detection and pose estimation method based on the literature,
to understand the movement according to the Occupational
Therapy evaluation techniques, to measure movement from
joint angle models, and to characterize different types of ex-
ercises (Flexion and Abduction) according to those movement
quantities. With these three steps, we should be able to perform
the evaluation of the movement patterns of the patients through
3D cameras.

Concerning the hand tracking method to be developed, one
possible approach is to use machine learning methods with
RGBD input, which would require data annotation, fine tuning
and possibly new acquisition sessions, in order to create a
training set. Another possibility is to design a method solely
based on RGB data, which would make the acquisition process
easier, making possible the creation of a larger dataset. The
current state-of-art on the area is composed by deep learning
methods based on detection of implicit features, thus it is most
likely that this type of approach will be used. Since our dataset
contains a large amount of unlabeled data, we can consider the
possibility of developing the method using semi-supervised
learning.

Therefore, we should design a method that works in a
general fashion and whose training set contains hands with
ulnar deviation. For this, the data annotation is necessary.
Embedding our data in the learning process of the hand pose
estimation algorithms would make much easier to reach good
results.

V. CONCLUSION

The project sought to evaluate the possibility of working
with affected hand poses and shapes. Despite the long road
ahead, since there are still many aspects to be explorated,
solid achievements such as the dataset creation and some
experiments with state-of-art methods already allow us to
conclude that the concept of the project is feasible.
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