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Abstract—This work is a preliminary evaluation of convolu-
tional neural networks (CNN) applied to food texture classifica-
tion, particularly when the texture is subject to changes in the
lighting conditions. Four previously published CNN architectures
(Alexnet, Resnet 18, Resnet 34 and Resnet 50) are investigated
and compared to local descriptors designed specifically for this
task. Although preliminary results indicate that the investigated
CNN are outperformed by the descriptors, further analysis are
required to investigate the impact of the experimental design
adopted in this work-in-progress; especially in regard to the
number of training samples and CNN configuration.

I. INTRODUCTION

The food industry has quality standards that require constant
assessment to avoid endangering consumer’s health. Quality
control is commonly performed manually by experienced
workers; however, such process is laborious, costly and sub-
jective. Thus, automating this task is of great interest to this
field.

Martinel et al. [1] evaluate different texture filter banks
for automatic food image recognition, motivated by a lack of
studies showing which texture features are more suitable for
this task. Ragusa et al. [2] explore food vs non-food classifi-
cation using different deep-learning-based representations and
classification methods. Pouladzadeh and Shirmohammadi [3]
proposed a deep-learning method for detecting multiple food
items from pictures taken using mobile devices. Zareiforoush
et al. [4] presented a study of qualitative grading of milled
rice grains using a machine vision system combined with
metaheuristic classification approaches.

One of the challenges faced by the cited works is the
variation in the visual information captured by the devices, due
to changes in the view-angle, illumination color and direction.
Variations in the light intensity, direction, and temperature
may change the color of the observed texture and interfere
in the capacity of the computer vision methods. Recent works
proposed new color texture descriptors especially designed for
image description under variations of lighting conditions [5],
[6]. According to the results presented in [6], [7], changes in
the lighting direction are the most challenging. Other works

explored the use of convolutional neural networks (CNN) for
colored texture classification [8] with adaptive changes in the
networks for better image recognition.

This work proposes the investigation of four known CNN
architectures - Alexnet, Resnet18, Resnet34 and Resnet50 -
for food classification under the variation of light intensity,
direction and temperature. The CNN performances were com-
pared to four color texture descriptors - Extended Color Local
Mapped Pattern (ECLMP) [7], Color Intensity Local Mapped
Pattern (CILMP) [6], Opponent Color Local Mapped Pattern
(OCLMP) [9] and Opponent Color Local Binary Pattern
(OCLBP) [10].

II. CONVOLUTIONAL NEURAL NETWORKS AND TEXTURE
DESCRIPTORS FOR TEXTURE ANALYSIS

A. Convolutional Neural Networks (CNN)

Currently, CNN are the most popular deep-learning network
models. Among the CNN architectures, AlexNet [11] and
Residual Network (ResNet) [12] stand out for the excellent
performance in image classification tasks. We choose AlexNet,
ResNet18, ResNet34 and ResNet50 to evaluate the CNN
performance for food classification under varying illumination.
AlexNet is composed of 8 layers, 5 of them convolutional,
and 3 totally connected. The ResNet architecture is deeper
than AlexNet but with not-so-complex convolutional filters.
The number in the nomenclature represents the number of
layers.

B. Descriptors

To compare the performance of the CNN, we selected four
descriptors designed to describe color images under vary-
ing illumination: ECLMP [7], CILMP [6], OCLMP [9] and
OCLBP [10]. The parameter tunning for ECLMP, CILMP and
OCLMP, and the experimental setup for the four descriptors
were performed as described in [7].



III. MATERIAL AND METHOD

In this work, we analyze the performance of the CNN
described in Section II-A in the texture classification scenario
and compare them against color texture descriptors (Section
II-B). For this task, we considered sets of images from the
Raw Food Texture Database (RawFooT) [13], which contains
68 textures of raw food such as meat, fish, cereals, fruit, etc.
Each texture of the database was captured under 46 different
lighting conditions to evaluate the robustness of computational
methods to variations in the illumination.

We analyzed three lighting conditions: intensity, direction
and temperature, as detailed below and presented in Fig. 1.

1) Light intensity: images acquired under 4 intensity levels
of simulated daylight at 6500K (D65, I=100%, 75%,
50%, and 25%).

2) Light direction: images taken under simulated daylight
at 6500K and 9 different light directions (D65, θ = 24,
30, 36, 42, 48, 54, 60, 66, and 90 degrees).

3) Daylight temperature: images taken under simulated
daylight at 12 temperatures varying from 4000K to
9500K (D40, D45, D50, . . . , D95).

The original 800 × 800 pixels textures were divided into
16 non-overlapping samples of 200 × 200 pixels. The total
number of samples used in the experiments was 27200.

Fig. 1. Example of one of the textures (lentils) imaged under the 25 lighting
conditions.

To perform the CNN training, the following parameters
were used: a) training epochs: 1000; b) learning rate: 0.01; c)
momentum: 0.9 and d) BatchSize: 32. The experiments were
conducted on a CPU featuring an i7 processor, with 16GB
RAM and a GeForce GTX Titan XP.

IV. EXPERIMENTS

We divided the experiments into three groups, according
to the lighting variation type: A) Light intensity, B) Light
direction and C) Daylight temperature. For each group, two
experiments were conducted, as described in the following
sections.

A. Light Intensity

In the first experiment (A1) the CNN training was per-
formed using images acquired under the maximum lighting in-
tensity (100%). In this process, 12 samples per class were used
for training and 4 samples per class were used for validation.
The trained model was tested with images acquired under 75%
(16 samples per class), 50% (16 samples per class) and 25%
(16 samples per class) of the maximum illumination intensity.
For the experiments performed by the texture descriptors, the
samples acquired under maximum intensity were also used as
training set, and the samples taken under 75%, 50% and 25%
of the maximum intensity were used as test sets. Results are
shown in Table I.

For the second experiment (A2), we selected 8 samples per
class from each of the four intensities (32 samples) to train
the CNN (23 samples for training and 9 for validation). The
other 8 samples per class of each intensity were used to test
the model. The exact same samples used for the CNN training
and validation were used as the training set for the descriptor.
Results are shown in Table II.

TABLE I
A1 - CLASSIFICATION ACCURACY (%) OBTAINED BY THE MODELS

TRAINED WITH IMAGES ACQUIRED AT MAXIMUM INTENSITY (100%)

Intensity of the test samples Avg.Models 25% 50% 75% Accuracy
Alexnet 0.41 19.94 61.67 27.34

Resnet18 0.51 24.90 53.40 26.27
Resnet34 0.59 22.24 62.40 28.41
Resnet50 0.18 18.01 65.80 27.99
ECLMP 77.57 94.85 97.24 89.89
CILMP 60.11 90.99 97.61 82.90
OCLMP 73.16 92.10 96.14 87.13
OCLBP 80.70 91.18 94.12 88.66

TABLE II
A2 - CLASSIFICATION ACCURACY (%) OBTAINED BY THE MODELS

TRAINED WITH FOUR INTENSITY LEVELS

Intensity of the test samples Avg.Models 25% 50% 75% 100% Accuracy
Alexnet 88.78 93.19 92.09 91.36 91.35

Resnet18 86.02 92.46 92.83 94.66 91.49
Resnet34 85.29 91.91 91.17 92.83 90.30
Resnet50 84.55 91.36 90.25 89.33 88.87
ECLMP 98.53 99.26 99.45 99.45 99.17
CILMP 97.06 97.43 98.16 97.98 97.66
OCLMP 98.16 98.16 98.53 98.53 98.35
OCLBP 97.24 96.51 95.59 95.77 96.28

Table I shows that the highest average accuracy was
achieved by the ECLMP (89.89%) when only one illumina-
tion intensity was considered during the training process. As
expected, the classification accuracy drops as the difference
between the intensity levels of training and test samples
increases. Table II shows that the ECLMP also achieved the
highest accuracy (99.17%) when all the illumination intensities
are considered for training. Tables I and II show that the CNN
are outperformed by all the descriptors in both experiments.



B. Light direction

In the first experiment (B1) we used images acquired under
the lighting direction of θ = 24◦ to train the CNN. In
this process, 12 images per class were used for training and
4 images per class were used for validation. The trained
model was tested with the following sets of images: θ =
30, 36, 42, 48, 54, 60, 66 and 90 degrees. Each set contains
16 samples per class. For the experiments performed by
the texture descriptors, the samples acquired under lighting
direction of 24 degrees were used as training set, and the
samples taken under the other directions were used as test
samples. Results are shown in Table III.

For the second experiment (B2), we selected 8 samples per
class from each of the nine light directions (72 samples per
class) to train the CNN architectures (52 for training and
20 for validation). The other 8 samples per class of each
direction were used to test the model. In the texture descriptor
experiments, the same samples as used to train the CNN were
used as training set, and the test sets were the same as used
to test the CNN. Results are shown in Table IV.

Table III shows that the accuracy of the best descriptor in
the B1 experiment (OCLBP, 68.17%) is 30% higher than the
best CNN. Table IV shows that the highest accuracy in the B2
experiment is obtained by the ECLMP descriptor (98.72%).
Again, the CNN were outperformed by the descriptors.

C. Daylight temperature

In the first experiment (C1) we used the images acquired
under simulated daylight at 4000K (D40) to train the CNN. In
this process, 12 images per class were used for training and
4 images per class were used for validation. After trained, the
model was tested on the images taken at the eleven remaining
temperatures ranging from 4500K to 9500K, considering 16
samples per class for each temperature. For the experiments
performed by the texture descriptors, the samples acquired
under simulated daylight at 4000K were also used as training
set, and the samples taken under the other temperatures were
used as test sets. Results are shown in Table V.

For the second experiment (C2), we selected 8 samples per
class from each of the twelve daylight temperature (96 samples
per class) to train the CNN architectures (69 for training and
27 for validation). The other 8 samples per class of each
temperature were used to test the model. For the experiments
performed by the texture descriptors, the same samples used
to train the CNN were used as training set; the test sets were
the same as used to test the CNN. Results are shown in Table
VI.

Table V shows that the highest average accuracy in the
experiment C1 was achieved by the CILMP (97.00%), while
in the C2 experiment the best accuracy was achieved by the
ECLMP (99.19%). Once more, the CNN were outperformed
by the texture descriptors in the classification task.

V. DISCUSSIONS AND CONCLUSIONS

This work-in-progress presented the preliminary work on
the application of CNN to the classification of food texture,

and its comparison against texture descriptors.
Tables I, III and V make evident that the CNN performed

considerably worse than the investigated descriptors when the
model was trained at a lighting condition different then the
present in the testing set.

Tables II, IV and VI show that even though the performance
of the CNN increased drastically by including samples from
all illumination conditions to the training set, the CNN are
still outperformed by the descriptors in all experiments.

It is important to highlight that, even though the preliminary
results indicate that CNN perform worse than local descriptors
in the task of food classification, further analysis is necessary
to support any claims. Processing time is an important factor
for this work in development, because generating the feature
descriptors takes time, which is impracticable for applications
that need to be executed in real time.

This work-in-progress will proceed with a complete analysis
about the impact of using a low number of training samples
to the convergence of the CNN, it will also include further
investigation about CNN configurations appropriate for this
application.
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