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Abstract—4D micro and nanotomography allows the study of
time-resolved phenomena, such as understanding how water, oil,
and gas interact within rock pore space to improve oil engineer-
ing. This category of experiment has only become possible due
to the invention of powerful devices such as the MOGNO micro
and nano-tomography beamline of Sirius, the new state-of-the-
art Brazilian synchrotron light source. Nowadays, the biggest
bottleneck for data analysis in this type of experiment is the
image segmentation task, given that MOGNO may generate one
3.6 gigavoxels 3D image in 1-5s. To achieve near real-time image
segmentation in the future and reduce manual processing, we
propose to convert the image segmentation task into superpixel
classification. We have evaluated different combinations of
superpixel estimation algorithms, feature extraction filters, and
pattern classifiers aiming to automatically segment the pore
space in 3D micro-CT rock grain images.

Index Terms—Pore spaces; rock analysis; image segmentation;
micro-tomography

I. INTRODUCTION

With the development of modern X-ray generation meth-
ods, such as synchrotron radiation sources, micro and
nanotomography have recently emerged as prime techniques
for high-resolution analysis of small structures in 3D images.
In particular, 4th (latest) generation synchrotron light sources
are pushing forward yet another innovation: 4D micro and
nanotomography. This will allow researchers to study how
time-resolved phenomena affect different materials.

The Brazilian Synchrotron Light Laboratory (LNLS) is
currently engaged in developing Sirius, a new 4th generation
3 GeV synchrotron light source designed to be a leading
machine in its energy class. Sirius will replace the current
2nd generation light source at LNLS (UVX), representing an
improvement of orders of magnitude in image acquisition.
The proposed X-ray tomography beamline at Sirius, named
MOGNO (MicrO and NanO Tomography), is being designed
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to be a micro and nano imaging beamline focused towards
multi-scale analysis of the internal 3D structures of different
materials and objects. The beamline will be primarily
devoted and specialized in zoom-tomography, where a
specimen can be studied at low and high-resolution, and 4D
tomography – a series of 3D images, each one containing
nearly 3.6 billion voxels and obtained in the order of 1-
5s [1], [2]. Currently, a single 3D experiment at the IMX
microtomography beamline of the UVX takes up to 4 hours.

Figure 1: Slice from a 3D tomography experiment of a rock sample
acquired on the IMX beamline at LNLS.

Nowadays, the biggest bottleneck in the entire process,
from tomography acquisition to final data analysis, is the
image segmentation task and, due to MOGNO’s real time
characteristic, this problem is expected to be even worse
with 4D tomography. The segmentation process is currently
done interactively through conventional image segmentation
techniques, using methods such as the seeded watershed
transform [3]. This process relies on the user’s expertise in
how to use the tool, requiring a long invested time to learn
and, therefore, making it difficult to immerse new users in
the technique of X-ray tomography.

This paper focuses on the design of image segmentation
tools to address the aforementioned challenges that will be
imposed by the MOGNO beamline upon its completion. Our
goal is to evaluate machine learning techniques that can be978-1-5090-1897-0/16/$31.00 ©2017 IEEE
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implemented in the future to run at near real-time speeds,
aiming to segment 4D micro/nano-tomography images with
several billion voxels in a few minutes. In particular, we
are interested in segmenting images of rocks and soil to
perform pore network analysis. The high energy and flux of
the MOGNO beamline makes it a leading equipment for pore
analysis of rocks an soil [4], [5]. 4D pore scale imaging and
analysis may open the door for significant improvements in
agriculture and the oil industry, by allowing fast fluid flow
experiments to study how water, oil, gas, and other particles
interact inside the pore space of soil and rocks.

Motivated by this challenging scenario, our main contribu-
tion is an evaluation of image segmentation methods focused
on the needs of the IMX and MOGNO beamlines. To achieve
near real-time image segmentation, we propose to convert
the image segmentation task into a superpixel classification
process. Superpixels are formed by grouping neighboring
pixels with similar intensities. In this way, superpixels carry
more information than pixels and reduce the dimensionality
of the image segmentation problem, since less data has to
be processed to achieve the final segmentation. We have
evaluated different combinations of superpixel estimation
algorithms, feature extraction filters, and pattern classifiers
aiming to segment the pore space in 3D micro-CT rock grain
images. Our goal was to select those methods keeping in
mind that they can usually be efficiently implemented later
using High Performance Computing (HPC) – i.e., parallel
programming via GPUs. We compare those algorithms
with state-of-the-art deep learning approaches to image
segmentation [6], which usually require a much higher
computational time for training and prediction.

This paper is organized as follows. Section II details
the proposed methodology for image segmentation using
superpixels, as well as the evaluated methods for feature
extraction and pattern classification. Section III presents the
experiments conducted to evaluate our methodology. We
then state our conclusions in Section IV.

II. SUPERPIXEL-BASED IMAGE SEGMENTATION

In computer vision and image processing, segmentation
is the process of partitioning a digital image into multiple
segments, in order to precisely define the spatial location
objects and boundaries in images. The goal is to assign a
label L(p) ∈ {0,1, . . . ,c} to every pixel p in an image I [3]
corresponding to one out of c semantic objects of interest or
the background (L(p) = 0). We achieve this task by evaluating
the machine learning pipeline for superpixel classification.

We first estimate superpixel labels S(p) ∈ {1,2, . . . ,k} for the
pixels of the original image p ∈ I , computed in 2D for the
z-slices for efficiency. Afterwards, a feature vector ~FS (s) =
{F 1

s ,F 2
s , . . . ,F m

s } is computed to represent every superpixel,
with the mean value F i

s of the corresponding pixels in the
i th feature map s.t. S(p) = s and i = 1,2, . . . ,m. The m feature
maps F i are filtered versions of the image I (Section II-B).

Each sample s (superpixel) is assigned a label LS (s) from
the ground truth image λ(p) ∈ {0,1, . . . ,c}, generated by an

area expert (Figure 2b), via majority voting of the pixels
p ∈ I with S(p) = s. A classification model M is trained by
considering the superpixel feature vectors ~FS in a training
set, along with the corresponding ground truth labels LS .
Afterwards, prediction occurs by computing the superpixel
labels S′ of a test image I ′, extracting the feature vectors
~F ′

S , and applying classifier M over the result. The final label
assignment L′(p) for every pixel p ∈ I ′ is simply obtained
from the result of the superpixel classification.

(a) (b) (c)

Figure 2: (a) Central part of a slice. (b) Ground truth segmentation.
(c) Examples of object edge errors in superpixel estimation.
A. Superpixel estimation

The choice of the superpixel algorithm and its parameters
for the specific application is crucial. The main concern with
superpixels for the segmentation process through supervised
classification is to ensure the correct delimitation of the
object edges in order to avoid errors (Figure 2c).

a) SLIC: The Simple Linear Iterative Clustering algo-
rithm [7] produces compact and nearly uniform superpixels
by using k-means to cluster pixels surrounding candidate
seed pixels selected on a regularly spaced grid.

b) Felzenszwalb: This algorithm computes superpixels
with varying shape and great boundary adherence by
merging regions obtained by oversegmenting the image
using the minimum spanning tree of the pixels [8].

c) Compact watershed: This method is a regularized
version of the seeded watershed transform [3] to compute
regions with a somewhat uniform and compact shape [9].

B. Feature extraction

Feature extraction should ensure that relevant properties
of the objects of interest be captured by the superpixels.
We adopt a strategy of locally filtering the original image
I using operators on patches with radius ρ surrounding
each pixel, and then summarizing the values as previously
described to form a superpixel feature vectors ~FS . Afterwards,
we performed a feature selection procedure to select the
most relevant features for posterior classification.

The following filters were applied: Auto-level, Local
bottom-hat, Equalize, Gradient, Maximum, Mean, Subtract
Mean, Median, Mode, Enhance Contrast, Pop Bilateral,
Sum, Sum Bilateral, Threshold, Local Tophat, Entropy, Otsu,
Percentile. They can be found on the Scikit-image library.

C. Machine learning models for supervised classification

We have evaluated the Random Forests, Support Vector
Machines, and Logistic Regression classifiers. They were se-
lected particularly due to their low computational complexity
and parallelization capability during inference.



1) Random Forests [10]: creates an ensemble of random
uncorrelated decision trees, which partition the feature space
Rm into classes by learning thresholds for each feature F i

S (s),
with i = 1,2, . . . ,m. During testing, the feature vector ~F ′

S (s)
of a test sample s ∈ S′ is fed to the decision trees in order to
decide the class λ(s) ∈ {1,2, . . . ,c} to which sample s belongs.

2) Support Vector Machines [11] (SVM): attempts to
separate the training samples of two classes by finding
a hyperplane ~H ∈ Rm , with the widest possible margin. A
test sample s′ is classified according to the sign of the dot
product ~H ·~F ′

S (s′). The inputs into are mapped into a higher
dimension feature space using the RBF kernel.

3) Logistic Regression [12]: estimates the probability
p(s′) ∈ [0,1] of a test sample s′ to belong to one out of two
classes by applying a sigmoid function over the weighted
sum of the training feature vectors FS (s), plus a bias term.
Training involves determining the coefficient parameters of
the equation system that best fits the training samples to
the expected classes, using maximum likelihood estimation.

D. Deep learning baseline

The U-net [6] is a fully convolutional neural network con-
sisting of a contracting and an expansive path. The former
applies convolutions followed by ReLU and max-pooling
operations to reduce spatial information while increasing
feature information. The latter combines the feature and
spatial information through a sequence of up-convolutions
and concatenations with high resolution features from the
contracting path to achieve image segmentation.

III. EXPERIMENTAL EVALUATION

In our experiments, we first evaluated which superpixel
estimation algorithm best performed for the task. Then,
the best filtering parameters were selected prior to feature
selection. Finally, we compared different classifiers using
the previous experiments results versus the U-Net baseline.
We considered the Dice Similarity Coefficient (DSC) and the
Average Symmetric Surface Distance (ASSD) to evaluate the
accuracy of segmentation and boundary error, respectively.

A. Datasets

Our experiments involved three datasets of 3D micro-CT
images. The first dataset is composed of one 3D micro-CT
image of dolomite rock acquired using a benchtop micro-CT
scanner. The image is sized 1024×1024×845 voxels, and has
been fully segmented into background, grains, and pores
by two experts in oil engineering. We subdivided the image
into non-overlapping tiles with size 200×200×20 voxels.
The tiles presenting the background were excluded, since
our goal is to evaluate binary segmentation of pores, and
the remaining ones were randomly separated into a training
and a testing dataset with size of 70% and 30%, respectively.
5% of the training images were selected for performing the
grid search parameter optimization, in each of the three
experiments. The final comparison considered the entire
training/testing sets.

Our second dataset contains one 1024×1024×150 voxels
micro-CT image acquired at the IMX beamline, displaying
glass beads that are used to simulate rock grains in fluid
flow experiments. The same previously stated procedure of
ground truth and dataset generation was performed. The
third dataset contains two 3D tomography images from
different experiments of carbonate rocks performed on the
IMX beamline at LNLS. The first image used as a training
set contains 20 slices of 137×127, while the second image
used as a test dataset contains 35 slices of 116×106. They
were acquired from the center of two larger images that
were used in fast fluid flow experiments (the IMX image
acquisition quality was degraded to reduce the imaging time
to a few minutes).

B. Superpixel estimation

In this experiment, we assessed the best possible accuracy
that the selected superpixel estimation algorithms may
achieve by assigning a segmentation label based on the
majority voting of pixels from the ground truth (SP). We
also evaluated the classification result obtained by training
the Random Forest (RF) using the mean pixel intensity as
feature vector. Table I, presents the segmentation accuracy
metrics obtained with the best parameters found via grid
search on the parameter evaluation subsets.

Table I: Metrics for best parameters found on superpixel grid
search in Dataset 1.

Dataset Method Metric Felzenszwalb SLIC Comp. WS
SP DICE 0.895 0.886 0.783

1 ASSD 1.100 1.094 2.081
RF DICE 0.886 0.878 0.777

ASSD 1.195 1.194 2.256
SP DICE 0.988 0.988 0.964

2 ASSD 0.247 0.256 0.852
RF DICE 0.917 0.970 0.930

ASSD 3.839 1.145 2.133
SP DICE 0.966 0.969 0.949

3 ASSD 0.594 0.424 0.897
RF DICE 0.885 0.881 0.871

ASSD 1.710 1.771 1.851

In general, the Felzenszwalb and SLIC algorithms achieve
similiar metrics with scores higher than Compact Watershed
(Comp. WS), and good boundary adhesion. The SLIC
superpixels provide better classification accuracy for the
RF classifier on Dataset 2, which can be explained by the
uniform superpixel segment size. The Compact Watershed
algorithm has an intermediate characteristic between the
two previous ones, however, it is observed a failure in the
generation of the superpixels in the edge of the image.

C. Feature vector extraction comparison

In this section we analyze the ability of the filters
mentioned in subsection II-B to extract relevant features
to train the machine learning model. The tests were
performed using the Random Forest model with 100 trees
and the SLIC oversegmentation algorithm with parame-
ters compactness = 0.1 and sigma = 0.1 for Dataset 1,



compactness= 0.01 and sigma= 0.1 for Dataset 2 and
compactness = 0.01 and sigma = 1 for Dataset 3, also
number_of_segments = 1200 for all datasets. A grid-
search was performed generating maps from filters kernels
varying from disks of radius ρ = 3 to ρ = 31, being a critical
parameters according to our experiments. The superpixel
mean intensity for each map generated was used as input for
the model classification and the best size for each kernel was
determined. Afterwards, classifier-based feature selection
was performed to select the best 6 features for each dataset.

For Dataset 1, the filters that produced the best results
were the Autolevel, Mean, Median, Enhance contrast and
Tophat, with corresponding radii ρ = 31,3,3,3,15. For Dataset
2, the filters that produced the best results were the Mean,
Median, Mode, Enhance contrast and Otsu, with correspond-
ing radii ρ = 3,3,5,3,3. For Dataset 3 the best filters were
Equalize, Subtract mean, Median, Enhance contrast and
Threshold, with corresponding radii ρ = 31,31,3,3,31. Also,
for all datasets the original image intensity was selected.

D. Classifier comparison with the baseline

Lastly, we have analyzed the segmentation results of the
classifier using the features selected for each dataset in the
previous section. The models were trained with different
numbers of images, to analyze their ability to generalize with
less data (Table II). For datasets 1 and 2, the models were
trained with 1,10,100 and 200 images, while for the Dataset
3, which is smaller, they considered 1 and 10 images.

Table II: Segmentation metrics.

Dataset 1 Dataset 2 Dataset 3
# Models DICE ASSD DICE ASSD DICE ASSD

RF 0.873 1.308 0.985 0.632 0.887 1.539
1 SVM 0.875 1.236 0.986 0.627 0.889 1.633

LogReg 0.873 1.311 0.985 0.633 0.887 1.674
RF 0.875 1.220 0.987 0.606 0.904 1.423

10 SVM 0.875 1.188 0.987 0.623 0.908 1.385
LogReg 0.873 1.296 0.986 0.625 0.906 1.460
RF 0.875 1.220 0.988 0.584 - -

100 SVM 0.875 1.204 0.987 0.615 - -
LogReg 0.875 1.245 0.986 0.590 - -
RF 0.875 1.214 0.988 0.574 - -

200 SVM 0.876 1.204 0.987 0.612 - -
LogReg 0.875 1.248 0.986 0.594 - -

It can be observed from Table II that among the models
the SVM classifier usually obtained the best results. For com-
parison, the U-Net network trained using the whole training
dataset and data-augmentation, achieved for Dataset 1 DICE
of 0.906 and ASSD of 0.644, for Dataset 2 DICE of 0.982
and ASSD of 0.991 and for Dataset 3 DICE of 0.881 and
ASSD of 1.445. Hence, for the datasets considered in this
work, the results using the superpixels with roughly 1000
segments are comparable with the state-of-the-art, with
much less computational effort to perform the training and
also requiring much less annotated data. We can thus affirm,
for the datasets used in this paper, that the bottleneck to
improve the segmentation is in the superpixel algorithms
and not in the models or features.

IV. CONCLUSIONS

We have evaluated a strategy to segment 3D microtomog-
raphy images, aiming to address the real-time requirements
of the MOGNO beamline being developed in the Sirius
synchrotron light source. Our goal was to evaluate if
superpixel-based classification could achieve high accuracy
when compared to state-of-the-art techniques for image
segmentation, since the former can usually be implemented
very efficiently on the GPU. Hence, we have analyzed:

• The quality of the superpixels generated;
• The relevance of filters for superpixel feature extraction;
• The accuracy of different standard supervised classifiers

versus deep learning approaches.

Our findings suggest that the combination of the SLIC
superpixel generation method, the SVM classifier, and some
patch-based filters may achieve accuracy comparable with
the state-of-the-art in image segmentation. Hence, our
approach seems to be quite promising. Some questions
that should be addressed in future work are:

• Is the mean intensity of the maps the best method for
feature summarization?

• What other methods of feature extraction can produce
better results?

• Where should pixel-level classification be applied to
increase segmentation accuracy?
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