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Abstract—This work proposes a new method for the ground
structure generation, which is necessary for the discrete struc-
tural topology optimization of bars based on the ground structure
method (GSM). The main improvement of this method is to only
require a domain contour description, in contrast to previous
works that require a discretized model as input. Also, our method
is valid for arbitrary two and three dimensional domains. In
order to verify the method, we implement a solver for linear
programming problems and compare the results with benchmark
examples available in the literature.

I. INTRODUCTION

Topology optimization aims to find the most efficient dis-
tribution of material in a specified domain without violating
user-defined design constraints. The ground structure method
(GSM) [1] is a discrete approach technique in the topology
optimization field that can approximate an optimal Michell
structure [2], [3]. The first step required by the method is
the generation of a ground structure (set of nodes highly
interconnected by bars); then, it can be applied a linear
programming method to remove unnecessary bars (decreasing
the final structure’s volume), without changing node positions.

The initial ground structure (GS) is a critical part for the
final topology optimization quality in the GSM. Ideally, the
ground structure must be fully dense, that is, the domain
should be completely covered by nodes and all the nodes
should be connected with each other. But, in practice, this
only adds computational cost without an effective gain in the
final structure [4]. Because of this, GS are generated based on
two principles: (i) the creation of a discrete but representative
set of nodes covering the domain; and (ii) the definition of
a connectivity level that reduces the number of bars in the
ground structure. This connectivity level must be individually
defined for each problem [4], [5].

Another practical problem inherent in GSM is the overlap-
ping of bars. In order to prevent numerical instability in the
optimization process, the initial ground structure should not
contain overlapping bars and must favor smaller bars against
larger ones [4], [6].

Zegard and Paulino developed the software called
GRAND (GRound structure ANalysis and Design) [6] and
GRAND3 [7], which implement the ground structure method.
Their both implementations receive as input a polygon mesh,
the restriction zones, and the design constraints (nodes

with prescribed boundary conditions and loads). Zhang et
al. [4] proposed two ground structure generation approaches:
Macroelement and Macropatch. Those approaches have almost
the same input as GRAND, except for not explicitly including
restriction zones.

Nevertheless, for complex cases, generating a polygon mesh
can be more expensive than generating the ground structure
itself. The main contribution of this work1 is the proposal of a
new method for efficient ground structure generation that does
not require a polygon mesh as input: the input for the proposed
method is a simple domain contour description (lines in 2D
and triangles in 3D) and the design constraints.

To test the generated ground structure for complex do-
mains, this work also implements a method for the linear
programming problem to solve the topology optimization.
Then, the achieved topology optimization results, based on
our generation method and our optimization implementation,
are compared with benchmark examples available int the
literature.

II. GROUND STRUCTURE GENERATION

The proposed method to generate dense ground structure
follows the step presented in the subsequent subsections.

A. Grid

The initial step of the proposed ground structure generation
method is to create a regular grid covering the entire domain.
The regular grid was chosen because it is simpler and faster
to query node and bar locations, speeding up all the process.
The grid cell size will influence the mesh quality; a more
refined grid increases the precision to compute the distance
field necessary in future steps, but decreases the computational
efficiency.

The suggested cell size l is defined as l = ēτ , where ē is
the average contour edge length and τ is a problem-dependent
factor value.

B. Cells Classification

After the grid creation, the grid cells are classified in three
types: boundary, inside or outside the domain. We use a flood
fill [8] technique for this classification. Initially, all the cells

1This work relates to a M.Sc. dissertation.



intersecting the domain contour are classified as boundary. It
is necessary a distinct approach for each dimension type.

In a 2D grid, it is implemented the Amanatides and Woo [9]
algorithm for grid traversal to discover the cells that collide
with the domain contour. For the 3D, the Akenine-Möller
algorithm [10] is used to determine all the cells that collide
with the triangles of the domain contour. After the cell
boundary classification, the other cells are classified using
the flood fill algorithm. A classification result is illustrated
in Fig. 1.

(a) 2D (b) 3D

Fig. 1. Example of cell classification. Green cells are classified as outside
the domain, gray cells are on the boundary and the red cells are classified as
inside the domain.

C. Node Generation

For the domain discretization, the input nodes (nodes on
the domain contour) are used as seeds to create nodes inside
the domain. For this, it is computed the domain distance field
(distance from the contour), and its gradient is used to guide
the propagation direction for the new nodes. The propagation
step is based on information of the contour edges adjacent to
the seed nodes.

Distance Field

The generated distance field is a representation where, at
each point within the domain, it is known the distance from
that point to the closest point on the contour [11]. In addition
to the distance value, it is possible to infer other properties,
such as the direction to the border by the field gradient. This
property is used in this work.

With the grid created previously, we compute a discrete
distance field with signal. An important property of a signed
distance field d is that ||∇d|| = 1 at almost everywhere (the
exceptions are points without a unique closest point on the
contour) [11].

The gradient at a given point p is orthogonal to the isoline
(or isosurface in 3D) passing through p [11]. This information
is used in this work, since, with the gradient, it is possible to
“walk” inside the domain following the contour shape, starting
in the border and going to the medial axis direction (region
where the gradient does not have a defined value since the
point is equidistant to at least two points on the contour).

To illustrate, Fig. 2 shows some results of the gradient ob-
tained from computed distance fields: the red color represents

the x component and the green color, the y component. The
black lines indicate the medial axis. Similar results are also
obtained for 3D domains.

(a) Cantilever with circular support (b) Hook

Fig. 2. Visualization of the distance field gradient.

Domain Discretization

To discretize the domain in a way that the generated internal
nodes are aligned to the domain contour, we use the distance
field gradient as the direction of propagation. For each seed
node (contour node), nodes are created inward the domain
following the distance field gradient. The step of propagation is
adjusted as necessary according to the curvature of the domain
contour. For concave vertices, the step is decreased along the
propagation; for convex vertices, it is increased.

We set this adaptive step in the follow manner. Let us
consider a seed vertex v that will generate the internal nodes
{v1, v2, v3, ...}. Consider the set of vertices pi adjacent to v.
We first compute the smallest adjacent edge lenght, lmin =
mini(‖v− pi‖). Then, we take one virtual step for v and all
pi, along the gradient direction inward the domain, using lmin

as the step, obtaining v′ and p′i, respectively. The adaptive step
factor, γ, is then given by:

γ =

∑
i(‖v′ − p′i‖)∑
i(‖v− pi‖)

Fig. 3 illustrates this computation. In summary, γ captures
the change on average adjacent edge lengths as if the entire
contour was propagated inward the domain.

The first step of real propagation is then set as s0 = γ lmin.
Generated internal nodes and subsequent steps are given by:

vk = vk−1 + sk−1∇dvk−1

sk = γ sk−1

where v0 = v, and ∇dvk−1 represents the distance field
gradient at vk−1.

The propagation of a seed node v is interrupted when one
of the following conditions happens:
• sk ≤ 0.2s0, because too close points do not add quality

to the optimized result.
• The new created node is on the medial axis, because the

gradient is not defined.



Fig. 3. Adaptive step computation for seed node propagation inward the
domain.

• The distance field gradient turns to the opposite direction,
because the propagation crossed the medial axis.

Fig. 4 shows the result obtained. Green nodes are the seeds;
blue nodes are propagated node far from the medial axis
regions; red nodes are propagated nodes in the medial axis
region. Note that the generated nodes follow the contour shape,
a condition necessary to obtain good optimization results. We
can also note that some nodes are too close to each other,
especially near the medial axis region, and it is necessary to
reduce this concentration.

(a) Cantilever with circular support (b) Hook

Fig. 4. Initial domain discretization. The green nodes are the seed nodes, the
blue nodes are those which are in the region where the gradient exists and
the red nodes are in the region of the medial axis.

Nodes Removal

For a given generated node vk, we define its order as being
the value of k. To reduce node concentration, a “zone of
influence” is defined for each node. The radius of this zone
is set to rvk = β sk−1, with β < 1. We then process the
generated nodes in increasing order value; for each visited
node vk, we identify all other nodes inside its zone of
influence. From those, we remove all nodes in the medial
axis region (red nodes in Fig. 4) and all nodes which order is
greater than k. Fig. 5 illustrates this procedure.

When processing the nodes on the medial axis regions (red
nodes), we employ a similar approach. However, no blue
node is removed because a red node, even inside its zone of
influence. Also, in the end, the vertex vk is displaced by the
influence of the removed nodes pj

i . The new vertex position is

Fig. 5. Example of red and blue node removals: in this case, it is assumed
that the p1 and p6 orders are less than the vn order, so they are not removed.

given by a weight average position considering the removed
nodes and the current node, using the inverse of the order as
weight:

vk =

vk
k +

∑
i

pji
i

ji
1
k +

∑
i

1
ji

Fig. 6 illustrates some results achieved after node removal
for different domains. It is possible to see that a good
discretization was generated, following the shape defined by
the boundary. In addition, the nodes also fill well the entire
domain.

(a) Cantilever with circular support (b) Hook

Fig. 6. Final domain discretization. The green nodes are the seed nodes, the
blue nodes are those which are in the region where the gradient exists and
the red nodes are in the region of the medial axis.

Parameter Discussion
During the node generation process, we use two parameters:
• Parameter τ : as a factor used to set cell grid size. By

varying this value, the quality of the distance field is
affected.

• Parameter β: as a factor used to set the zone of influence
for node removals. By varying this value, the number of
removed nodes is affected.

The quality of the domain discretization is directly linked
to the grid cell size. The more refined the grid, the better
the achieved quality. Fig. 7 shows the results obtained for τ
with values 1.0, 0.5 and 0.25. The value of τ influences the
quality of the distance field and, consequently, the accuracy for
gradient computation. Tests performed with different models
showed that a value of τ less than 0.2 does not change the
final achieved result, only increasing the computational cost.

Regarding the value of beta, it is difficult to justify a single
appropriate value for all models; tests have shown that the
value β = 0.8 was satisfactory for all tested examples.



(a) τ = 1.0 (b) τ = 0.5 (c) τ = 0.25

Fig. 7. Result of cell size variation in node generation.

D. Bar Generation

With the generated nodes, the next step is to connect them
through bars to generate the ground structure. For this, we
borrow the heuristic used for node removal and also define
a zone of influence for each node. However, rather than
removing the nodes within the zone of influence, bars are
created between these nodes.

The radius of this zone is similarly set to rvk = σ sk−1,
but now with σ > 1. Different from GRAND [6], [7], which
uses a topological adjacency for the definition of mesh density,
this work proposes a geometric concept for the density choice,
based on the value of σ.

The candidate bars associated with the vk node are defined
as being all bars originated at vk entirely contained within its
zone of influence. Initially, all the candidate bars of all nodes
are added to a set. Then, the set is sorted in increasing order
of bar length, and each bar, from the shortest to the longest,
is considered to be added to the ground structure. Once a bar
is added, it will never be removed. A given bar is added to
the GS according to the following conditions:

• A bar can only be added if it is entirely contained in the
domain.

• A bar can only be added if it is not collinear, within
a given tolerance, to other any other bar already in the
solution.

The collinearity test is performed as in GRAND [6], [7]. A
maximum θtol tolerance angle is defined. The angle of two
bars sharing a node must not exceed this tolerance value.
For example, in Fig. 8, the dashed bar will only be added
if cos(β1) < cos(θtol) and cos(β2) < cos(θtol).

Fig. 8. Collinearity test (from [6]). If cos(β2) > cos(θtol) or cos(β1) >
cos(θtol), then the dashed bar won’t be added.

Fig. 9 shows one achieved ground structure using the
connectivity radius factor set to σ = 1.6. Despite a small
value, such as 1.6, not being adequate for the quality of the
optimization, it is shown here as an example for ease of
visualization of the generated ground structure.

(a) Cantilever with circular support (b) Hook

Fig. 9. Result of generating bars for the radius of connectivity 1.6.

III. OPTIMIZATION

A. Formulation

The ground structure formulation used in this work is
based on plastic analysis. The goal of this optimization is
to minimize the truss-structure volume that satisfies the force
equilibrium equations [6]. The optimization only modifies the
cross-sectional area of each bar and, thus minimizing the final
volume, without changing the node positions. The formulation
is [3], [7], [12]:

min
a

V = lTa

s.t. BTn = f

− σCai ≤ ni ≤ σTai, i = 1, 2 . . . Nb

(1)

where:

• Nb is the number of bars in the mesh.
• V is the truss-structure volume.
• σC e σT are the limits of tension in compression and

traction.
• ai, li, σi, fi e ni are the cross-sectional area, length,

stress, external force, and internal (axial) force of the ith

truss member.
• BT is the nodal equilibrium matrix, built from the

directional cosines of the members.

BT is a matrix with size Ndof ×Nb, which:

• Nn is the number of nodes in the ground structure.
• Nsup is the number of fixed (supported) degrees of

freedom.
• Ndof is the number of degrees of freedom, where:
Ndof = 2Nn − Nsup, for 2D, or Ndof = 3Nn − Nsup,
for 3D.

In order to transform the Equation 1 in a linear program-
ming problem (i.e. the inequalities turns into equalities), it is
added slack variables s+i and s−i [3], [7], [12] and the final
formulation becomes [5], [6], [13], [14]:



min
s+
i
,s+

i

V ∗ =
V

σT
=
[
lT klT

]
1×2Nb

[
s+

s−

]
2Nb×1

s.t.
[
BT −BT

]
Ndof×2Nb

[
s+

s−

]
2Nb×1

= f
Ndof×1

ai =
s+i
σT

+
s−i
σC

;ni = s+i − s
−
i

s+i , s
−
i ≥ 0

(2)

B. Implementation

To solve the linear programming problem of Equation 2,
it was implemented the Primal-Dual Interior Point Method
(IPM) with the Predictor-Corrector algorithm [15]. It is used
the Eigen [16] library to store the sparse matrix, the PAR-
DISO [17] library to solve the linear system in the IPM, and
the TopSim [18] framework to achieve large scale.

IV. RESULTS

In this section, the results obtained using the proposed
ground structure generation and the implemented optimization
are presented. Initially, we do a verification considering well-
known cases, and then we consider other more complex
examples.

As in GRAND, in order to visualize the optimization final
result, a cutoff value is defined for displaying the bars. Thus,
only bars with cross-sectional area ai

max(a) > cutoff are
displayed, setting the value of cutoff to 0.002 for all 2D
models and to 0.005 for all 3D cases. Also, all the results
were obtained setting τ = 0.2 and β = 0.8, which are the
parameters described in Section II.

A. Verification

All verification examples are compared to GRAND, com-
paring the final structure volume and the obtained truss topol-
ogy. In all cases, it is tried to achieve similar number of bars
in the ground structure.

2D

Cantilever with circular support: This example approxi-
mates a Michell’s analytical solution [2], [6]. Table I shows
that both volume values converge to the same value from the
analytical solution, which is 16.0944 [6]. Fig. 10 shows the
obtained topology. Note that both methods delivered symmet-
ric structures as desired. In all figures illustrating achieved
optimized structures, we have opted for displaying our results
using a color scale that indicates bar volumes, blue being large
values and red small ones.

Level/Radius
Connectivity Nodes Bars Volume

GRAND 7 1069 75900 16.2192
Proposed Method 7.5 1083 76928 16.1836

TABLE I
CANTILEVER WITH CIRCULAR SUPPORT COMPARISON

(a) (b) (c)

Fig. 10. Cantilever with circular support. (a) Domain definition (from [6])
(b) Solution from GRAND (c) Solution from Proposed Method.

Level/Radius
Connectivity Nodes Bars Volume

GRAND 7 1045 84706 91.4121
Proposed Method 8.3 920 84488 91.4419

TABLE II
SERPENTINE COMPARISON

(a) (b) (c)

Fig. 11. Serpentine. (a) Domain definition (from [6]) (b) Solution from
GRAND (c) Solution from Proposed Method.

Serpentine: Fig. 11 shows very similar structure, with the
same patterns, with the final volumes shown in Table II.

3D

Torsion cone: The analytical solution for the torsion cone
volume is v = 16.8076 [7]. Table III shows that both solutions
are converging to this optimal volume. Both methods resulted
in the structure, are shown in Fig. 12.

Level/Radius
Connectivity Nodes Bars Volume

GRAND 3 1010 115789 17.0310
Proposed Method 3.3 1346 117716 17.0310

TABLE III
TORSION CONE COMPARISON

(a) (b) (c)

Fig. 12. Torsion cone. (a) Domain definition (from [7]) (b) Solution from
GRAND (c) Solution from Proposed Method.

Torsion cylinder: The optimal volume for this example is
36.6667. Table IV shows that both solutions are converging to
the optimal volume and Fig. 13 presents identical topologies.



Level/Radius
Connectivity Nodes Bars Volume

GRAND 3 1308 152795 37.2637
Proposed Method 4.1 1169 155586 37.2637

TABLE IV
TORSION CYLINDER COMPARISON

(a) (b) (c)

Fig. 13. Torsion cylinder. (a) Domain definition (from [7]) (b) Solution from
GRAND (c) Solution from Proposed Method.

B. Complex Examples

Bridge: A more realistic engineering model is presented
here, aiming to build an arch bridge. The result provided by
the proposed model is very similar to the analytical solution,
with the topologies being shown in Fig. 14.

(a) (b) (c)

Fig. 14. Bridge. (a) Domain definition (from [4]) (b) Analytical solution [4]
(c) Solution from Proposed Method.

Tower: This example presents a conceptual tower, showing
another field that this method is able to attend. Fig. 15 shows
the final result for the tower, in which both GRAND and the
proposed method achieved similar results.

(a) (b) (c)

Fig. 15. Tower. (a) Domain definition (from [7]) (b) Solution from GRAND
(c) Solution from Proposed Method.

V. CONCLUSION

In this work, it was presented and discussed the pipeline
of structural topology optimization of bars, from the ground
structure generation to its optimization. We proposed a new
method for the ground structure generation that does not

depend on the existence of a discrete model as input, in
contrast to previous works. From the domain contour, domain-
aligned nodes are created. For this, it was proposed to use the
distance field of the model, using the direction of the distance
field gradient to guide the internal node creation. Once this
is done, potential bars are ordered by their size and added to
the solution when possible, favoring smaller bars. A collision
check and collinearity test prevent the insertion of invalid bars.

To test the generated ground structures, we implemented a
topological optimization method using the plastic formulation.
All the examples showed coherent results, both in the final
obtained structure volume and in the quality of the resulting
topology, showing the effectiveness of the proposed method.

ACKNOWLEDGMENT

The authors are grateful to CNPq grant 132853/2015-9 and
to Instituto Tecgraf/PUC-Rio support.

REFERENCES

[1] W. S. Dorn, “Automatic design of optimal structures,” Journal de
mecanique, vol. 3, pp. 25–52, 1964.

[2] A. Michell, “M. The limits of economy of material in frame structure
[J],” Philosophical Magazine, vol. 8, no. 6, pp. 589–597, 1904.

[3] W. Hemp, Optimum structures, ser. Oxford engineering science series.
Clarendon Press, 1973.

[4] X. Zhang, S. Maheshwari, A. S. Ramos Jr., and G. H. Paulino,
“Macroelement and Macropatch Approaches to Structural Topology
Optimization Using the Ground Structure Method,” Journal of Structural
Engineering, vol. 142, no. 11, 2016.
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PUC-Rio, 2016.


