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Abstract—Technological innovations in the hardware of RGB-
D sensors have allowed the acquisition of 3D point clouds in
real time. Consequently, various applications have arisen related
to the 3D world, which are receiving increasing attention from
researchers. One of the main problems that remains is the de-
mand for computationally intensive processing that is required by
optimized approaches to deal with 3D vision modeling, especially
when it is necessary to perform tasks in real time. A previously
proposed multi-resolution 3D model known as foveated point
clouds can be a possible solution to this problem. However, this is
a model that is limited to a single foveated structure with context
dependent mobility. So to recognize several objects one would
need to move the fovea in the 3D data, sequentially. In this work,
we propose a new solution this problem, providing data reduction
for feature detection, by using a multifoveation in the point cloud.
Notice that the simple application of several foveated structures
results in a considerable increase of processing since there are
intersections between regions of distinct structures, which are
processed multiple times. Towards solving this problem, the
current proposal brings an algorithm that avoids the processing
of redundant regions, which results in even more reduced
processing time. Such approach can be used to identify objects
in 3D point clouds, one of the key tasks for real-time applications
as robotics vision, with efficient synchronization allowing the
validation of the model and the verification of its applicability in
the context of computer vision. Experimental results demonstrate
a performance gain of at least 27.21% in processing time while
retaining the main features of the original, and maintaining the
recognition quality rate in comparison with state-of-the-art 3D
object recognition methods.

I . I N T R O D U C T I O N

The main purpose and the proposal of this paper1 is to
extend the model based on the foveated point cloud (FPC) [1]
coming up with a sampling approach to 3D data that reduces
processing time while achieving multiple foveated point clouds
(MFPC), at several points of interest. This extension allows
using this approach to deal with, for example, the search of
multiple objects in a scene instead of a single one as in the
previous work, with data compression for server storage, and
for assisting simultaneous localization and mapping (SLAM)
tasks. Our efforts were started trying to accelerate the Visual
SLAM [2] with the results achieved, we prepared the way for
the development of the MFPC.

The contribution of this work is the approach to speed-
up the processing on multifoveated point clouds by avoiding
redundant computations in overlapping regions. The novelty in

1This work relates to a M.Sc. thesis.

relation to previous work is that, instead of only one moving
fovea, several ones can be used at a time without redundancy
on the computations. The results of the experiments provided
in this work show that this reduction brings benefits in the
performance of some tasks being executed, such as recognition,
speeding up the applications without affecting the precision.
This makes possible the use of multifoveation to deal with the
search of multiple objects in a scene, instead of just one object
as in previous work [1]. Consequently, multiple targets in a
scene can be addressed in robotics applications. Other visioned
applications as 3D data transmission through the Internet where
data reduction is mandatory can also use such approach.

Thus, the scope of the present model is restricted to visual
data features capture with depth data using several types of
structures in parallel, which reduces the amount of information
without creating redundant information to streamline a task
in dynamic or static environments. Thus, in the later sections
we will have a brief discussion about the mechanism and its
respective results.

I I . B A C K G R O U N D T H E O RY

To achieve high level of autonomy, it is necessary for a robot
to react without human intervention to stimuli provided by the
environment [3, 4, 5]. Robotic vision applications use several
types of sensors to capture stimuli data. To better comprehend
the approach to multifoveation in point cloud proposed in this
paper that can be used for robotic vision, in this section, we
present the basic ideas of multi-resolution and the previous
foveation approaches, starting with the single foveation that has
allowed performing real-time tasks mainly for robotic vision.

A. Multiresolution and Foveation

Our brain can acquire and abstract visual information quickly
and efficiently deciding where to focus and what is the sequence
of fixations [6]. This sequence of fixations is related to cognitive
mechanisms controlled by our visual attention mechanism. It is
understood that the biological system of human vision has two
types of visual attention behavior called top-down and bottom-
up [7, 8]. Top-down attention is an approach that refers to the
internal orientation of care based on prior knowledge, desired
goals, and planning. In contrast, bottom-up attention is directed
purely by stimuli of external factors that stand out because of
their inherent properties in relation to the background.
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Thus, no matter which of the above tasks is performed, they
need high processing rates, which makes vision one of the most
complex activities for a robotic system implementation, since a
single view requires a huge amount of data. Thus, using some
technique for diminishing the amount of input data has proven
to be a good idea [8, 9]. Many types of methods optimize
image processing tasks. One of these is the representation
based on the non-uniform density called foveation, which has
as one of its aspects a biologically inspired model that mimics
the mapping of the retina to the visual cortex to deal with this
amount of data [10, 11].

The foveation process can be performed by means of
software downsampling [10], with reduced sampling [12] for
systems that use at least two cameras [13]. Each type of
execution of the foveation process has its relevant advantages
and disadvantages.

I I I . M U LT I F O V E AT E D P O I N T C L O U D - P R O P O S A L

Our proposal in this paper is a natural evolution of the multi-
resolution with centered fovea (MCF) [8], going through the
moving fovea (MMF) [9] and is based in the FPC [1] with the
ideas of models of multifoveation 2D [14, 15]. By grouping
these two bases, it is proposed to create a model that reduces
the processing time in the detection of objects, avoiding the
processing of redundant regions generated by the overlap of
the foveated structures, allowing a better performance in a
multiple objects recognition task.

The idea is to apply several foveated structures on the PC, but
with an additional step that remove the redundant points. In this
scheme, it is possible to reduce the processing time while the
densities around the several foveae are enough to guarantee the
detection of the objects. In this scheme, the FS is a sectioned
frame having different resolutions (multi-resolution), where
the size of the level is inversely proportional to the quality
of the resolution, so that each of these levels is successively
encompassed by the other in such a way that all are disjoint.
For further details all theoretical development in detail are
available in our recently published work [16].

A. Approach to Cloud Multifoveation

The FPC proposal has as the main mechanism the down-
sampling in the original point cloud using concentric boxes,
where each one represents a level, producing a PC with a
different density for each box. In the context of multiple
foveated structures (MFPC), applying multiple moving foveae
would result in a considerable increase in processing, since
intersections between regions of distinct structures would be
processed several times. In this way, our approach to the
multifoveated model has as a specific case the proposal in
the previous FPC. The foveated point cloud is achieved by
downsampling the original PC using concentric boxes, each
representing a level, which is the case for only one foveated
structure. The operation of multiple structures without treatment
is similar, although redundancy is eventually generated in
regions to be processed, in addition to having more points
than in the original scene.

I V. P R O P O S E D O B J E C T R E C O G N I T I O N S C H E M E

In this section, we discuss the application of the proposed
approach coming up with a new correspondence grouping
algorithm, which is somewhat similar as the one presented
by Tombari and Stefano [17]. The search is done only in
the object-to-scene direction and not the scene to the object,
allowing the system to find multiple instances of the same
object in a single scene shown in Figure 1.

Fig. 1: The 3D object recognition algorithm based on matching:
the proposal with the object recognition scheme 3D multi-
foveation. The scene is downsampled through several foveated
structures, considerably reducing the number of points to be
processed without compromising overall accuracy, as described
in the text.

A. Object Recognition in Multifoveated Point Clouds

The MFPC is applied to according to Figure 1 and the pa-
rameters described and defined in papers [16]. The estimation
of the normal of each point can be made previous or after
the foveation process. When choosing to make the estimation
previously, computation is costlier, but the captured geometric
traits of the scene are less distorted. However, we continue to
choose to preserve the geometry of the scene, prioritizing the
best accuracy.

To respect the multi-resolution of the scene PC, we use
key-point extraction adapted to depend on the different and
specific resolution levels in each FS, possibly differing from
the sampling radius used d0, . . . , dm. We also use the modified
correspondence grouping algorithm that accommodate the
extraction of the key-points in each point cloud of the
multifoveation. The points of the scene are downsampling using
several radii rk for each k level and k ∈ [0, . . . ,m], where all
the foveated structures of the scene have the same numbers of
levels. From the arbitrary determination of the extreme radii
of the structures are the first level (level 0) having a radii r0
and last (level m) using a distance rm. The intermediate levels
use linear interpolation for radii estimation, like what is done
in the size of the boxes of the foveated structures.

Therefore, by adopting these radius downsampling ap-
proaches made in [1], considerable time savings can be
achieved by reducing the number of key-points both in the
computing of descriptors and in the matching step, resulting
in the large increase in the density of the key-points near
the fovea position without significant increase in the total
number of original points in the scene. Thus, it improves the
efficiency of the detection of objects if the foveated structures
are defined correctly and reduces the number of false matches
of descriptors.
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The FPC model can only recognize several objects if all
are close, considering a fovea box which does not cover
much of the PC. In this new MFPC model, the objects can
be identified without this restriction, since the distribution of
multiple structures in the scene allow the proper positioning
of each zone of maximum resolution.

V. R E S U LT S

After deciding the types of strategies for comparison, we
execute each of them. Two groups of graphs are used to
display the information acquisitions. They are made up of
four types that join the six approaches providing a better
comparison between the strategies. The first group of graphs
brings information that is related to the performance of the
approaches: quantity of points, number of key-points, average
time and number of objects found. The second group of graphs
tries to explain the accuracy of the strategies in relation to
the characteristics of the execution of the algorithm of object
detection of Tombari and Stefano [17]. The characteristics of
this group are: correspondence between points, amount of true-
positive, precision and recall. For each scene, the two groups
of graphs were used, besides elaborating tables which allow
having a better precision in the execution times sampled of
each scene for each strategy.

N◦ Description

1 Non-foveated [17]
2 Multifoveated raw
3 Multifoveated with redundancy treatment (MFPC)
4 Foveated covering all object simultaneously (FCAS)
5 Foveated covering the rightmost object (FCRM)
6 Foveated covering the leftmost object (FCLM)

TABLE I: Enumeration of the treated approaches in the
comparison of results for both the scenes the comparison
experiments.

The related groups are shown in Figures 2 and 3, where
we have the performance group and the accuracy group,
respectively. The performance of our proposal was one of
the concerns, since the recognition algorithm requires many
computational resources in relation to 2D proposals. In the set
of graphs referring to Figure 2, the ordinates axis is related to
the strategies used mapped in Table I.

A. Results Analyzed from Performance Group

By analyzing Figure 2a, we can see that the number of
points (abscissa axis) of the non-foveated (Experiment 1) is
much more accentuated than the models with single fovea and
multifoveated. The model non-foveated has the same total of
points of the original scene that is 281,097 points, since the
models that use the foveation are with quantities below 150,000
points. In our proposal (Experiment 3 (MFPC), we notice that
it is the third largest decrease of points, losing only to the
experiments that are involving only one object, which are the
FCRM and FCLM. The multi-foveated raw model (Experiment
2) has a reduction of points generating redundancy of points,

N◦ Ilower µ Iupper σ2 Exp. 3 (%)

1 0.765 0.776 0.787 4.0 × 10−4 45.73
2 0.582 0.593 0.604 4.0 × 10−4 28.96
3 0.415 0.421 0.427 1.3 × 10−4 0
4 0.564 0.579 0.593 6.5 × 10−4 27.21
5 0.302 0.305 0.308 0.3 × 10−4 -
6 0.294 0.297 0.300 0.3 × 10−4 -

6 + 5 - 0.596 - - 29.98

TABLE II: Comparison of the execution times in seconds of
the strategies performed and the reduction time in relation to
experiment 3 in percentage. The confidence interval used is
95% by t-Student.

a fact that is explained by the arrangement of structures where
only the lower density levels have intersections. Then, it is
shown in Figure 2a that our strategy would have advantage
over the others in the amount of points used to find all objects,
using fewer points for the scene with more distributed objects.

Looking at the results of key-points extraction based on
each strategy (Figure 2b), it depends on the positioning
of the fovea boxes for the foveated models. Notice that
Experiment 4 has a much higher number of points compared
to Experiment 3 that has a similar amount of extracted key-
points. It is possible to preserve the descriptiveness of the
scene with a significant reduction in the number of points.
In the multifoveated raw, more key-points are found than in
the non-foveated model. These key-points are duplicated or
distorted in the scene generated by the redundancies, what
affects the local descriptiveness by modifying it, being this the
main problem of the approach multifoveated raw.

The expectation of the objects found is represented in the
graph shown in Figure 2c. We can see that all strategies have
expected results, except the strategy that uses the multifoveated
raw. This fact can be explained initially using Figure 2b, since
we have a higher number of key-points in relation to the
non-foveated strategy with the same configurations. The scene
distortion caused by the multifoveated raw has brought this
false detection.

The performances of the execution times of the strategies
used are shown in Figure 2d. The graph shown is constructed
with 15 consecutive samples of execution times of each
strategy, which allows to elaborate a confidence interval that
guarantee a good estimation of the average, as seen in the Table
II. As previously mentioned, Experiment 6 and 5 represent
the strategy of using only one foveated structure to identify
several objects at a time. The evaluations of the average
times of performance of these two experiments are combined
for comparison with the shortest average time (experiment
MFPC) obtained in Table II reduction column. Table II has the
following information: Ilower (lower end), Iupper (upper end),
µ (arithmetic mean), σ2 (variance) and reduction of time in
relation to the experiment MFPC. The ends are maximum and
minimum fluctuation of the acquired times of each experiment
done.

We can see in Figure 2d that the best performance in



4

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

Number of points ×10
5

1

2

3

4

5

6
E

x
p
e
ri
m

e
n
t

(a)  -  Number of total points in the final scene analysed.

Non-foveated

Multifoveated raw

Multifoveated treatment

Single foveated both

Single foveated righmost

Single foveated lefmost

0 250 500 750 11001250 1570 2170 2333

Number of keypoints

1

2

3

4

5

6

E
x
p
e
ri
m

e
n
t

(b)  -  Number of selected keypoints in the final scene analysed.
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(c)  -  Number of objects in the final scene analysed.
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(d)  -  Mean of the times computed in the experiments performed.
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Fig. 2: The result group of the strategies performances carried out referring to the scene: (a) the total number of points in the
final scene analyzed; (b) the result of the number of selected points of key-points in the final scene analyzed after execution of
the strategies; (c) the amount of objects recognized for each configuration presented; and (d) the average of the times computed
in each experiment performed where this result can be noticed in Table II (see more details in the text). The matches of the
experiment numbers can be seen in Table I.

the identification of all objects, given the configurations
already shown, is the multifoveated approach with redundancy
treatment (our proposal). This is expected, since we have one
of the largest points reductions relative to the original scene,
as shown in Figure 2a. Table II presents the mean of the
execution times in a more precise way, the maximum and
minimum confidence intervals, the variances of the experiments
and the reduction ratio in relation to our MFPC model to
obtain a clearer analysis. Comparatively, the multifoveation
with treatment (MFPC) has more than 25% of time reduction
than the other strategies used. We consider that all objects
should be identified in the scene.

Then, for the group of performance graphs (Figure 2), it is
noted that the ability to reduce the number of points around the
desired objects allows a reduction in execution time. However, it
does not proportionately reduce the scene’s descriptiveness, one
of the positive points of the methods taken. It is also possible
to observe that the amount of key-points is not necessarily a
sign of improvement in the quantity and quality of the features
as the multifoveated raw has more selected key-points than the
original scene and, even then, there is the recognition of an

object that does not exist in the scene. This fact occurred due
to the redundancies generated, as already explained.

B. Results Analyzed from the Accuracy Group

Given these circumstances, we have drawn up charts to
deal with the accuracy of the strategies (Figure 3). Figure
3a shows the matches that are made. That means the total
number of selected points that could represent some point
of the model object. It can be noticed that the approaches
non-foveated, raw and FCAS are those that have a greater
number of correspondences. The MFPC, FCRM and FCLM
experiments have their respective expected match results, since
they were more directed to the desired objects.

Analyzing the results by the number of valid hits, that is, the
number of true-positive, we construct the graph represented in
Figure 3b. An interesting fact in this analysis is the result
obtained with the single fovea model that covers all the
objects. It obtained the highest value of true-positive surpassing
the non-foveated strategy. This fact can be explained by the
configuration focus in the areas with high concentration of
descriptiveness and similarity with the desired objects. We can
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(b) - True-positives correspondences found in the experiments performed.
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(c) - Precision of the experiments performed.
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(d) - Sensibility of the experiments performed.
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Fig. 3: The result group of the strategies accuracies carried out referring to the scene: (a) the total number of matches performed
in the final scene analyzed; (b) the result of the number of true-positive selected in the scene; (c) the precision of each
strategy; and (d) the sensitivity of each strategy (see more details in the text). The numbers of the experiments are mapped in
Table I.

also notice that Experiments 1, 3, and 4 have similar results, as
shown in Figure 3b. Practically, Experiments 1 (non-foveated)
and 3 (MFPC) have the same true-positive numbers, showing
that our proposal does not cause a large change in the validity
of the data found, whereas the multifoveated raw model has a
minimal advantage in the amount of valid matches compared to
the Experiment 3, even getting much more matches and more
points. It is observed that the duplication of points, which could
be considered as reinforcement in the 3D environment, distorts
the representation and the points’ descriptiveness for the object
recognition algorithm proposed by Tombari and Stefano [17].

The precision and sensitivity graphs are shown in Figure
3c,d, respectively. We observe that the foveated models usually
maintain the precision and sensitivity as seen in the presented
graphs. They can have superior performance of precision in
relation to the model no-foveated, as seen in Figure 3c, which
shows Experiment 3 with precision close to 20% and the no
n-foveated approach (Experiment 1) with accuracy < 15%. In
relation to the sensitivity, it is the fraction of the relevant points
identified. Given that the configuration for the extraction of key-
points are the same for all strategies, we have the leftmost object
with 40 in total to be identified, while the rightmost object has

83 key-points. This led to a higher sensitivity in the single fovea
strategy that is positioned on the leftmost object, as shown
in Figure 3d, since the difference is not so great among
the true-positives in each strategy. Based on the presented
sensitivity results, the foveated models have similar results
in comparison to the original model (non-foveated), except
for the multifoveated raw model, and the highest percentage
is the FCAS (4) among the foveated approaches. Thus, for
tunings and the scene chosen, we have seen that the proposed
multifoveated brings improvements in the reduction of quantity
of points, execution time and precision in relation to Strategies
1 and 4, in addition to noting that the multifoveated raw is not
feasible for the various problems mentioned.

V I . C O N C L U S I O N S

This work has proposed an approach for reducing the amount
of point cloud data captured by RGB-D sensors using multiple
structures borrowed from the work of [1]. This mechanism has
been integrated and tested in the object recognition task as
exposed by Tombari and Stefano [17] and can be integrated
into tasks involving visual attention control and recognition.
The proposed mechanism provides a considerable reduction of
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execution time in relation to other types of approaches between
models and the original approach.

This article has three main contributions. The first one is the
proposed mechanism that uses several foveated structures that
can be found without producing redundant points in a PC. The
second is that the work provides the conservation of the density
hierarchy of the levels of the structures. The last contribution
relies on the investigation of the problems related to FPC
[1]. That investigation allowed noticing that the source of the
problem at that scheme is caused by the descriptor used in the
proposal, SHOT [18], which has sensitivity to the variation of
the point density. This is solved with the improvements made
by Salti [19] that greatly reduced the sensitivity, making it
possible to perform the task without occurrence of detection
problems.

P U B L I C AT I O N S

Two articles have been published as results of the works done
in this Master Thesis. In the first one, we helped on studying and
implementing inverse methods for accelerating Visual SLAM.
This initial work has been published as a conference paper at
ICINCO 2017 and can be found at Souza et al. [2]. After this
initial contribution on Visual SLAM, we came up that reducing
the point cloud for later use in that approach was our goal,
resulting in the MFPC approach above described. We changed
from the VSLAM task to recognition, which is easier to test
data reduction, being only this considered as the contribution
in our Master thesis. A journal paper on this subject has been
published at Sensors (A1 at Brazilian CAPES Qualis), which
can be found at Oliveira et al. [16].
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