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Abstract—In this work, we propose a surface reconstruction
pipeline, which operates incrementally, from depth images. Depth
cameras are increasingly present in the market, while there
is a move to integrate them into mobile devices, combining
their data with those of other sensors in a platform with an
increasing computing power. Our proposal investigates how to
benefit from this integration of sensors to derive geometric models
of objects through the extension and adaptation of classical
geometric modeling methods. In this work, the experiments
and computations were performed on a conventional computer,
but the choice of solutions and algorithms is intended to test
the viability of a method whose complete pipeline could be
executed in a mobile device. We show the advantages gained
from using the features available in a current mobile device
in designing solutions to classic problems in the area, while
exploring computationally efficient methods to operate according
to the hardware limitation these platforms have over a regular
computer.1

I. INTRODUCTION

In the past, the acquisition of geometric data was restricted
to academia and certain industry sectors due to the high cost
of equipment and the need to operate them in controlled
environments. However, devices developed for consumer ap-
plications such as the Kinect made this process cheaper and
more widespread. Later on, accessories like the Structure
Sensor enabled the acquisition of geometric data in a mobile
environment, by attaching a depth camera to an iPad.

In contrast, the accuracy and quality of the data acquired
by a low-cost sensor as the Kinect are significantly lower than
those of the expensive and robust sensors that were being used.
This situation exposed new problems and made it necessary to
adapt existing ones, such as lack of information, aggravation of
acquisition noise, low resolution and, in the sense of practical
applications, real-time problem solving. In this way, classic
problems such as noise filtering, surface reconstruction or
pattern recognition remain very active due to the challenges of
finding functional, robust and efficient solutions to operate in
several scenarios, including real-time interaction with system
users.

At this point, it is necessary to develop methods and
solutions that allow the exploitation of this kind of data in
consumer applications, such as the modeling of non-controlled
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environments, which would enable the user to walk with his
device through the scene to acquire data in an intuitive and
natural way. We can take advantage of mobile devices features,
such as attitude sensors, multiple cameras and wireless access,
to minimize the disadvantages of operating in a resource
constrained system, taking into account the peculiar way in
it is used. Classical results generally do not consider these
features and, because of this, some computational solutions
become more complex when they approach the problem with
less information.

In this paper, we propose a surface reconstruction pipeline
in which we capture depth images, use externally obtained
calibration data, construct an extrinsic representation of the
acquired object from an implicit formulation of the surface,
and extract an intrinsic representation of this surface with
a resolution adapted to the geometry of the object. In our
experiments we acquired data using a Kinect and we per-
formed computations in one conventional computer, but each
step presented was thought of as a self-contained feasibility
test of our proposal of reconstruction method, so it could be
implemented and executed on a mobile device.

In addition to this pipeline, our contributions are on how to
update an extrinsic representation of the surface in a scenario
where depth data is acquired incrementally; how to preserve
the topology of the surface during the fusion of these data
and; how to construct this representation semi-adapted to
the geometry of the objects, saving resources and making it
possible to extract an intrinsic model in the end of each cycle
of the pipeline. To accomplish the previously stated goals,
we extend and adapt classical methods for a solution that
addresses this paradigm of mobile computing integrated with
sensors.

II. RELATED WORK

A. Geometric Reconstruction from Depth Images

In the recent literature about surface reconstruction the
Kinect Fusion [1] is an important reference for this work.
The Kinect Fusion uses depth images acquired with a first
generation Kinect device to construct a geometric model of
the captured scene. The algorithm fuses the data from many
different frames captured with a moving kinect and then
generates a virtual model that can be visualized in real time.



Fig. 1. Reconstruction Pipeline

Although some of the applications presented as examples
in that work are similar to what we would like to get, we
can highlight two conceptual differences between the Kinect
Fusion and our work, both related to the fact that one case uses
a static sensor without additional data, while the other adds
the features available in a mobile device to the discussion.

First, the Kinect Fusion created a method to compute
tracking data to align the captured frames. These calculations
were made based on the already captured depth maps and
the partial reconstruction of the model geometry. This is
an important contribution of the project, cited both in early
publications [1], [2] and in two other publications on camera
relocation methods [3], [4]. In our work, we want to verify the
feasibility of delegating the acquisition of the registration data
to the sensors of a mobile device. We know that using only
the attitude sensors of a mobile device, such as accelerometer,
gyroscope and magnetometer, it is not possible to make this
alignment accurately, since there is no information about the
translation of the device in space. However, devices using the
Structure Sensor or the Tango platform are able to perform
accurate tracking with six degrees of freedom in small areas,
using the integration between data from the attitude sensors,
color cameras and depth sensor. For long distances, however,
an approach based on these sensors may have to deal with
the drift problem, where small measurement errors accumulate
over time leading to a larger error situation.

The second difference we can highlight is that the Kinect
Fusion works with very refined volumes, producing dense
meshes. They developed very efficient solutions to use the
computational power and the parallelism of graphic cards and
made it possible to execute the program in real time. We want
to propose a method that has a reduced memory consumption
for a mobile device, seeking to make the geometric resolution
adapted to the resolution of the object and not to that of the
image.

B. Implicit Surfaces Polygonization

An inherent problem in geometric reconstruction appli-
cations from depth images is how to integrate data from
different cameras into a single model. Trying to work with a
parametric representation of the data would be quite difficult
and inefficient. As a result, works like [1], [2], [5] adopt
an implicit representation of the surface and perform their
polygonization by implicit surface polygonization algorithms,
which generally require a strategy of space segmentation.

Using an adaptive spatial structure such as an octree for
this task allows the memory allocation of the algorithm to be
much more efficient and the reconstructed mesh to be more
adapted to the surface geometry. However, when an adaptive
data structure is used, regions of the sampling grid where there
is contact between cells of different detail levels can generate
holes in the meshes. It is necessary to treat these cases with
particular attention to generate the polygons and integrate them
properly to the mesh under construction.

The Dual Countoring algorithm [6] presents a solution of
polygonalization of implicit surfaces in non-uniform sampling
grid whose vertices are classified as inside or outside the
surface. The fact that we do not need the values of the implicit
function at the vertices of the sampling grid, but only the
classification of these vertices as inside or outside the surface,
makes this method very suitable to our experiments, since we
do not have a direct way to sample values of the function.
We highlight two contributions of this method that are very
relevant for the experiments of this work:

1. A way to calculate the position of the vertices inside
the cell using Hermite data from the Quadratic Error Func-
tions (QEF) optimization, quadratic functions similar to those
presented in [7].

2. An efficient way to polygonize a surface from an adaptive
spatial structure, an octree, avoiding holes in the generated
mesh.



(a) Color frame (b) Depth frame

Fig. 2. Example of a captured frame

III. RECONSTRUCTION PIPELINE

Our method of reconstruction is incremental and is arranged
in an initialization phase and 5 main steps that can be repeated
in cycle: i) Acquisition of geometric data; ii) Connected point
cloud construction; iii) Mesh simplification; iv) Generation of
intermediate structure; v) Polygonization. Figure 1 represents
an overview of the pipeline.

Initially, we use a mobile device to capture a depth image
and then we store the calibration data of the camera, which
should be obtained by the sensors of the device. After that,
each pixel of the image is converted to a vertex in space
R3 and the calibration data is used to register them in the
reconstruction frame. Next, we join close vertices to produce
a dense triangular mesh with uniform appearance and then
apply the simplification method described in [8] to the result
to reduce its density and decrease the computational effort of
the following steps. The simplification step is also responsible
for the computation of the quadrics, which are useful data
to compute mesh geometry. As in [8] the strategy consists in
using the geometry originally acquired as reference for the
quadrics and then send the quadrics and the simplified mesh
to the next step.

During the initialization phase, we use the simplified mesh
and the quadrics produced in the previous step to construct
an extrinsic representation of the surface, stored in an Octree,
which allows us to segment the space in an adapted manner.
Our goal is to construct a structure similar to that presented
in [6], because we can apply a modification of the algorithm
Dual Contouring, described in that work, to obtain an adapted
polygonal mesh. Every time this step is repeated in a cycle
after initialization, we use the simplified mesh of the current
frame to update the representation already built in the octree.

Note that each depth image presents a portion of the scene
limited to its single point of view and, consequently, the
surface we obtain using only the data from one frame is open,

with edges. However, our chosen method for polygonization,
the Dual Contouring, was designed to reconstruct closed
surfaces. This fact led us to focus our investigative effort on
solving problems inherent to the step 4 of our pipeline, in
order to allow the application of this algorithm in this new
usage scenario and integrate it into the pipeline. We needed
to develop a new way of constructing a surface representation
in a octree from the simplified point cloud and also figure out
how to update this representation incrementally with data of
new cameras in order to complement and close the final mesh
as detailed in [9].

IV. EXPERIMENTS AND RESULTS

The steps of the method were performed separately so
we could have more control over each one and study them
individually, focusing on our own adaptations. We will present
a proof of concept, addressing each of these stages since
the acquisition until the polygonization. Preliminary results
obtained during the research can be found in [10]. The
description of the capture environment and the details of the
experiment are available in [9].

A. Geometric Data Acquisition

We simulated the capture of frames with a Kinect around a
mannequin head, our object of interest, obtaining 8 images that
cover the surface of this object. A chessboard was introduced
in the scene as a reference to perform the calibration of the
camera with the QtCalib [11] software, based on the Tsai
algorithm [12]. In our pipeline, by hypothesis, the calibration
data is obtained from the sensors of the mobile device used
in the capture and is an essential information to register all
geometric data to the same frame of reference. Figure 2 shows
one of the captured frames next to its corresponding color
image.



(a) Noisy dense mesh (b) Detail

Fig. 3. Connected point cloud

B. Connected Point Cloud and Simplification

We chose a mannequin head, a smooth surface without
abrupt variations of curvature, as the model for this experi-
ments. In the Figure 3a we can see the result of taking into
3D space and connecting the points of one of the captured
frames and it’s possible to notice a particular high level
of noise. The threshold used to connect nearby points is
important, because if it’s too low we might end up with a
very disconnected mesh, full of holes even in areas away
from the edges. In this moment it’s better to build a fairly
dense and connected mesh and leave geometric corrections to
the mesh simplification and quadric optimization steps. The
coarse resulting mesh was, then, simplified using the edge
pairs collapse algorithm described in [7], reducing the number
of faces by approximately 95%.

C. Extrinsic Representation and Polygonization

In this experiment, the operations of the previous steps were
performed in all meshes as a pre-processing for this step, but
the construction of the extrinsic representation was done incre-
mentally, as in the use case we’re interested. Due to the lack of
integration in this moment, however, the quadrics that should
come from the simplification step were constructed computing
the intersection between the edges of the sampling grid and the
simplified polygonal mesh taken as input. In our proposal it
was already necessary to compute these intersections in order
to classify the grid vertices as inside or outside the surface
and use this information to reconstruct the surface topology;
however, in this experiment we used this data - Hermite data
- to compute the geometry as well. During the processing of
a cell, we add to the quadric the intersection points and the
normal vector for each intersection related to that cell. This
way, the quadric takes into account the local tangent plane at
the surface and an estimate of the trend of its movement. The
data is similar to the one presented in [6], but the computation
is different.

Using only the current frame, we can already perform the
extraction of a polygonal mesh of this representation, as shown

Fig. 4. Reconstruction from a single frame

in Figure 4. After the initialization step, we can update the
extrinsic representation by processing the following frame.
Note that the sampling grid might be modified in relation to
that constructed from the first frame, because it should include
new informations to fill holes and possibly refine details. One
of the advantages of an incremental method is that we could
extract a new polygon mesh right after processing each new
frame.

In our implementation, we followed the flow proposed in
our pipeline for almost all steps. The only exception is the
quadric computation described in the subsection IV-C. After
the construction or update of the octree, we can turn back in
the cycle to acquire the next depth frame and register, connect
and simplify its data to be added to the surface representation.

If the octree representation is never simplified in the middle
of this process, the result of doing the polygonalization of
the implicit surface in all or some of the steps of the cycle
will be the same that we would get if we only processed
each frame incrementally and left to extract the mesh in the
end. However, if the octree is simplified in some iteration of



the cycle, there may be differences between the final result
obtained in this way and the result that would be obtained
continuously. After the capture of the last frame, we performed
the polygonalization of the surface of interest (Figure 5).

Looking at Figure 5, we notice that the noise does not com-
promise much the topological structure of the reconstructed
mesh, but its effect on the mesh geometry is perceptible.
We see that the shape of the reconstructed mannequin is not
as smooth as the shape observable in the captured frame.
In the plane of the checkerboard it is possible to see small
roughnesses due to the noise, besides a great unevenness due
to inaccuracies in the register of the meshes in relation to the
same frame of reference.

V. CONCLUSION

The popularization of RGB-D cameras increases the im-
portance of effective, robust and efficient methods for map-
ping and interacting with the surrounding environment. The
experiment carried out in this work guided us to the design
of a reconstruction pipeline using existing technologies and
adaptations of solutions proposed to correlated problems.

Following each step of the pipeline, it was possible to
generate a polygonal mesh resulting from the merging of
the acquired geometric data. The experiments showed that,
although the mesh topology is adequate, the computation of
the quadrics directly from the mesh intersections with the
sampling grid did not improve the geometry. We believe that
the integration of the quadric computation, done during the
simplification step, into the next step of the pipeline would
qualitatively improve the mesh. This way, we could leverage
the strengths of each method in the pipeline to reconstruct
surface geometry and topology.

We used a method to reconstruct closed surfaces, but in
several situations, it is possible that the observed frames could
not provide information to get a borderless surface. In these
cases, we will observe imperfections in the reconstruction near
the edges. One way to minimize this problem is to add a
correction term to the quadrics of the cells near edge regions
by inserting, for example, orthogonal planes to the edges as in
[13]. A similar strategy could be adopted in cells near regions
of high curvature, but the characteristics and impacts of the
term to be added would have to be studied.

Within the scope of this work, we tested our hypotheses
on each of the pipeline stages in a conventional computer,
simulating situations such as registration of frames using
data provided by attitude sensors. We used the results of
the experiments to guide us in the formulation of the final
pipeline proposal. As a future work, we propose an integrated
implementation of these stages in a mobile device.

Due to the capabilities of mobile devices to connect to
different forms of computer networks, we are also interested in
studying how to build an efficient architecture that uses remote
resources to store and process data for the reconstruction.
It is possible, for example, to store geometric data along
with geolocation metadata, allowing the complete scanning
of establishments such as schools, museums or hospitals, by

capturing images from each room and aggregating the data on
the server.
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Fig. 5. Reconstructed Object


