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Abstract—Nowadays, 93% of the subcortical areas are still
classified as terra incognita [1]. Thus, they are regions totally
unknown to the neuroscientists. In this context, the Human
Connectome Project (HCP), a consortium between the universities
of Washington, Minesota and Oxford, mapped about 1200 indi-
viduals in various cognitive and motor situations. This mapping
resulted in a database of free access to the scientific community
on the order of 64 terabytes. However, the images collected
in vivo have low quality when compared to the histological
images. One of the solutions to this problem is the combination
of fMRI data with data collected in post mortem. Nevertheless,
this combination requires the manual analysis of thousands of
observed regions, which makes it almost unfeasible manually.
Hence, the automation of this process depends on bigger precision
of segmentation algorithms. From the 1980s, with the works
of Constantino Tsallis in the field of non-extensive statistical
mechanics [2], a path has been opened for the creation of new
segmentation algorithms based on the Tsallis entropy. In this
work, we propose the application of the sigmoid function based
on Tsallis non-extensive entropy in magnetic resonance images
for the segmentation of brain regions.

I. INTRODUCTION

Brain mapping is one of the major challenges of the 21st
century, since only 7% of brain regions have been observed
in vivo. [1].

Recently, the Human Connectome Project (HCP) https://db.
humanconnectome.org has proposed a complete mapping of
the anatomical regions from the point of view of new hardware
technologies, such as the use of tomographies on the order of
7 Tesla [3]. Despite the effort made by the set of universities,
the scanning of machines with up to 7 Teslas (7T) in vivo is
inferior in the sense of functional and structural observation
when compared to histological techniques [4].

Fig. 1 shows a visual comparison of scanning a subcortical
region with 3T and 7T in vivo through fMRI (functional
Magnetic Resonance Imaging) and 7T post mortem. In this
Figure, higher visual quality is observed in the histological
images. In addition, the study of terra incognita is only
possible through information collected in post mortem.

The obvious solution to this problem lies in the enhance-
ment of fMRI imaging equipment. However, an alternative
solution is based on the functional and structural simulation
of the brain. In this type of simulation, hypotheses about
interregional connections and structure of the brain can be

proposed, as well as the use of mathematical-computational
models to infer regions still unknown. A review of the area
can be found in [5].

On the other hand, another solution could be the combi-
nation of histological results with fMRI information [5]. This
combination, however, involves the analysis of thousands of
areas observed microscopically manually. The automation of
this process, in its turn, depends on the greater precision
of segmentation algorithms, which would result in greater
precision of the automatic analysis.

One of the classic segmentation techniques is the histogram
thresholding (HT), proposed in [6]. This technique is based on
the entropic probability distribution to find the cutoff thresh-
old. The HT method applies only to binary thresholding using
Shannon Entropy. However, this technique has become popular
because of its easy implementation and low computational
cost.

From the work of [6], other more advanced proposals have
been studied. In the late 1980s, the works of Constantino
Tsallis on the non-extensive statistical mechanics field opened
the path for new segmentation alternatives based on this theory.
In [7], the first work of non-extensive image segmentation
based on the Tsallis entropy was proposed.

From the work of [7], several other proposals were made.
In [8], a new method for the segmentation of breast cancer
ultrasound images based on the Tsallis entropy was presented
as part of a Computer Aided Diagnosis (CAD) system. Other
proposals for the improvement of this method were presented
later in [9]–[13].

Histogram-based methods require less computational re-
sources for binarization purposes. However, in [14], it has
been shown that multi-threshold processes may be more ef-
fective in the case of more detailed images. Thus, in [15], it
was proposed the use of bio-inspired optimization algorithms
to enable multi-segmentation, such as the Firefly algorithm,
based on the firefly behavior. As the core of Firefly, the non-
extensive entropy of Tsallis was applied. Further work on the
method was proposed by [16], [17].

Still in relation to the image segmentation, [18] proposed
the generalization of the sigmoid function using the Tsallis
entropy for the creation of the q-sigmoid. Subsequently, the
work of [19] extended the application of the proposal and



Figure 1. Visual comparison of resolution by technique. The leftmost Figure
shows a sagittal (in vivo) slice of the brain and a prominent dotted region. The
highlighted region is observed in detail in the second image (captured with
3T), in the third (captured with 7T), and in the fourth most right photographed
with a microscope of the same tissue post mortem. The greater amount of
observable details and regions, including the so-called terra incognita, is
evident in the histological Figure to the right [21].

[20] presented formal mathematical theories for the method.
In this paper, the use of the q-sigmoid function in the medical
databases of the HCP project is proposed .

This work is organized in the following way: in Section
II, an introduction is made to the q-sigmoid function with
non-extensive entropic kernel. In section III, the results of q-
sigmoid segmentation on the HCP database are presented. The
conclusion is made in Section IV.

II. METHODOLOGY

The idea of the q-sigmoid function is based on the formal-
ism of the q-exponential function and a simple variation of the
sigmoid approach for image enhancement. In this context, we
suppose I(x, y) ∈ [0, L] (generally called only I for short) and
a specific region with average luminance value β and standard
deviation α. With the purpose of contrast enhancement, we
consider the sigmoid transformation given by:

I1(I;β, α, λ) =
2

1 + exp
(
λ
(
|I−β|
α

)) . (1)

Fig. 2 shows a schematic example of the use of parameters
β and α in Expression (1). In this Figure, we indicate the β
value in the input image as well as the range, defined through
the parameter α, around the luminance given by β. We can
notice that the luminances nearby β were mapped close to 1
while outside the rages [β − α, β + α] became darker. In this
way, we get an enhancement of the target region, whose pixels
intensities fall in the range [β − α, β + α], in the transformed
field I1.

On the other hand, we get an interesting effect by using
another sigmoid-like function defined as:

I2(I;β, α, λ) =


1

1+exp

(
− λ(
|I−β|
α

)) , if I 6= β

1 otherwise

, (2)

In this case, we also get enhancement of values nearby β
in order to achieve region enhancement of an input image I
with β and α defined a priori.

Following the idea of non-extensive systems for natural as
well as medical images [22]–[25], and considering that exten-
sive systems are incorporated into non-extensive systems for
values of q = 1.0 [2], in this work we use an extended version

Figure 2. Example of luminance transformation obtained by Expression (1)
with domain 0 ≤ I(x, y) ≤ L and parameters β and α indicated. The upper
row shows the input image while the bottom shows the obtained result with
enhancement of region nearby I1(β, α, λ) applied [19].

of Equations (1)-(2), called here as q-sigmoid functions, and
defined based on the q-exponential function, and described in
the following items.
• q-Sigmoid for q < 1:

Ĩ1(I;β, α, λ, q) =
2

1 +
[
1 + λ(1− q)

(
|I−β|
α

)] 1
1−q

,

(3)
• q-Sigmoid for q > 1:

Ĩ2(I;β, α, λ, q) =


1

1+[1+λ(1−q)∗F (I)]
1

1−q
, if I 6= β

1 otherwise
,

(4)

where:
F (I) = − 1(

|I−β|
α

) .
Under the idea that in the limit q → 1, non-extensive
expressions are reduced to extensive expressions, and using
usual limit properties, it is straightforward to show that:

lim
q→1

Ĩ1(I;β, α, λ, q, ) = I1(I;β, α, λ), (5)

and:
lim
q→1

Ĩ2(I;β, α, λ, q) = I2(I;β, α, λ), (6)

The idea behind the use of q-sigmoids rather than sigmoid
functions generates the hypothesis that, since the q-sigmoids
have the extra non-extensive parameter to control the curve’s
topology, one can build filters with tighter topologies to each
class of applications. This idea has been used in several fields
of applications, mainly in image processing and computer
vision applied to the medical area [22], [23], [25]. The
particular case to be studied in this work is the MRI brain
images of the HCP database.

III. RESULTS

The q-sigmoid function was systematically applied on the
HCP database. Thus, for a given type of image, the regions
of the brain used by the individual during the performance of



the proposed activity will be highlighted, while those of non-
interest will remain darkened. Initially, both the parameters
and the cognitive tests were defined empirically. However, as
of future work, we intend to find the parameters that best
highlight the brain regions for a given activity. To perform the
tests with the q-sigmoid function, the chosen values for the
parameters were α = 10, β = 100, q = 1.1 and scale = 1.

Fig. 3 shows a slice, already separated, from a volume
collected from the individual with ID 101309 from the HCP
project, prior to the segmentation process. From this moment,
for the sake of simplification, individuals will be identified by
their respective IDs.

Figure 3. Task-fMRI slice collected from the individual 101309 in a language
test, in which the regions responsible for the semantic and phonological
processing of languages are verified.

Fig. 4 displays a set of 9 task-fMRI images of the subject
101309 after the use of the q-sigmoid function. The regions
used by the individual during the execution of the test are
highlighted and displayed in white, while the others are dark-
ened. In this Figure, the highlighted regions are depicted with
the parameters presented in this Section, for the phonological
and semantic processing test. For comparison purposes, Fig. 5
displays another set of 9 images for the individual 101107, for
the same image type and parameters. The 6 Figure displays the
result of the q-sigmoid segmentation on the individual 100408
for an emotional overload test.

It is noted that the regions used by individuals during the
tests were highlighted (labeled white) rather than regions that
were not used (remained darkened). In this way, it is easier to
understand the individual functions of each region, as well as
their corresponding correlations.

IV. CONCLUSION

In this work the sigmoid function with entropic kernel
based on the Tsallis non-extensive statistics was applied in
the available medical databases of the HCP.

The sigmoid function, here called the q -sigmoid function
with Tsallis entropy, was systematically applied in the project
subjects. Initially, both the parameters used in the function and
the activity performed by th subject were chosen empirically,
but future work will be based on the best choice of these
parameters for the segmentation of the regions for a given
test.

Note that the q-sigmoid function, when applied to the
images, highlights the regions that were activated during
execution of the different cognitive and motor tests performed

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Region highlighting using the q-sigmoid function for the individual
101309 with task-fMRI images and the phonological and semantic processing
test.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Region highlighting using the q-sigmoid function for the individual
101107 with task-fMRI images and the phonological and semantic processing
test.
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Figure 6. Region highlighting using the q-sigmoid function for the individual
100408 with task-fMRI images, in situations of emotional overload.

by individuals. On the other hand, regions that have not been
used remain darkened.

Thus, the results obtained so far suggest that the proposed
methodology is promising and indicates a new way of inves-
tigating methods for the segmentation of brain regions. Since
the databases made available by the HCP have produced the
knowledge of these new regions (also called terra incognita),
the present work is on the way to contribute with new methods
of understanding the brain correlations that, until the moment,
were never observed.
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