
Mathematical Morphology in Machine Learning

Érick Oliveira Rodriguesa and Aura Concib
Department of Computer Science

aUniversidade Federal de Itajuba, bUniversidade Federal Fluminense
Niteroi, Rio de Janeiro - Brazil

Email: erickr@id.uff.br, aconci@ic.uff.br

Abstract—This work introduces concepts from mathematical mor-
phology, an established theory in visual computing, to the field of
machine learning. Mathematical morphology operations are sensitive
to shapes and density, aspects that are not sufficiently exploited in
usual machine learning techniques. A clusterization algorithm that is
based on morphological reconstruction is proposed. In this case, the
algorithm is faster than state-of-the-art techniques while providing
clusterization results that preserve shapes and cluster density. The
proposed clusterization scheme possesses a number of unique features
such as an intrinsic sense of maximal clusters that can be created, pro-
vides a means of removing noise from datasets without extra processing
costs, enables a vast amount of growth patterns that are controlled by
structuring elements, etc. Furthermore, a novel distance metric that
combines Minkowski and Chebyshev distances and is very efficient in
terms of morphological dilations is proposed. This combined distance
not only achieves very efficient times in neighbourhood iteration tasks
in Z2, but also achieves good results when coupled with the k-Nearest
Neighbours (k-NN) classifier. In fact, the proposal was approximately
1.3 times faster than Manhattan and 329.5 times faster than Euclidean
in discrete neighbourhood iterations. The distance was evaluated using
the k-NN classifier, testing its performance with a total of 33 datasets
from the UCI repository and comparing its efficiency to 14 other
distances. The proposed distance obtained accuracies that were better
than the average more often than its counterparts (in 26 cases out of
33), and also obtained the best accuracy more frequently (in 9 out
of 33 cases). Furthermore, morphological classifiers are proposed. No
classifier in the current literature is able to properly model shape,
density and fractal information in datasets apart from this novel
proposal.

1. Introduction

Mathematical Morphology (MM) uses set theory to
analyse and process graphical objects. Some of its mostly
famous operations alter their size, shape and convexity.
MM operations are commonly defined as set operations.
A dilation, for instance, uses a structuring element (also
a set) to displace another set by summing up each pair of
elements of both sets and unites the outcome to the current
configuration.

Mathematical morphology is commonplace in the field
of visual computing. Unfortunately, this is not the case for

This paper is associated to the PhD thesis of Érick Oliveira Rodrigues,
former PhD student at Universidade Federal Fluminense and current Ad-
junct professor at Universidade Federal de Itajuba. Advisor: Aura Conci.

Figure 1: Clusterization results for an arbitrary configura-
tion.

machine learning. Some works use a fairly limited amount of
MM operations but are not entirely based on mathematical
morphology, they use heuristics when it comes to connecting
instances to their associated cluster. To the best of our
knowledge, no work has ever proposed any classification
technique that relies nor uses mathematical morphology
techniques in classification. Thus, classification and clus-
terization methods that adhere to mathematical morphology
are proposed and analysed herein.

Besides coupling mathematical morphology and ma-
chine learning, we developed a new distance metric that
is efficient in terms of computing dilations in 2D discrete
spaces that can be used in low-level environments such as
GPUs. This distance is a metric as long as some restrictions
to its parameters are preserved.

Let us suppose that we want to separate the input data
shown in Figure 1-(a) in two clusters. Most clusterization
algorithms would either produce the results shown in (b)
or (c). Although this reasoning makes sense in terms of
spatial disposition, it disregards density. The two points
in the middle are closely related, i.e., they are dense. In
density-based clusterizations these aspects are exploited in
a particular fashion.

A possible density-based solution is the one shown in
Figure 1-(d), where, in this case, the two data points at
the center belong to the same cluster and the remaining
is placed in a complement cluster or is treated as noise.
The clusterization method proposed in this work uses mor-
phological reconstruction to produce an actual density-based
clusterization similar to this.

The proposed algorithm ended up being more efficient
than state-of-the-art methods while also being very unique.

The following list of features inherent to the proposed
clustering technique is as follows:

1) Sense of maximal clusters that can be created (re-
gardless of the k parameter), where the k parameter
fulfils the same role as k-Means, i.e., limiting the
amount of clusters.

2) Computationally efficient algorithm as it is
amenable to parallelization.

3) Uses structuring elements that alter the way clusters
are formed and grouped.

4) Provides a means for removing noise without in-
troducing extra processing costs.

A possible approach for constructing classifiers that use
dilations is starting with a set of training instances whose
labels are known and growing them, filling the space around
these instances in order to cover a wider range of unlabelled
instances. As these instances grow, intersections will occur
and either the growth stops or a voting scheme should be
responsible for choosing the correct label when intersections
occur.

Implementing these classifiers brought us to another
contribution. We started coding our algorithms in Graphics
Processing Units (GPU) to exploit the parallel potential of
morphological techniques. That is, assuming the instance
space is a p-dimensional grid, positions of the grid near
positions that contain instances are iteratively marked as
the model grows. Each grid cell can be grown in parallel,
and therefore, as the GPU paradigm relies on processing
the same instruction in parallel with different data, it turns
out to be suited for growing several grid positions at once,
reducing processing times.

We head towards another issue. The neighbourhood of
the grid should be iterated respecting a set of rules. However,
how is it possible to obtain an Euclidean-like iteration
process without using kernels in the GPU? That is, how is it
possible to iterate through the neighbourhood in a discrete
environment respecting the Euclidean distance? Kernels are
slow. Furthermore, kernels of indefinite sizes are required in
this case. We must also acknowledge the fact that grids are
discrete spaces. This issue brought us to another solution,
which is more similar to the Euclidean distance in terms
of information while being outstandingly faster to compute
when compared to Manhattan and Euclidean distances.

In 2 dimensions, the proposed distance metric resembles
an octagon, while Chebyshev and Manhattan resemble a
square. An octagon is closer to the circle obtained with
the Euclidean distance. The 2D discrete solution for this
distance was developed first. After months of calculations,
the distance was successfully associated to a combination
of Chebyshev and Minkowski distances, when generalized
to p-dimensions. An extensive search throughout the lit-
erature was performed, which indicates that no work has
ever proposed the combination of these distances, and most
importantly, no work has ever associated the proposed it-
erative algorithm (that iterates 2D neighbourhoods) to this
combined distance.

In summary, we provide a machine learning framework
based on mathematical morphology that is capable of deal-
ing with data that contains fractal information, shapes and
density. In addition, we also propose a novel distance metric
that is very efficient in terms of morphological dilations.
We provide classification experiments and measure the effi-
ciency of the distance in discrete neighbourhood iterations.
Two works that originated from this proposal can be found
in [1], [2].

2. Literature Review

Postaire et al. [3] proposed the first approach to math-
ematical morphology clusterization. Although not defined
by the authors in their original work, these types of al-
gorithms were later termed Binary Morphology Clustering
Algorithms (BMCAs) [4], [5]. Figure 2 illustrates how the
process of finding cluster “cores” work.

Opening and closing operations are successively applied
to data until reaching connected core clusters, as shown in
Figure 2-(d). Postaire et al. [3] defines the cluster as a well-
connected subset in the data space, which can virtually be
of any shape and size. Once the cluster cores are generated,
they are considered to be prototypes. The remaining data
points are assigned to their respective cluster by means of
the nearest neighbour classification rule.

(a) Original data. (b) Opened twice and
closed twice.

(c) Opened twice and
closed four times.

(d) Opened twice and
closed six times.

Figure 2: Cluster core extraction using BMCAs.

BMCAs [3], [4], [5], [6] rely entirely on binary oper-
ations, as opposed to the algorithm proposed in this work,
which works with grey level dilations/image reconstruction.
A substantial and fundamental difference is that we do not
compute nor locate cluster cores. In our case, elements
are promptly assigned to a cluster index as the processing
advances. This introduces a noise-classification pattern with
no extra processing burden, as noise is segmented in small
independent clusters. Furthermore, the clusterization results

are very different while also providing a means of limiting
the amount of clusters.

3. Distance Proposal

The Euclidean distance requires a quantiza-
tion/approximation process to be computed in discrete
environments. The distances can be pre-computed and
stored in a kernel or processed in real time. However,
storing large amounts of data in kernels consume a
significant amount of memory when computing large
distances. Accessing this data also impacts negatively
on the overall processing performance. In the GPU, for
instance, these kernels would have to be located in global
memory, whose access is slow. Computing kernels in
real time is also very inefficient. Although Manhattan
and Chebyshev are faster to compute, they are “square”
distances.

On average, the Chebyshev distance iterates neighbour-
hoods up to distance D = 2500 in 0.098 seconds. D
represents the size of the discrete neighbourhood around
the pixel that is being iterated. The Manhattan distance, on
the other hand, takes approximately 0.146 seconds to iterate
through the same neighbourhood. The Euclidean distance, at
last, requires a total of 36.125 seconds, which is significantly
worse.

When it comes to optimization, especially in GPU com-
puting, these differences on the performance impact on the
overall processing times even more. Besides, the Manhattan
distance does not add any information to the neighbourhood
iteration when compared to the Chebyshev distance. The
Manhattan distance is similar to the Chebyshev distance yet
rotated.

On the other hand, using the Euclidean distance im-
plies a huge computational burden, where its implemen-
tation is approximately 368 times slower than Chebyshev
for D = 2500, and it gets even worse as D increases.
This work proposes an intermediate distance metric between
Chebyshev and Euclidean that adds information, as opposed
to Manhattan, and is far more efficient when it comes to
neighbourhood iterations.

This distance (its mathematical formulation is shown in
Equation 1) was established while attempting to improve
the neighbourhood iterations of morphological classifiers
in GPUs, which heavily rely on low level operations. As
previously stated, a metric closer to the Euclidean distance
was desired, but the reported time burden was incompatible
with practical cases.

This proposed iteration achieves Chebyshev-like run
times and obtains an iteration fashion that is closer to the
Euclidean. The visual result of the proposed distance in
R2 for p = 1 is an octagon (Chebyshev and Manhattan
distances produce squares). That is, the octagon is much
closer to the circular pattern produced by the Euclidean
distance than the squares produced by the Manhattan and
Chebyshev distances. Table 1 shows the processing times
obtained with each one of the algorithms as the size of the
neighbourhood D is increased. These results were obtained

TABLE 1: Processing times (s) for each distance.

Sizes (D) Chebyshev Manhattan Euclidean Rodrigues

500 0.0022 0.0024 0.3069 0.0022
1000 0.0109 0.0116 2.3290 0.0115
1500 0.0295 0.0407 7.8285 0.0318
2000 0.0583 0.0829 18.5112 0.0624
2500 0.0985 0.1460 36.1253 0.1050
3000 0.1517 0.2228 62.2829 0.1599
3500 0.2377 0.3397 98.8083 0.2454
4000 0.3031 0.4672 147.6250 0.3166
4500 0.4030 0.5923 204.2881 0.4243

using Java 7 and an Intel i7-7700HQ, clocked at 2.8 GHz
averaged over 100 runs.

Table 1 demonstrates that the proposed distance is in
fact faster than the Manhattan and Euclidean distances.
On average, it was 1.3 times faster than Manhattan and
329.5 times faster than Euclidean. In what follows, a formal
mathematical definition of this distance is presented.

(a) Minkowski
(p=0.5)

(b) Minkowski
(p=0.75)

(c) Manhattan
/ Minkowski
(p=1)

(d) Euclidean
/ Minkowski
(p=2)

(e) Minkowski
(p=3)

(f) Minkowski
(p=4)

(g) Chebyshev
/ Minkowski
(p=∞)

(h) Sum
of Squared
Differences

(i) Canberra (j) Proposal
(p=0.5)

(k) Proposal
(p=0.75)

(l) Proposal
(p=1)

(m) Proposal
(p=2)

(n) Proposal
(p=3)

(o) Proposal
(p=4)

Figure 3: Distances in R2. The distances are computed from
the central element in the image. Lighter shades of gray
indicate greater distances.

3.0.1. Definition. The proposed distance is a combination
of Chebyshev and Minkowski distances, weighted by w1 and
w2, as shown in Equation 1. As w1 increases in regard to w2,
the distance becomes more like Minkowski. On the contrary,
when w2 increases it converges towards Chebyshev.

Definition The proposed distance is defined as:

dw1,w2,p(x, y) = w1
p

√√√√ n∑
i=1

|xi − yi|p + w2
n

max
i=1
|xi − yi|

(1)

As two metrics are being summed up, it is straight-
forward to infer from the formulation that as long as
w1, w2 > 0 and p ≥ 1, all the metric conditions are satisfied,
including the triangle inequality, proved in our thesis.

3.0.2. Graphical Analysis in R2. Figure 3 shows how
the proposed distance compares to other distances in R2.
The proposed distance is in fact a mixture of Chebyshev
and Manhattan (for p = 1), as shown in Figure 3-(l). It is
possible to argue that the distance is an intermediate step
between Manhattan/Chebyshev and Euclidean, and therefore
it adds information in relation to Manhattan and Chebyshev.
However, it requires far less processing power in regard to
Euclidean or even Manhattan. For p < 1, the respective
distances are not metrics. The condition w1 = w2 = 1 is
respected for all the distances in this figure.

4. Morphological Clustering Proposal

We will now shift our attention to the clustering pro-
posal. This section focuses on describing a single clus-
terization algorithm, called k-Morphological Sets (k-MS),
which is capable of segmenting and grouping data respecting
shapes and cluster density [2]. The method is heavily based
on morphological reconstruction.

Before heading to how the algorithm works, we define
how data is preprocessed. At first, an image or grid G
is constructed. G(x, y) returns the index value x × y in
case there is an instance at position (x, y) or 0 otherwise.
An image mask M(x, y) returns 1 in case an instance is
positioned at (x, y) and 0 otherwise.

Once image G is created, a reconstruction RBM (G) is
applied. A structuring element B whose element values are
0 (including the central element marked with× is used along
with size 1 for the sup metric. The size of the structuring
element can be altered, which leads to distinct types of
clusterizations. The shape of the element can be modified
as long as it contains all directions (e.g., left, right, up and
down for the case of 2 dimensions). If this is not the case,
the algorithm may reach a potential deadlock.

A structuring element that contains only zeros implies
that the dilation would just spread the biggest values through
some parts of G (limited by mask M), biased by the size
and shape of the structuring element. Therefore, after the
reconstruction, a clusterized image is obtained.

This morphological reconstruction does not separate in-
put data in a prescribed number of clusters. Instead, the
algorithm separates the data based on “connectivity”, relying
on the size and shape of the structuring element. Therefore,
we introduce an internal variable δ that is responsible for
increasing the size of the structuring element B. That is, in
the beginning of the clusterization, the size of δ is minimal,

δ

(a)

δ

(b)

δ

(c) (d)

Figure 4: Some steps of the proposed k-MS algorithm.

as depicted in Figure 4-(a). Eventually, the algorithm reaches
an idempotent configuration. Therefore, we gradually in-
crease the size of the structuring element until it reaches the
remaining grey instances at the bottom of the image, shown
in (b). At each increment of δ, the algorithm checks for
the condition of idempotence, and if it is still idempotent,
it increments δ. Otherwise, the algorithm resets δ to the
minimum, such as shown in (c). At that stage, the grey
level value of the instances at the bottom reaches the upper
instances, passing the index of the bottom cluster to them
(d). Figure 4 depicts a hypothetical situation where k = 1,
i.e., just one cluster is desired.

When it comes to the proposed algorithm, δ is a factor
that multiplies the size of the used structuring element B. In
the beginning of the algorithm, δ is set to 1. A morphological
reconstruction operation is then performed on image G using
the structuring element B and mask M .

Later, the number of unique values in G is calculated,
which corresponds to the number of clusters created in G
at that moment. This computation is performed using early
breaks, as shown in Algorithm 1, to speed up the processing.
If G has more than k clusters, the algorithm continues to the
next step, where δ is incremented. G is dilated once. If G is
idempotent, then δ is incremented until G is not idempotent.
The idempotence is overcome when an index that belongs
to a certain cluster reaches another with a different index.
When this happens, the algorithm resets δ to 1 and starts
the same process all over again. With less than k or exactly
k clusters in G, the algorithm terminates.

This morphological application also extends to classifi-
cation problem, more details can be found at this paper of
ours [7].

4.1. Experiments

This section compares the visual results obtained in
a noisy publicly available dataset [8]. In this case, we
compare k-MS to clusterization algorithms that are sen-
sitive to density and shapes. The behaviour of k-MS is

Algorithm 1: Low-level k-Morphological Sets al-
gorithm.

Data: B is the structuring element, k is the desired maximum number of
clusters to be created and R the reconstruction function

1 begin
2 finished ← false;
3 δ ← 1;
4 while !finished do
5 idempotent ← true; finished ← true;
6 Reset or remove values from the kArray (the array contains at

most k different values);
7 for every instance or data point p in the input dataset do
8 paux ← p;
9 If the surroundings of pixel p, respecting the structuring

element B and δ, contains a higher value than p, then
p receives the highest surrounding value;

10 if !idempotent then continue; // first early
break

11 if paux 6= p then idempotent ← false;
12 if !finished then continue; // second early break
13 if kArray does not contain the value of p then
14 if kArray is fully populated then finished ← false;
15 else Add the value of p to kArray at a vacant

position;

16 if idempotent then δ ← δ + 1;
17 else δ ← 1;
18 finished ← finished and idempotent;

19 Returns all the instances p where each one is indexed with a unique
cluster index (amount of clusters ≤ k);

also analysed using different input parameters. Finally, in
the third group of experiments, we perform an extensive
time analysis, comparing the run times obtained by the
different implementations of k-MS with other clusterization
algorithms.

The clusterizations performed with k-MS, Chameleon,
Mitosis, TRICLUST and M. Liu et al. algorithms on the
dataset provided by Karypis et al. [8] are analysed and
compared. Figure 5 shows the clusterizations obtained with
each algorithm.

The clusterizations of Mitosis and M. Liu et al. recognize
the exact amount of genuine clusters (total of 9 clusters),
such that all noise in the image is clusterized together with
these genuine clusters. This outcome can be bad in some
occasions such as when noise is expected to be removed or
when it should not be aggregated in a genuine cluster. A
practical example of this is image data that was collected
by physical sensors.

On the other hand, the clusterization generated by
Chameleon recognizes 9 genuine clusters as well as 3 other
clusters that contain outliers. Chameleon and k-MS are the
only two algorithms capable of segregating outliers in dif-
ferent clusters. k-MS goes even further, it indicates whether
the clusters can be formed given a predefined k amount of
clusters.

The result shown in Figure 5-(e) shows the clusters ob-
tained with k-MS algorithm, where each cluster is depicted
in a different color. In noisy datasets, the value of k should
be large, otherwise k-MS would not be able to recognize the
genuine clusters in the dataset. Furthermore, if the dataset is
too sparse, it is also recommended to perform dilations on
the dataset before applying k-MS, since the clusterization
would be more accurate and converge faster.

(a) M. Liu et al. [9] (b) TRICLUST [10]

(c) Mitosis [11] (d) Chameleon [8]

(e) k-MS - Proposal (k = 450) (f) k-MS-Proposal (Rem. Noise)

Figure 5: Comparison of the visual results of k-MS and
other clustering algorithms in finding genuine morphological
clusters.

Figure 6: Run times (s) comparison for varying numbers of
instances.

4.1.1. Run Time Analysis. An extensive time analysis
experiment is performed in this section. In order to compare
and measure the time performance on datasets with a large
amount of instances, we considered the GPU-oriented k-
Means algorithm presented in [12], which is based on [13]
and [14]. However, this implementation could not handle
the size of the instances we evaluated. Therefore, our com-
parisons on this section address just the implementations
of [13], which is a parallel k-Means for the CPU using

OpenMP. We tested the sequential k-Means provided by
them as well but it was always slower than the parallel one,
and therefore it was disregarded.

k-Means starts faster for low values of k but is overcome
in every occasion after a particular size of k. As the size of
k increases, so does the run time of clusterization algorithms
in general. However, due to the early break in k-MS, the run
times obtained with k-MS may even decrease, regarding the
CPU, as k increases. This happens because the clusterization
converges faster with higher values of k (less morphological
reconstructions), and the early breaks reduce the time of the
clusters verification. Furthermore, the GPU implementation
is only viable if the amount of instances is very large and
k is small. Small values of k reduce the amount of atomic
operations that have to be performed, which reduces the
processing time of the algorithm.

5. Conclusion

k-MS outperformed all state-of-the-art clustering algo-
rithms that are sensitive to cluster shape and density in terms
of processing times. Besides, it is the only algorithm that has
an intrinsic sense of maximal clusters that can be created.
Given a predefined k variable, the algorithm outputs either k
or less clusters, depending on the data configuration. When
density is regarded, it is not possible to separate high density
clusters in some occasions. Let us suppose connected data
points forming a shape of a circle. In this case, if k > 1, the
algorithm would still segregate the data in a unique cluster.
In addition, it is also the only algorithm in the literature that
provides a noise removal paradigm without requiring extra
processing costs.

An extra major contribution consists of a metric that was
coined on the process of iterating image neighbourhoods
using GPUs (in order to perform image dilations). GPUs rely
on low level instruction environments and therefore complex
data structures are not practical. This proposed distance is
closer to Euclidean in terms of neighbourhood iteration,
when compared to Chebyshev and Manhattan, while being
faster to compute. In fact, when plotted in R2, the proposed
metric displays an octagon, which is closer to the circle
displayed by the Euclidean metric. As the proposal consists
of a sum of two metrics, we prove that it is a metric as well
[1].

An extensive experiment regarding 33 datasets of the
UCI repository was conducted in order to evaluate the
efficiency of the proposed distance using k-NN. This novel
distance achieved accuracies better than the average more
frequently than its counterparts (26 cases in 33). Further-
more, it obtained the best accuracies among the evaluated
distances more often (9 cases in 33) [1].

6. List of Publications

This is a list of publications that originated or are
related to this PhD thesis, which includes high reputable
journal publications such as Pattern Recognition and Pattern

Recognition Letters: [1], [2], [7], [15], [16], [17], [18], [19],
[20], [21], [22], [23].

References
[1] E. O. Rodrigues, “Combining minkowski and cheyshev: New distance

proposal and survey of distance metrics using k-nearest neighbours
classifier,” Pattern Recognition Letters, vol. 110, 2018.

[2] E. O. Rodrigues, L. Torok, P. Liatsis, J. Viterbo, and A. Conci, “k-ms:
A novel clustering algorithm based on morphological reconstruction,”
Pattern Recognition, vol. 66, pp. 392–403, 2016.

[3] J. G. Postaire, R. D. Zhang, and L. Botte, “Cluster analysis by binary
morphology,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, pp. 170–180, 1993.

[4] E. C. Pedrino, M. C. Nicoletti, J. H. Saito, L. M. V. Cura, and V. O.
Roda, “A binary morphology-based clustering algorithm directed by
genetic algorithm,” IEEE International Conference on Systems, Man,
and Cybernetics (SMC), 2013.

[5] H. Luo, F. Kong, K. Zhang, and L. He, “A clustering algorithm based
on mathematical morphology,” Proceedings of the 6th World Congress
on Intelligent Control and Automation, 2006.

[6] C. S. Chen and C. W. Yeh, “An efficient dilation-based clustering
algorithm for automatic optical inspection,” The 11th International
Conference on Information Sciences, Signal Processing and their
Applications, 2012.

[7] E. O. Rodrigues, A. Conci, and P. Liatsis, “Morphological classifiers,”
Pattern Recognition, 2018.

[8] G. Karypis, E. H. Han, and V. Kumar, “Chameleon: Hierarchical
clustering using dynamic modeling,” Computer, vol. 32, pp. 68–75,
1999.

[9] M. Liu, X. Jiang, and A. C. Kot, “A multi-prototype clustering
algorithm,” Pattern Recognition, vol. 42, no. 5, pp. 689–698, 2009.

[10] D. Liu, G. V. Nosovskiy, and O. Sourina, “Effective clustering and
boundary detection algorithm based on delaunay triangulation,” Pat-
tern Recognition Letters, vol. 29, pp. 1261–1273, 2008.

[11] N. A. Yousri, M. S. Kamel, and M. A. Ismail, “A distance-relatedness
dynamic model for clustering high dimensional data of arbitrary
shapes and densities,” Pattern Recognition, vol. 42, pp. 1193–1209,
2009.

[12] S. Giuroiu, “Cuda k-means clustering,” http://serban.org/software/
kmeans/.

[13] W. Liao, “Parallel k-means data clustering,” available at
http://users.eecs.northwestern.edu/wkliao/Kmeans/index.html.

[14] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” Berkeley Symposium on Mathematical Statistics
and Probability, vol. 1, pp. 281–297, 1967.

[15] E. O. Rodrigues, P. Liatsis, L. S. Ochi, and A. Conci, “Fractal
triangular search: A metaheuristic for image content search,” IET
Image Processing, 2018.

[16] E. O. Rodrigues, F. Morais, N. Morais, L. Conci, L. Neto, and
A. Conci, “A novel approach for the automated segmentation and
volume quantification of cardiac fats on computed tomography,”
Computer Methods and Programs in Biomedicine, vol. 123, pp. 109–
128, 2016.

[17] E. O. Rodrigues, V. H. A. Pinheiro, P. Liatsis, and A. Conci, “Machine
learning in the prediction of cardiac epicardial and mediastinal fat
volumes,” Computers in Biology and Medicine, 2017.

[18] E. O. Rodrigues, L. O. Rodrigues, L. S. N. Oliveira, A. Conci, and
P. Liatsis, “Automated recognition of the pericardium contour on
processed ct images using genetic algorithms,” Computers in Biology
and Medicine, vol. 87, pp. 38–45, 2017.

[19] E. O. Rodrigues, A. Conci, F. F. C. Morais, and M. G. Perez,
“Towards the automated segmentation of epicardial and mediastinal
fats: A multi-manufacturer approach using intersubject registration
and random forest,” IEEE International Conference on Industrial
Technology (ICIT), pp. 1779–1785, 2015.

[20] E. O. Rodrigues, F. F. C. Morais, and A. Conci, “On the automated
segmentation of epicardial and mediastinal cardiac adipose tissues
using classification algorithms,” MEDINFO 2015: EHealth-enabled
Health: Proceedings of the 15th World Congress on Health and
Biomedical Informatics, vol. 216, 2015.

[21] E. O. Rodrigues, J. Viterbo, A. Conci, and T. McHenry, “A context-
aware middleware for medical image based reports an approach based
on image feature extraction and association rules,” IEEE International
Conference on Computer Systems and Applications, 2015.

[22] E. O. Rodrigues, T. M. Porcino, A. Conci, and A. C. Silva, “A simple
approach for biometrics: Finger-knuckle prints recognition based on
a sobel filter and similarity measures,” International Conference on
Systems, Signals and Image Processing (IWSSIP), 2016.

[23] E. O. Rodrigues and E. Clua, “A real time lighting technique for
procedurally generated 2d isometric game terrains,” Entertainment
Computing - ICEC 2015, vol. 9353, pp. 32–44, 2015.

