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Abstract—Face identification is an important task in computer
vision and has a myriad of applications, such as in surveillance,
forensics and human-computer interaction. In the past few
years, several methods have been proposed to solve face
identification task in closed-set scenarios, that is, methods that
make assumption of all the probe images necessarily matching a
gallery individual. However, in real-world applications, one might
want to determine the identity of an unknown face in open-set
scenarios. In this work, we propose a novel method to perform
open-set face identification by aggregating Partial Least Squares
models using the one-against-all protocol in a simple but fast
way. The model outputs are combined into a response histogram
which is balanced if the probe face belongs to a gallery individual
or have a highlighted bin, otherwise. Evaluation is performed in
four datasets: FRGCv1, FG-NET, Pubfig and Pubfig83. Results
show significant improvement when compared to state-of-the art
approaches regardless challenges posed by different datasets.

I. INTRODUCTION

Face Recognition is a natural task performed daily and
effortlessly by human being. However, the necessity of
recognizing large sets of faces either in challenging scenarios
or in a short time has led to the emergence of research
and development of computer systems able to automatically
recognize face images.

According to [1], there are three different tasks in face
recognition relying upon which scenario it will be required:
verification, identification and watch list. The verification task
consists in comparing two face images in order to determine
whether or not they belong to the same person. In face
identification task, we compare a query face against multiple
faces in the enrollment database to associate the face identity
to one of those gallery individuals. In the watch list task, also
known as open-set recognition task, the goal is more than
finding the most likely identity for a probe face. This task
also considers the possibility of the query face does not belong
to any individual enrolled in the gallery. In other words, the
query face may belong to an unknown individual. Generally,
a filtering method is applied basing on a confidence threshold
which delimits the minimum similarity score necessary to
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consider a query as belonging to a known individual. Queries
which do not attain that minimum value are then rejected (not
identified).

Numerous challenges are associated to face recognition,
mainly in the image acquisition in unconstrained scenarios,
and several methods to overcome these problems have
been proposed [2]–[5]. Besides, the scenario in which the
application is immersed may also imposes other challenges.
Most studies in the literature are focused on solving problems
related to the aforementioned challenges considering a closed-
set scenario. In identification task, for instance, they assume
that all probe face images belong to a known individual.
However, in a real-world application, this assumption may not
be correct.

Different from most approaches in the literature, we propose
in this thesis approaches for combining a set of classification
models trained employing the one-against-all protocol, aiming
at identifying face images in an open-set scenario. These
models are based on Partial Least Squares (PLS) [6],
which operates weighting features from images in order to
discriminate throughout different classes, dealing satisfactorily
with high-dimensional data and overcoming the frequent
problem of lack of samples. We present an effective and
simple technique for face recognition that handles unknown
subjects, namely open-set face identification task or watch
list. Specifically, we want to identify a face image from a
gallery/known individual and reject if it belongs to a non-
gallery/unknown individual. We demonstrate that information
produced by a set of simple one-against-all PLS models can
be combined to reveal not only whether a sample is known but
also its identity. Finally, we also proposes a novel manner to
compute the threshold that establishes whether a face image
belongs to a known subject or not which improves literature
results.

This paper is structured as follow. Section II presents
a brief review of literature, analyzing methods regarding
two tasks, watch list and open-set recognition in different
scenarios (object, cameras, handwritten digit, etc). The
proposed methodology is detailed in Section III and a vast
number of experiments is reported in Section IV. Finally, we
conclude in Section V, presenting final remarks and future
works.



II. LITERATURE REVIEW

According to Google Scholar1, almost a thousand of face
recognition algorithms were published in 2016. It demonstrates
that it still is a problem not solved, mainly in large-scale
and unconstrained scenarios. This section provides a brief
review on the literature concerning watch list and open-set
recognition, the former focus on face identification in open-
set scenarios and the latter tackles open-set recognition works
in general, not necessarily in face recognition.

A. Watch List
Watch list consists in first detecting whether a face image

belongs to a gallery individual and then determining its
identity. One of the scenarios in which several approaches
fail is when there are variations on the number of samples
in the training stage. The work of [7] formulates the open-set
face recognition problem as a multiple verification task using
SVMs. Their experiments demonstrate that an increase in the
gallery size can impact negatively the approach performance.
Besides, classification with SVM may not perform effectively
when only a low amount of training data is available. On the
other hand, [8] represents a face image as a linear combination
of training sample images. This representation is precise only
if a sufficient number of samples are available in the training
set for the correct testing class.

Various works to perform open-set identification in literature
are based on the confidence of a previous stage. [9] proposes
the examination of a media collection to perform watch-list,
while [10] address the problem of open-set recognition in web-
scale datasets using a combination of a subset for images from
the dictionary of faces. Both approaches relies on a accurate
preprocessing stage to perform well which could be a problem.

Some approaches in literature focus on solving the watch
list problem using PLS as the work herein proposed. [11]
propose the Partial Least Squares Hashing (PLSH), a scheme
combining hashing functions and classification methods in
order to predict when probe samples belong to gallery set
based on the methods proposed by [12], [13]. They combine
the responses of a determined number of PLS or FNC (Fully
Connected Network) models trained with the whole gallery in
order to increment a vote list which, after being thresholded,
can decide whether a face image belongs to the gallery or
not. However, they only evaluate the former step of watch
list in which known/unknown samples are detected. The
identification of samples predicted as known is not performed
and evaluated. Furthermore, the fact that each models is
trained with half of gallery in each set, positive and negative,
builds models less discriminative than using the one-against-
all protocol, as in the proposed work.

Finally, more recent works employ the deep learning
concepts in the watch list task. [14] state the problem of deep
face recognition in open-set scenario as a problem in which
face features have smaller maximal intra-class distance than
minimal inter-class distance considering a determined metric.
They propose a new softmax loss function to a CNN which is
employed to feature extraction. Cosine distance combined with

1https://scholar.google.com

nearest neighboor classifier provides a score to accept or reject
a sample. Besides the fact that CNNs need a huge amount of
data in training, the computation of nearest neighboor is also
an expensive task, since it is needed to be computed between
probe image and all gallery subjects.

B. Open-set Recognition

Aside from face identification, open-set recognition, in
general, has been studied and employed in many applications.
Several approaches employ the Support Vector Machine
(SVM) paradigm to solve the open-set recognition problem.
The work of [15], with base on the traditional 1-class and
binary SVMs, presents the “1-vs-set machine” approach, aims
at sculpting a decision space from the marginal distances
of a 1-class or binary SVM with a linear kernel. Thus,
instead of one plane marking the decision boundary, as in
the traditional SVM, two planes are defined to minimize a
determined equation in a greedy way and then a refining step is
applied. Its extension proposed in [16] defines the term “open
space risk” in order to solve the same problem. Besides, [17]
proposes an approach to solve the problem of open-set source
camera attribution also based on SVM, which can be seen as
an extension of the work of [15].

Different from the majority of methods in open-set
recognition, [18] handle the possibility of at testing time seeing
a sample from an unknown class and adding it as a new class
to the model. This problem is introduced and formalized by
them as “Open World Recognition”. As the aforementioned
works, they also manage the open space risk.

Visual recognition problems have taken advantage of deep
networks in many aspects. They can be mostly useful
in applications where human being are not effective in
recognizing since they consider parts in images which are
unmeaningful for humans. The development of an open-
set deep network was only first approached in the work of
[19], introducing a new layer to handle unknown classes.
Neural networks provide impressive accuracy but also present
drawbacks related to few samples. Training a neural network
with few samples may cause overfitting in the data. Other
aspect with respect to neural network training is the also
expensive computational cost.

III. METHODOLOGY

This section describes the approach proposed in this work
with the purpose of performing watch list. It is inspired
by the approach developed by [11], which also proposes
an embedding of PLS classifiers. However, we present
modifications in many aspects to promote improvements in
terms of accuracy, while requiring a lower number of models,
reducing both the computational time and the memory required
for store the models. Also, different from several works in
the literature, we present herein the complete procedure for
identifying a person in an open-set scenario, which is also
a difference compared to the work proposed in [11]. We
divide the procedures into three stages which are presented
and detailed as follows.
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Fig. 1: The training stage of the proposed approach. Face images of gallery subjects are used to learn a set of PLS classifiers.
Each model utilizes a different subject as positive set against a negative set constituted by the remaining subjects. Models
generation is finished in the moment we have a model per gallery subject.

A. Representation and Partitioning Stage
Initially, subjects of the dataset are randomly split into

two balanced sets: known (gallery) subjects and unknown
(non-gallery) subjects. Samples from known subjects are also
equally partitioned into training and testing data. Features are
then extracted for all dataset samples using the VGGFace CNN
descriptor [20]. Thus, the input of the training stage consists
in features extracted only from known subject samples. On
the other hand, the test stage receives features extracted from
both known and unknown subject samples.

B. Training Stage
Let gallery subjects be represented by

S={s1, s2, s3, s4, ..., sn−1, sn}, where n is the number
of subjects in gallery. We train a PLS model per subject
si with features extracted from gallery samples in training
data as follows. A PLSi model is a classifier trained with
samples of subject si in the positive set and samples of the
remaining subjects {s1, s2, .., si−1, si+1, si+2, ..., sn−1, sn}
in the negative set. In other words, each PLSi classifier
models a specific gallery subject si against the remaining
gallery subjects. We perform the training of PLSi models
until we have one model per subject si. Figure 1 depicts the
training stage of the proposed approach.

C. Test Stage
We start the test stage by creating a vote-list v with length

equals to n, the gallery size, replete of zeros. Considering all
PLSi models have already been trained, a query face image
is presented to each of them and their response values are
added to the position i of the vote-list, vi, which corresponds
to the identity in the positive set of the corresponding model.
In other words, each model provides a score that encodes the
similarity between the probe and the subject in the positive set
used to train the model. It can be high if probe matches the
positive set or low if probe does not match the positive set.

After projecting a probe image onto all PLSi classifiers, if
the vote list has a highlighted bin, probe probably belongs

to the subject corresponding to it. Otherwise, probe does
not match any individual, being then predicted as unknown.
Higher responses are provided by models trained with the
probe identity in the positive set. Lower responses are obtained
by models trained with the non-matching identities in the
positive set. If a known probe is presented to the models, only
the model using its identity in the positive set would provide
high response. Figure 2 exemplifies the vote-list for both
cases, known (a) and unknown (b) probe samples. Finally, we

(a) Gallery probe (b) Non-Gallery probe

Fig. 2: The vote-list for known and unknown probe images
from FG-NET dataset. The vote-list for known subjects (a)
presents a position with value much higher than the remainder.
The vote-list for unknown subject (b) is balanced since probe
image is not similar to any gallery subject in particular.

threshold the vote-list with the purpose of identifying whether
it presents a position with a highlighted value, and therefore,
probe is predicted as known. Otherwise, probe is rejected as
unknown. The method we use to perform this procedure is
described in Section IV. Figure 3 summarizes the test stage
of the proposed approach.

Taking into account a probe image is predicted as belonging
to a gallery subject, we identify this sample using PLS
with the one-against-all protocol. For a fair comparison, this
identification approach is fixed and only the stage of rejecting
or accepting a face image may be variated to all compared
approaches.
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Fig. 3: The test stage of the proposed approach. We first project a test sample onto the set of PLS models learned in training
stage. Each model provides a response ri related to its similarity to the corresponding positive set. Then, we add the response
ri to the vote-list position corresponding to the positive set of model i. We repeat this proceeding for all models. Finally, a
threshold applied in the normalized vote-list predicts probe image as known or unknown.

IV. EXPERIMENTS

This section provides the datasets, evaluations metrics and
protocol used, as well as an analysis of the experiments
performed with the proposed approach and literature methods.

A. Datasets

To validate the effectiveness of our method, we select
datasets with different characteristics mostly associated to the
acquisition process. They vary from frontal images taken in
total controlled scenarios to images in the wild collected
from Internet, presenting variations including illumination,
pose and expression. We evaluate our method on four
datasets: FRGCv1 [21], Pubfig [22], Pubfig83 [23] and FG-Net
Aging [24]. The first is a well-known face recognition dataset
and the others are more recent and unconstrained datasets.

B. Evaluation Metrics

When it comes to metrics for open-set face recognition,
there is not a worldwide consensus. Thus, in this work, we
choose two metrics to evaluate different aspects in recognition:
the Receiver Operating Characteristic (ROC) and the Open-
set Receiver Operating Characteristic (Open-set ROC). The
former captures information on how accurate an approach
is in terms only of detecting a gallery probe sample, i.e.,
determining whether a probe sample belongs to the gallery.
The latter evaluates both the detection of a gallery sample and
its correct identification.

C. Evaluation Protocol

The proposed approach will be compared with five different
approaches: 1-class and Binary 1-vs-set M. [15], the 1-class
and Binary SVM [25] baselines, and PLSH [11]. PLSH

needs the number of models to build as a parameter. In our
experiments, we report the results using two different numbers:
500, which is the maximum value evaluated in their paper, and
the number of known subjects, which is the same number of
models of the proposed approach. We call them PLSH-500
and PLSH-Subj, respectively.

In our experiments, we call background set some extra non-
overlapping data to be added to the negative set, aiming at
helping to reinforce the differences betweeen negative and
positive sets. The methods which employs this set are the
proposed approach (Our-Bk), the 1-class and the Binary 1-
vs-set M. [15]. To FRGC experiment four, FRGC experiment
two and Pubfig, data with similar acquisition characteristics
are considered to background set.

The threshold determines whether a probe face image
belongs to a gallery subject or not. It is employed in the vote-
list described in Section III-C. We provide an evaluation of
four different thresholds to find out the one that better impacts
our algorithm. Thresholds 1, 2 and 3 are proposed by [11].
We propose Threshold 0 as follows:

τ0 = ZS1
−AV G(ZS2

, ...,ZSp+1
), p = d0.10× |Z|e, (1)

where Z = {ZS1 , ...,ZSn} is the normalized vote-list
for a probe image, sorted in ascending order. The value
of p defines the proportion of Z considered. The function
AV G(X) computes the average of the values in X . The idea is
to capture the relation of the top scorer s1 with the succeeding
subjects. p is set to 10% of the total of known subjects since
it presents the best results. If the probe image belongs to a
known subject, the difference between them would be high.



The remaining thresholds (1, 2 and 3) are based on the ratio
between the top scorer and the succeeding subjects.

Figure 4 displays the ROC curve using the proposed
approach on FG-Net dataset for each threshold
aforementioned. As depicted, the threshold described in
Equation 1 provides better performance than the remainder,
confirming our assumption that the difference between the
top scorer value and the averaged remainder in vote-list better
separates known subjects from unknown when compared
to approaches based on the ratio. Therefore, we choose the
threshold τ0 in the remaining experiments.
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Fig. 4: Average ROC curves for the proposed approach
performed on the FG-NET dataset with different thresholds.
We repeated this experiment ten times, fixing variable p to
10% of all known subjects.

D. Detection and Identification Evaluation

In this section we present the experimental results reported
with ROC and Open-set ROC curves in different datasets. The
AUC (Area Under Curve) attained by different approaches
is provided to make a comparison regardless the dataset
difficulty. Tables I and II summarize the results obtained by
the proposed approach and literature methods using AUC of
ROC and Open-set ROC curves, respectively.

TABLE I: Summarization of AUC (± standard deviation) of
ROC curve for different open-set recognition approaches and
datasets.

Dataset FRGC-SET2 FRGC-SET4 FG-NET Pubfig83 Pubfig-Eval
1-Class-1-vs-set-M. 0.817 ± 0.044 0.610 ± 0.037 0.630 ± 0.029 0.856 ± 0.015 0.719 ± 0.014

1-Class-SVM 0.525 ± 0.049 0.511 ± 0.028 0.520 ± 0.064 0.550 ± 0.047 0.523 ± 0.026
Binary-1-vs-set-M. 0.970 ± 0.005 0.873 ± 0.022 0.499 ± 0.029 0.833 ± 0.025 0.899 ± 0.018

Binary-SVM 0.994 ± 0.000 0.913± 0.023 0.831 ± 0.029 0.973 ± 0.003 0.915 ± 0.005
PLSH-500 0.990 ± 0.003 0.867 ± 0.019 0.820 ± 0.018 0.966 ± 0.003 0.926 ± 0.006

Ours 0.993 ± 0.002 0.882 ± 0.022 0.855 ± 0.026 0.975 ± 0.003 0.942 ± 0.003
Ours-Bk 0.994 ± 0.001 0.905 ± 0.019 0.851 ± 0.019 0.973 ± 0.003 0.943 ± 0.004

In the comparison with the literature approaches reported in
Table I, we can notice that the proposed approaches achieve
the best results in all datasets, except by the FRGC-SET4,
in which Binary-SVM provides the highest AUC. However,

TABLE II: Summarization of AUC (± standard deviation)
of Open-set ROC curve for different open-set recognition
approaches and datasets.

Dataset FRGC-SET2 FRGC-SET4 FGNET Pubfig83 Pubfig-Eval
1-Class-1-vs-set-M. 0.814 ± 0.044 0.551 ± 0.038 0.540 ± 0.030 0.849 ± 0.014 0.704 ± 0.013

1-Class-SVM 0.524 ± 0.049 0.454 ± 0.031 0.423 ± 0.050 0.543 ± 0.045 0.510 ± 0.025
Binary-1-vs-set-M. 0.966 ± 0.007 0.781 ± 0.031 0.412 ± 0.031 0.824 ± 0.024 0.845 ± 0.017

Binary-SVM 0.992 ± 0.003 0.777 ± 0.034 0.675 ± 0.031 0.957 ± 0.004 0.858 ± 0.006
PLSH-500 0.988 ± 0.004 0.784 ± 0.028 0.728 ± 0.026 0.957 ± 0.005 0.886 ± 0.008

Ours 0.992 ± 0.003 0.787 ± 0.037 0.761 ± 0.032 0.965 ± 0.004 0.899 ± 0.005
Ours-Bk 0.991 ± 0.005 0.788 ± 0.026 0.739 ± 0.027 0.962 ± 0.005 0.895 ± 0.005

Binary-SVM sees unknown subject data in the training stage,
different from our methods that use only gallery data in
the training phase, which matches a more realistic scenario.
Our method with no background overcomes the method with
background when the background set does not have common
acquisition chracteristics with the main dataset. It occurs in
the experiments with FGNET and Pubfig83. In the remaining,
the background set helps to improve the AUC of ROC.

In the experiments using the AUC of Open-set ROC curve
as metric (Table II), that is, evaluating the complete pipeline
of watch list, our approach reaches the best results using
all datasets, but the experiment two of FRGC dataset. In
this experiment, our approach presents a result similar to the
Binary-SVM. As mentioned before, it is justified by the fact
that our approaches do not see non-gallery data in training
stage. Comparing the two proposed approaches, we have
similar values of AUC in most of the datasets, showing that the
use of background does not present significant improvement.

E. Evaluation with the Same Number of Models in PLSH
Approach

Considering that our work is an extension of the approach
proposed by [11], this section presents a direct comparison
between our work and PLSH, reducing the number of models
in PLSH to the same number of models we build, the number
of gallery subjects. Tables III and IV report the results
contrasting our method with PLSH-Subj using ROC and Open-
set ROC curves, respectively. As we can notice, the proposed
approach outperforms PLSH regardless the metric or dataset
difficulty. This fact can be explained since modeling a single
subject against the remainder is simpler since samples in the
positive set present similar features. On the other hand, PLSH
trains models considering half of the gallery subject as positive
and the remainder as negative, that is, the positive set contains
images with different features since they come from different
subjects. In this case, building a single model to discriminate
the positive set may be a harder task.

TABLE III: Comparison between AUC (± standard deviation)
of ROC of the proposed approach and PLSH containing the
same number of models we use.

Dataset FRGC-SET2 FRGC-SET4 FG-NET Pubfig83 Pubfig-Eval
PLSH-500 0.990 ± 0.003 0.867 ± 0.019 0.820 ± 0.018 0.966 ± 0.003 0.926 ± 0.006
PLSH-Subj 0.970 ± 0.015 0.841 ± 0.026 0.786 ± 0.026 0.917 ± 0.018 0.904 ± 0.013

Ours 0.993 ± 0.002 0.882 ± 0.022 0.855 ± 0.026 0.975 ± 0.003 0.942 ± 0.003
Ours-Bk 0.994 ± 0.001 0.905 ± 0.019 0.851 ± 0.019 0.973 ± 0.003 0.943 ± 0.004



TABLE IV: Comparison between AUC (± standard
deviation)of Open-set ROC of the proposed approach and
PLSH containing the same number of models we use.

Dataset FRGC-SET2 FRGC-SET4 FGNET Pubfig83 Pubfig-Eval
PLSH-500 0.988 ± 0.004 0.784 ± 0.028 0.728 ± 0.026 0.957 ± 0.005 0.886 ± 0.008
PLSH-Subj 0.967 ± 0.015 0.753 ± 0.027 0.689 ± 0.033 0.907 ± 0.018 0.863 ± 0.016

Ours 0.992 ± 0.003 0.787 ± 0.037 0.761 ± 0.032 0.965 ± 0.004 0.899 ± 0.005
Ours-Bk 0.991 ± 0.005 0.788 ± 0.026 0.739 ± 0.027 0.962 ± 0.005 0.895 ± 0.005

V. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed and evaluated an approach
to perform watch list using a combination of PLS models
trained in an one-against-all protocol. Responses from the
probe projection onto the models are aggregated in a vote-
list and used to discriminate between known and unknown
subjects. PLS presents many advantages when compared to
other techniques, such as SVM. It handles feature vectors
with high dimension, applications with few and unbalanced
samples per class, and presents robust results while keeping a
low computational cost.

Experiments were carried out in a diversity of datasets
attaining satisfactory results regardless the challenges they
present. Improvements in performance were achieved by
embedding a background set, data presenting similar aspects
to the main dataset, in the negative set of each PLS model.
Different from some traditional approaches, we do not make
assumption that unknown training data is available. Instead,
we provide a robust method using only training samples from
known subject that outperforms literature approaches in most
of the experiments.

The adoption of a large number of models, as used in
the PLSH algorithm, is unnecessary since training only one
model per subject in an one-against-all protocol can provide
more discriminative models, while keeping a lower number of
models. We also contribute with a novel manner to compute
the threshold in a vote-list which attains a more accurate
performance when compared to other literature techniques.
Different from PLSH, we also proposed a complete pipeline
to perform open-set face identification.

In future works, we intend to consider an evaluation of
the proposed method on datasets with a huge amount of
subjects in order to evaluate the impact in the computational
cost. Besides, the method used to build each model, PLS,
can be replaced by other binary classifiers such as neural-
network-based techniques and other classifiers with accurate
performance. Lastly, changes in the partitioning of positive
and negative sets in a model could be made in order to not
use the whole gallery. Future extensions of the proposed work
will be submitted to a journal paper.
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