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Abstract—This work contemplates one of the most relevant
Face Recognition tasks1, the open-set face identification, which
has to handle several unseen individuals and determine whether
a given face image is associated with a subject registered in a
gallery of known individuals or not. Different from closed-set face
identification and face verification, the open-set face identification
has much to improve since only few researchers have addressed
the problem. In this work, we merge together hashing functions
and classification methods to determine when probe samples are
known (i.e., included in the gallery set). We carry out experiments
with partial least squares, support vector machines and neural
networks and show how the vote-list histograms tend to behave
for known and unknown individuals whenever we test a probe
sample. In addition, we obtain promising results as we conduct
experiments on FRGCv1, PubFig83 and VGGFace to show that
our method is effective regardless of the dataset difficulty.

Keywords-open-set face identification, face recognition,
surveillance, biometrics, ensemble, machine learning.

I. INTRODUCTION

Face recognition has been one of the most important tasks
in computer vision and biometrics during the last decades.
Because of the wide range of face recognition applications
in several environments – e.g., access control, forensics, law
enforcement, social media, surveillance systems – and the
accessibility of feasible recording and storage technologies
in the last years, face recognition tasks received significant
attention from the scientific community.

Conventional face recognition approaches traditionally
extract image features that correspond to facial components.
These methods would first look for shape of the eyes,
mouth contour, facial hair, nose appearance, face silhouette
to name a few and use them as discriminative features while
exploring other images. Face recognition is a commonly
employed literature term used to define mainly three tasks:
Face verification, a 1:1 matching problem in which the
goal is to determine whether a pair of images corresponds
to the same subject. Closed-set face identification, a 1:N
matching task, which assumes that every queried subject was
previously catalogued, ensuring that the probe face holds
a corresponding identity in the gallery set. Open-set face
identification, commonly referred to as watch-list, similar to
the closed-set task, but it does not guarantee that all query
subjects are registered in the face gallery, making it a more
challenging problem.

1This work corresponds to a MSc thesis [1].

There are many works on closed-set identification [2]–[7].
However, real-world applications cannot presume that every
query image is known and, consequently, they are better
pictured by the open-set face identification task since there is
an incomplete knowledge of the world and countless unknown
people. Such scenario comprises a classification model where
only few classes are known at learning time, but many
unknown classes might appear at test time [8]. Therefore,
this work aims at providing efficient and straightforward
techniques for the open-set face identification task.

Our main hypothesis for this work is that a vote-list
histogram (a likelihood estimation of how much each subject
in the gallery resembles a probe sample), proceeds differently
whether we present probe face images whose identities are
enrolled in the gallery set or whether we examine unseen
individuals. Figure 1 illustrates two different queries: one
corresponds to querying an enrolled individual and the other
searches for an unknown subject.

The proposed approach combines Locality-Sensitive
Hashing (LSH), Support Vector Machine (SVM), Partial
Least Squares (PLS) and Artificial Neural Networks (ANN).
LSH [9] was designed to solve near-neighbor search in
high-dimensional spaces, mapping similar items to the
same bucket. SVMs [10] are supervised learning methods
that choose the hyperplane that maximizes the distance to
nearest data points. PLS [11] weights feature descriptors
to best discriminate throughout different classes, handling
high-dimensional data and overcoming the problem of having
just a few-sample-per-class. ANN [12] is a biologically-based
programming paradigm that enables computer systems to
learn from observational data. It is composed of numerous
highly interconnected processing elements (neurons) working
in harmony to solve specific problems. We replace each
LSH random projection either by SVM, PLS or ANN to
obtain better discrimination between positive and negative
samples. A set of these learned classifiers is employed to
find out whether a query sample is known, that is, it has a
corresponding identity in the face gallery.

To the best of our knowledge, this is the first combination of
binary classifiers and LSH for the open-set identification task.
The original and extended versions of this paper are described
by Vareto et al. [1], [13], [14], which received a significant
award from a renowned international conference on biometrics
(IJCB 2017).
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Fig. 1. VOTE-LIST HISTOGRAMS – Two queries for the same individual of the FRGCv1 dataset when the searched subject is either an unknown person
(left) or a gallery-registered individual (right). Each bin of the histogram corresponds to a registered individual. Note that on the left vote-list histogram, a
considerable number of subjects from the gallery set turns into candidates when there is no clue what the identity for the query image is. This is a common
behavior when the queried subject is not known during training time. On the other hand, on the right vote-list, a single bin stands out from the others,
indicating the correct identity for the queried subject.

The predominant contribution of this work for face
recognition are: (i) an adaptation of locality-sensitive hashing
linked with different binary classifiers in a supervised learning
setting, (ii) easy-to-implement and effective algorithm with
few parameters to be estimated; (iii) a fast approach that
is capable of handling the combination of diverse feature
descriptors, and (iv) an extensive experimental evaluation and
discussion of the proposed algorithm.

II. PROPOSED APPROACH

Open-set identification determines whether a given face
image is associated with a subject registered in a set of known
individuals, called gallery set. As illustrated in Figure 1,
our premise is that vote-lists behave differently when we
present probe face images whose identities are enrolled in the
gallery set. That is, we presume that when a probe sample is
known, most classifiers would vote for the correct identity or
otherwise distribute the votes among distinct individuals that
have already been registered in the gallery.

The algorithm presented here employs an embedding
approach in conjunction with binary classifiers, also referred
as hashing functions. It converts the original feature data into
a metric space where a Hamming distance seems to represent
well the similarity between gallery and probe images. Instead
of having LSH splitting the feature space by establishing
random regressions, we appraise either partial least squares,
support vector machines or artificial neural networks for
discriminability enhancement and classification. Our method
offers a balance between simplicity and learning speed on
one hand and accuracy and flexibility of the learned similarity
concept on the other. In the following subsections, we clarify
how these classifiers can be incorporated into LSH in favor of
generating independent hashing functions.

To determine whether a face image is enrolled in the gallery
of individuals, visual feature descriptors are extracted from a
query face image. Then, the descriptors are presented to each
hashing function to avoid comparing the probe feature vector
to all gallery subjects, which makes the method scalable (i.e.,

the number of tests does not depend on the number of subjects
in the gallery). A vote-list histogram is hence set up with size
in accordance with the number of individuals enrolled in the
gallery set during training time. If the algorithm establishes
that a probe image corresponds to an enrolled identity, it sorts
the vote-list histogram in descending order so that it turns into
a list of candidates.

Similar to most supervised learning problems, our algorithm
is based on two canonical steps: training and testing.
The proposed approach analyzes feature vectors and their
corresponding identities to learn an inferred function for every
single hashing model, which are used to generate vote-list
histograms whenever a query is requested.

A. Training Stage

As illustrated in Figure 2, the training stage starts randomly
partitioning all subjects of the gallery set into two disjoint
collections, positive and negative sets, multiple times. In
pursuance of a balanced division, samples are drawn from a
binomial distribution in the interest of associating a gallery-
enrolled subject with the positive class when the distribution
value gets closer to one or with the negative class, alternatively.

Just as we split all subjects into the positive or
negative collection, we guarantee that each subset contains
approximately the same number of individuals (fifty-fifty
partitions). Besides, we ensure that all samples belonging to a
given individual will be in the same class. The approach runs a
learning algorithm so that distinct classification models ci ∈ C
are created – a model for each pair of positive and negative
collections in a binary fashion. The binary model training
is repeated several times and, therefore, each classification
model contains different individuals belonging to positive and
negative collections. Feature descriptors are extracted from
samples in the positive and negative sets and are combined
with their corresponding target values (+1 to samples in the
positive set and −1 to samples in the negative set), so that
classification models can be properly learned.
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Fig. 2. TRAINING STAGE – Feature descriptors are extracted for all subjects’ samples before partitioning them into positive and negative sets. Then, different
homogeneous classification models are generated containing distinct individuals in each collection. Note that in this example, each classifier shares the same
eight individuals; however, their distributions among positive and negative sets are unequal to provide a unique binary signature.

The binomial random partitioning assigns binary values to
each known subject M times so that different classification
models hold distinct subjects in every single collection.
This way, a unique binary signature identifies one subject
from a group of similar individuals since any chance of
repeatedly having two or more subjects in the same partition
reduces as the number of classification models, M , increases,
providing to each subject in the gallery an exclusive binary
signature during training time. Then, presenting the query
sample to each classifier, outputs its corresponding probe
binary signature and the vote-list histogram. Gallery subjects
containing signatures similar to the probe signature are more
likely to match its true identity in case of known subjects since
it has a firsthand impact on how vote histograms probability
estimates are distributed.

The proposed approach does not learn an embedding
containing heterogeneous machine learning models. More
precisely, when a list of classifiers C is generated, all its
classifiers ci ∈ C share a homogeneous nature in terms of
learning methods since only one out of SVM, PLS and FCN is
adopted (uniform). The method is an adaptation of Bootstrap
Aggregating [15], an ensemble meta-algorithm for machine
learning.

B. Testing Stage

At the testing stage, the vote-list histogram is hence set up
with size in accordance with the number of subjects enrolled
in the gallery set during training time. The method extracts
the same feature descriptors employed during the training
step to extract features from the query face image. Each
classification model has a record of which individuals are
randomly categorized as belonging to the positive and negative
collection. Figure 3 illustrates the process the query feature
vector is presented to each one of the classifiers ci ∈ C in
exchange for the corresponding response value ri.

When a classifier ci’s response score ri is closer to +1,
it indicates that the query image sample is very much alike
the subjects in the positive collection. The algorithm votes for
individuals from ci’s positive class as it only increases their
bins in the vote list. Additionally, if classifier ci’s score is

closer to −1, then the query image sample probably resembles
subjects in the negative set, which results in a subtraction of
the vote list bins that correspond to ci’s positive subjects.

While we compare a probe sample to all classification
models, we increment each model’s response value ri on the
vote list for those subjects belonging to the positive set only.
In the end, we sort the vote list in decreasing order in behalf
of keeping individuals with higher probability of matching the
probe sample on the top of the vote list ranking. In essence,
we want to find out a threshold that indicates how much the
top scorer TS1, namely the leading subject of the sorted vote
list, stands out from all other individuals.

It is important to note that the number of probe projections
does not depend on the gallery set size (it depends only on the
number of classifiers), implying that the computational cost
at testing time remains the same as the number of enrolled
subjects increases. This characteristics makes the proposed
method scalable.

C. Artificial Neural Network

In pursuance of better recognition results, we replace the
standard partial least squares and support vector machine
classifiers with artificial neural networks classifiers [12]. As
depicted in Figure 4, we propose a small network architecture
with three layers: input, hidden and output layer. Each node is
a neuron with a nonlinear activation function that is connected
to every neuron in the previous layer. The hidden layer is
set up with rectification non-linearity (ReLU) and the last
layer is equipped with a soft-max function. This was the
chosen architecture because it reported the best results in
an exploratory experiment with several other architectures,
considering different numbers of neurons and layers.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the approach described in
Section II. A thorough experimental information is detailed
in the Master Thesis for the proposed approach [1]. All
experiments are performed on a Intel Xeon E5-2630 CPU with
2.30 GHz and 16GB of RAM using Ubuntu 14.04 LTS. Code
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Fig. 3. TESTING STAGE – A vote list histogram is initialized containing all individuals enrolled in the gallery set during training time. The probe feature is
presented to all classification models and their response values are used to increment the vote list. The vote list is then sorted in decreasing order in the interest
of computing the ratio of the top scorer TS1 to the remaining individuals. If the ratio of the highest score to the remaining subjects satisfies a threshold-based
decision criterion, the subject is considered as known (i.e., belonging to the gallery).
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Fig. 4. The three-layer artificial neural network designed to be in place
of each PLS or SVM model. The network is fed up with feature vectors to
learn weights that will determine whether the probe is closer to the positive
or negative collection.

and experimental data are available on our GitHub repository2.
From now on, we refer to the combination of locality-sensitive
hashing and support vector machine as HSVM . Equivalently,
HPLS turns into the association of hashing methods with
partial least squares, and HANN represents the embedding of
artificial neural networks.

a) Feature Descriptors: We consider two feature
descriptors in this work: Histogram of Oriented Gradients
(HOG) [16] and features extracted from the VGGFace
network [17]. The former was designed for object detection
whereas the latter is based on convolutional neural networks
(CNN) for face detection and recognition.

b) Datasets: To demonstrate the effectiveness of the
proposed approach, the selected datasets contain different
characteristics, ranging from frontal cropped images taken
under controlled scenarios to images with lighting and pose
variations. The FRGCv1 [18] consists of 152 subjects and
samples that include 2D images and 3D models. We evaluate
our algorithm on experiments one, two and four, consisting
of two-dimensional images. The PubFig83 [19] is a fragment
of the original Public Figures dataset [20] composed of 83
individuals with at least 100 samples each, comprising several
uncontrolled images with pose and expression variations. The

2https://github.com/rafaelvareto/HPLS-HFCN-openset

TABLE I
THRESHOLD SELECTION – AVERAGE AUC FOR THE FRGCV1 DATASET

ON EXPERIMENT ONE WITH DIFFERENT THRESHOLDS.

Theshold AUC ± STD

τ1 =
HTS1

mean(HTS2
+HTS3

)
0.96 ± 0.02

τ2 =
HTS1
HTS2

0.96 ± 0.03

τ3 =
HTS1

mean(HTS2
+...+HTSp )

, p = d0.15× |H|e 0.92 ± 0.07

VGGFace dataset [21] contains about 2.6 million samples
of more than 2,600 celebrities and public figures collected
from the web. Due to its massive size and high training
time required, we randomly selected a portion of the original
VGGFace containing 1,000 subjects with 15 samples each.

c) Evaluation Metrics: We consider both extensively
employed Receiver Operating Characteristic (ROC) curves and
its Area Under Curve (AUC) for all datasets. In addition,
plotting detection and identification rate (DIR) vs. false alarm
rate (FAR) produces a chart known as Open-set ROC, a metric
generally used to evaluate approaches composed by filtering
and identification steps [22].

d) Protocols: There is not a worldwide consensus when
it comes to protocols for open-set face recognition. For
comparison reasons, we evaluate PubFig83 on a protocol
exploited by few researchers [19], [23], [24], formalized herein
as literature protocol. We also propose a new protocol for the
experiments carried out with FRGCv1 and VGGFace, which
partitions the entire dataset, varying the known individuals set
size in 10%, 50% and 90%. All the remaining individuals
become unseen classes during training time. For each subject
in the known subset, 50% of the samples are randomly selected
for training and the remaining are left for testing.

A. Parameter Evaluation

We carry out the evaluation of three different thresholds to
finding out the best gallery-member decision criterion. Table I
shows the mean area under the ROC curve for each threshold.
Basically, they are based on the ratio of the vote-list histogram
H’s top scorer TS1 to the average of the succeeding subjects.
Better results achieved with τ1 and τ2 demonstrate that the



TABLE II
NUMBER OF CLASSIFICATIONS MODELS – EMPLOYING VGGFACE
FEATURES AND VARYING THE NUMBER OF HASHING MODELS ON

PUBFIG83 DATASET.

#Models 10 30 50 100 300 500

HSVM
AUC 0.683 0.881 0.908 0.940 0.966 0.972
STD 0.028 0.018 0.013 0.010 0.007 0.005

HPLS
AUC 0.743 0.885 0.932 0.940 0.960 0.968
STD 0.030 0.029 0.021 0.020 0.006 0.004

HANN
AUC 0.385 0.921 0.959 0.973 0.977 0.981
STD 0.059 0.016 0.009 0.004 0.003 0.003

TABLE III
PERCENTAGE OF KNOWN SUBJECTS – EMPLOYING 100 HASHING MODELS

FOR HSVM, HPLS AND HANN WITH VGGFACE DESCRIPTOR.

Known individuals 10% 50% 90%

HANN
AUC 0.900 0.867 0.868

FR
G

C
v1

4

STD 0.045 0.026 0.014

HPLS
AUC 0.848 0.863 0.839
STD 0.059 0.020 0.024

HSVM
AUC 0.877 0.871 0.869
STD 0.021 0.016 0.011

WSVM [25] AUC 0.866 0.862 0.848
STD 0.035 0.015 0.019

HANN
AUC 0.987 0.976 0.965

V
G

G
Fa

ce

STD 0.003 0.004 0.006

HPLS
AUC 0.978 0.961 0.926
STD 0.005 0.003 0.005

HSVM
AUC 0.967 0.943 0.725
STD 0.014 0.006 0.004

WSVM [25] AUC 0.841 0.839 0.835
STD 0.013 0.007 0.007

addition of more bins to the threshold estimation (τ3) worsens
the algorithm decision performance. To the remainder of the
open-set identification experiments, we opt for threshold τ1.

To verify how the method responds to the parameter
adjustments, we analyze the behavior of the approaches by
varying the number of hashing models for the PubFig83
dataset and alternating the size of the subset of known
individuals for both VGGFace and FRGCv1. For the following
experiments, we also run the one-class WSVM algorithm
proposed by Scheirer et al. [25] as a baseline.

Table II shows great improvement in the initial classifier
augmentation when varying from 10 to 50 binary classifiers
and considering 75 randomly chosen subjects out of 83 in the
known set. No significant accuracy improvement is noticed
when more than 100 classifiers are established. The little raise
in AUC for PubFig83 with increasingly hashing models may
be justified by the fact that algorithms trained with multiple-
sample-per-class gallery sets are inclined to remain stable
regardless of the number of hashing functions.

Generally, the accuracy of a recognition system tends
to reduce when more subjects enroll in the gallery set.
Table III shows that our methods does not deteriorate with
the enrollment of new subjects from the FRGCv1 dataset
since having more samples increase the discriminability of
classifiers when there are only few samples per subject. On
the other hand, the VGGFace dataset offers more challenging
experiments as it is composed of 1,000 subjects. According to
the results, there was a sudden accuracy drop running HSVM

TABLE IV
SINGLE CLASSIFIER EVALUATION ON FRGCV1 DATASET EXPERIMENT

FOUR WITH FEATURES EXTRACTED USING VGGFACE FEATURES.

Values SVM (%) PLS (%) ANN (%)
AVG 71.379 73.559 77.026
STD 02.382 01.943 01.648
MIN 66.419 70.614 73.245
MAX 76.217 77.631 80.592

on VGGFace as the 100-model SVM embedding could not
separate the training data linearly when assigning 90% of all
VGGFace individuals as the known set.

For the purpose of analyzing each classifier’s behavior
individually, Table IV exposes via hit rate how well a single
classifier correctly matches the class a probe sample belongs
to. Hit rate measures the proportion of positives that are
correctly identified. The goal behind this experiment is not
to determine whether a subject is enrolled the gallery set, but
when a subject s ∈ S is randomly assigned to the positive
collection, it is expected that the classifier outputs a positive
response. Otherwise, it is likely to output a negative response
value. Results show that the ANN classifier provides better
results than a PLS or SVM model.

B. State-of-the-art Comparison

Table V presents the outcome for the proposed identification
approach containing 100 binary classification models for
all three datasets. It points out the performance of each
feature descriptor independently. Although desirable, it was
not possible to obtain the results for all datasets using HOG,
resulting in some blank cells in Table V.

TABLE V
LITERATURE COMPARISON – VGGFACE, PUBFIG83 AND EXPERIMENT

FOUR OF FRGCV1 DATASET.

AUC ± STD
Datasets FRGCv1 VGGFace PubFig83

Least Squares [24] 0.869 - -
SVM-Single [24] 0.853 - -
WSVM-VGG [25] 0.862 ± 0.014 0.839 ± 0.007 Failed
WSVM-HOG [25] 0.515 ± 0.027 - -

HSVM-VGG 0.871 ± 0.016 0.943 ± 0.006 0.951 ± 0.014
HSVM-HOG 0.902 ± 0.015 - -
HPLS-VGG 0.863 ± 0.020 0.961 ± 0.003 0.957 ± 0.006
HPLS-HOG 0.910 ± 0.022 - -

HANN-VGG 0.867 ± 0.026 0.976 ± 0.004 0.973 ± 0.006
HANN-HOG 0.613 ± 0.105 - -

According the the results, the proposed approach is capable
of improving baselines with considerable margin in most
cases, indicating the robustness of the proposed approaches
regardless of the selected dataset. Note that even though
HOG is a low-level feature descriptor, it performed well with
HPLS. We believe that it can be explained by the HOG
structure and FRGCv1’s predominant characteristics since it
encompasses high-resolution images acquired under partial
controlled conditions and without pose variation. VGGFace
descriptor is designed to obtain good representations from
uncontrolled near-frontal face images. As a consequence,
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PubFig83 and FRGCv1 dataset on experiment four achieved with the
combination of VGGFace features, HPLS and OAA PLS.

results obtained with VGGFace descriptors on unconstrained
datasets (PubFig83 and VGGFace) are considerably better
than the ones from FRGCv1 under comparable parameter
configuration.

C. Identification Evaluation

On the contrary of the previous experiments that only notify
whether individuals are known (i.e., belong or not to the
gallery), Figure 5 assesses the complete identification pipeline.
Particularly, we couple the algorithm proposed in Section II
with another PLS for regression so that a single model can
be learnt for each subject following an one-against-all (OAA)
classification scheme, implemented in the work of Schwartz
et al. [26].

In this experiment, we employ HPLS as the trigger to OAA
PLS since the latter is only executed when HPLS considers a
subject as known. OAA PLS learns the same training samples
employed in HPLS. Figure 5 demonstrates that our method
achieved very good results for PubFig83. In this scenario,
FRGCv1 turns out to be more challenging than PubFig83 due
to the fact the latter has several samples per subject whereas
the former holds only a single image per subject for training.

IV. CONCLUSIONS

The proposed method showed to be promising in solving a
task not frequently considered in the literature, namely, open-
set face recognition. We were inspired by the potential of
simple binary classifiers and how locality-sensitive hashing
splits the feature space. We decided to take advantage of their
speed and low computational cost to determine when probe
face samples are known. One of the main advantages of the
proposed method is their simplicity and practical deployment
since only one key parameter deeply influence performance:
the number of hashing functions. Experiments have shown that
VGGFace CNN descriptor contains more valuable information
than HOG in the unrestrained open-set face recognition task. In
addition, a comparison with the literature shows high accuracy
on challenging datasets.

There are two publications concerning the proposed
approach [13], [14]. The latter was honored with the Best
Paper Runner-up Award at the IARP/IEEE International Joint
Conference on Biometrics, 2017.
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