
Two-tiered facial verification for mobile devices
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Abstract—Mobile devices had their popularity and affordabil-
ity greatly increased in recent years. As a consequence of their
ubiquity, these devices now carry all sorts of personal data that
should be accessed only by their owner. Even though knowledge-
based procedures are still the main methods to secure the owner’s
identity, recently biometric traits have been employed for a more
secure and effortless authentication. In this work,1 we propose a
facial verification method optimized to the mobile environment.
It consists of a two-tiered procedure that combines hand-crafted
features and a new convolutional neural network – HF-CNN
–, an architecture tweaked for mobile devices that processes
encoded information of a pair of face images. We also propose
a technique to adapt our method’s acceptance cutoff to images
with different characteristics than those present during training,
by using the device owner’s enrollment gallery. The proposed
solution outperforms state-of-the-art face verification methods,
while having a model 16 times smaller and 4 times faster when
processing an image in recent smartphone models. Finally, we
present a new dataset of selfie pictures – RCD selfie dataset –
that hopefully will support future research in this scenario.

I. INTRODUCTION

The need to secure one’s identity is present in a variety of
everyday activities [1], such as allowing or denying access
to a requested service, a place, or sensitive information.
Several systems use biometric traits to secure the identity of
an individual [1]. Among the different biometric modalities,
automated face recognition is a very important one. During the
past years, it has gained more attention with improvements re-
garding quality, affordability, and ubiquity of image-capturing
devices (surveillance cameras, mobile phone cameras), the
many possible commercial uses, and the huge amount of
images available online.

With mobile and wearable devices becoming cheaper and
more popular, face authentication systems are being integrated
into them. And although the capabilities of such devices have
been growing in past years, it is necessary to bear in mind
their limitations [2] when designing such systems. They have
limited processing power that may not be sufficient to run
many complex vision and pattern recognition algorithms, as
well as a small memory space that may not be suitable to store
several face images or features with high dimensionality.

In this work, we propose a two-tiered mobile face verifica-
tion method: the first tier is fast, lightweight, and specifically
tailored to the target user in order to attain high true pos-
itive rate; the second tier aims to eliminate false negatives
by running a memory-efficient and fast CNN, optimized to
distinguish identities by their latent characteristics. In the most

1This work relates to a MSc. thesis defended in September 1st 2017, with
updated results.

common use case – the device user seeking authentication –
the first tier alone can handle the authentication, saving up
on computation and energy. Otherwise, the second tier can
be triggered to confirm or reject the authentication attempt.
Alongside with a deep learning approach, we use traditional
techniques as complementary tools to extract specific infor-
mation of the device owner.

Deep learning has been the state of the art for face recogni-
tion, surpassing traditional feature-engineered methods. How-
ever, complex deep networks are often computationally expen-
sive, while traditional methods tend to be fast and memory-
efficient. We capture their best characteristics, by showing how
their fusion can lead to better accuracy. In addition to that,
we introduce a new CNN architecture optimized with hybrid-
input image representations, allowing it to learn whether a
pair of face pictures share the same identity of not, i.e., the
original face recognition problem is mapped onto a pairwise
verification problem.

Another important aspect is that face verification is highly
influenced by demographics [3], which often leads to a sce-
nario where multiple models, trained on different demograph-
ics, are necessary. We instead present how to automatically
select a decision cutoff to better adapt our method to unique
characteristics of the users, eliminating the need to consider
each race/ethnicity separately.

Finally, we present RECOD Selfie Dataset,2 a public
dataset collected during this research, composed of self-
portrait (selfie) pictures with different acquisition conditions
regarding illumination and head pose. The dataset comprises
56 identities and 2873 images, organized in 262, 164 pairs.

The remainder of this article is organized as follows.
Section II outlines face verification methods in literature.
Section III presents our two-tiered method, while Section IV
details the proposed CNN architecture. Section V describes
the datasets used in the experiments, highlighting the one
specifically constructed for this work. Section VI presents
the experimental results and Section VII summarizes and
concludes this work.

II. RELATED WORK

Traditional facial verification techniques were based on
hand-crafted features designed using domain knowledge of the
data to create representations of face images. Numerous fea-
tures have been proposed to represent a face in different ways,

2To be published soon in http://dx.doi.org/10.6084/m9.figshare.5427142



such as by capturing geometrical information [4], holistic char-
acteristics [5], local appearance of facial traits [6] and texture
features [7]. In our solution, we consider two hand-crafted
methods: Histogram of Oriented Gradients (HOG) [8] and
Local Region Principal Component Analysis (LRPCA) [9].

Data-driven methods, such as CNNs, differ from feature-
engineered ones by introducing the ability to build complex
concepts out of simpler ones, without depending on domain-
knowledge modeling. Fuelled by recent data availability, com-
plex deep architectures started to achieve lower error rates than
engineered descriptors [10] on image recognition tasks.

For face verification, we can highlight three CNNs. Deep-
Face [11] is an architecture with locally-connected layers,
allowing the network to learn distinct features for different
spatial positions. FaceNet [12] learns a direct embedding from
face images to a low-dimensional Euclidean space by triplet
loss optimization. VGGFace [13] is a 16-layer CNN with
140 million parameters, trained for face verification with 2.6
million pictures using a triplet-loss approach similar to [12].
VGGFace is the basis for our architecture (Section IV).

Despite achieving impressive results, these networks are not
suitable to mobile devices due to their high number of pa-
rameters and operations performed. With this in mind, several
approaches were designed to simplify and/or speed-up existing
architectures. A popular strategy is to compress and prune a
CNN model in a lossy process, decreasing model size while
trying to maintain accuracy [14]–[17]. Unfortunately, these
approaches are not always supported by current deep learning
frameworks or may even require specialized hardware [16].

Another line of research aims at designing compact and effi-
cient network architectures, already tweaked to the limitations
of low-powered devices.

Recently, MobileNet [18] was designed as a flexible ar-
chitecture with two hyperparameters that limit the width and
spatial resolution of each layer. The authors analyze how these
hyperparameters affect accuracy, the number of parameters,
and the number of multiply-add operations performed; and
apply different network setups in several recognition problems.

A CNN relevant to our work is SqueezeNet [19]. To con-
strain the number of parameters, the authors propose to replace
most of its 3×3 filters with 1×1 and decrease the number of
channels of the input map. Each block of the SqueezeNet,
named as Fire module, consists of two convolutional layers:
a squeeze layer with 1×1 convolutional filters and an expand
layer with both 1×1 and 3×3 convolutional filters. In addition
to stacked Fire modules, SqueezeNet replaced traditional fully-
connected layers with global average pooling, which impels
correspondence between each class and the feature maps of the
last few convolutional layers without the parameter overhead
of fully-connected layers.

III. TWO-TIERED FACE VERIFICATION

Our face verification method consists of a two-tiered solu-
tion tailored to the mobile environment (Figure 1). The first
tier attains high true positive rate, favoring the common case
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AUTHENTICATE AUTHENTICATE
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Fig. 1. Outline of the proposed 2-tiered solution for face verification. The
1st tier consists of a set of fast user-specific classifiers, while the 2nd tier
uses a fusion of deep and hand-crafted features to identify if a pair of images
belongs to the same identity (pairwise verification).

(the owner seeking authentication). If the first tier’s confidence
is low, the second tier is triggered for further verification.

In the first tier, we use a set of user-specific classifiers to
identify the owner in self-portrait pictures. These classifiers are
trained using two hand-crafted features: HOG and LRPCA.
Since both features are fast to extract and the classifiers
are trained with gallery images (i.e., pictures depicting the
target user obtained during an enrollment phase), the method
attains high true positive rate without consuming too much
computational time.

As most authentication attempts are made by the device
owner, our method must be fast and accurate for these frequent
cases; however, it is acceptable to take more time to deny
an intruder. We translate these ideas by having a fast first
tier, whose confidence score is tested against two thresholds:
tlow and thigh. In case the score surpasses thigh, the user
is automatically authenticated; if the score is in between the
thresholds, the solution follows to the second tier; whereas if
the score is below tlow, access is denied.

The second tier consists of a group of pairwise classifiers,
trained to assess if a pair of faces belongs to the same identity
or not. We use two classifiers trained on HOG and LRPCA
features separately, considering pairs of images; and also a
CNN trained with hybrid images, of which the input channels
represent a pair of people.

To better adapt to each user’s unique face characteristics, we
propose a method to automatically learn the decision cutoff of
the second tier on-the-fly, based on the gallery images.

A. Enrollment and Pre-processing

During enrollment, a gallery G = {g1, . . . , gn} of n selfies
from the device owner are acquired with the mobile front
camera, in different views, i.e., similar photos with small
variations in head pose, facial expression, and illumination
conditions. Similarly, a negative gallery O = {o1, . . . , on}
composed of n face images depicting other people rather than
the device owner is embedded into the device beforehand.
Each image is converted to grayscale, cropped and aligned
so that the distance of the center of the eyes to the image
boundaries is the same for all enrollment images [9].

During verification, a selfie from the person seeking au-
thentication is acquired and normalized in the same way,
generating a probe image p.



B. First tier: user-specific verification

According to [20], it is possible to improve facial recog-
nition by learning specific user characteristics. In order to do
this, we use the gallery G as positive examples, while the
negative gallery O is used as negative examples.

All images are scaled to 128 × 128 pixels, and HOG
and LRPCA features are extracted from them. We train two
Logistic Regression (LogReg) classifiers on top of HOG and
LRPCA features separately.

During test, probe p has its features extracted and tested
against the LogReg models trained with HOG and LRPCA
features, resulting in two probabilities probHOG

1 and probPCA
1 ,

respectively, which are averaged to produce the final score
prob1 for this tier.

C. Second tier: pairwise verification

The next step in our method seeks to determine if two
images belong to the same individual. By slightly changing
our target problem – from user-specific to pairwise verification
– we wish to capture complementary characteristics that, along
with the first tier, improve overall accuracy.

Since the training process does not require pictures of
the device owner, it can be performed outside the mobile
device, allowing more complex and powerful models. This
tier considers both hand-crafted and data-driven approaches:

1) Multiview hand-crafted classifiers: During authentica-
tion, we leverage from multiple views of the gallery by
comparing a probe to as many gallery images as possible,
in what we refer to as multiview approach. As the gallery
increases in size and diversity, our method will have more
information to authenticate. Considering this, we build pairs
of images, consisting of the probe p and each gallery image
gi ∈ G, and extract features for these pairs.

To construct a feature vector Fpair(a, b) for a pair of face
images a and b, feature vectors F (a) and F (b) are first
extracted for each image of the pair. As a way to combine
both feature vectors and emphasize the relationship between
them, we concatenate the modulus of the difference and the
element-wise product of F (a) and F (b) [21].

During training, considering a dataset of face images
D, we compute a set of pair feature vectors Strain =
{Fpair(x, y)|x, y ∈ D,x 6= y}. If images x and y depict
the same person, then Fpair(x, y) is labeled as positive, and
negative otherwise.

The set Strain of pair feature vectors is used as input
to a LogReg classifier, to learn a model able to predict the
probability of the input being positive.

During test, we compute Fpair(p, gi) between probe p
and each gallery image gi ∈ G, i = 1, . . . , n. Each pair
feature vector is tested against the LogReg model, yielding
a probability probgi of the respective pair of images p and gi
depicting the same person. The final multiview probability is
the average of all probgi .

We train a LogReg model on top of HOG features and
another one on top of LRPCA features. In an authentication
attempt, a multiview probability will be yielded for each type

of feature – referred to as probHOG
2 and probPCA

2 – which are
combined with the output from our data-driven classifier to
compose the 2nd tier final score.

2) Data-driven classifier: We propose a novel convolu-
tional neural network architecture – referred to as Hybrid-Fire
CNN, or HF-CNN – which is described in more details in
Section IV. This data-driven approach yields the probability
probHF

2 of an input hybrid image representing the same person.
3) 2nd tier fusion and decision: Each pairwise classifier of

the 2nd tier has a decision threshold associated with it. In
case the classifier’s score is above its threshold t, the pair
is considered to depict the same person in both images.

Considering the three classifier outputs – probHOG
2 ,

probPCA
2 , and probHF

2 – we use majority vote to determine
if an authentication is successful or not. However, defining
each t below which the authentication fails is not a trivial
task. Therefore, we propose a technique to adapt the 2nd tier
methods to the owner’s unique characteristics.

Given gallery G from a specific user and negative gallery
O, we create two equal-size sets of tuples, P and N . Each
positive tuple in P is created by randomly sampling without
replacement l images from G, with l < n, whereas a negative
tuple in N comprises one image from O and l − 1 random
images from G. Within each tuple, the first image is considered
as the probe and the rest as the gallery. For each classifier
of the 2nd tier, we input each tuple, register their probability
and perform a grid search on the decision cutoff value t, for
0 < t < 1, to maximize, for that particular user, a desired
metric (e.g., accuracy, TPR and TNR).

IV. HF-CNN AND HYBRID IMAGES

Our initial explorations with a data-driven method were
done with VGGFace network [13]. Despite its impressive
results in facial recognition, it is not suitable for the mobile
scenario due to its approximately 15 million multiply-add
operations and 134 million parameters. Aiming at reducing
both, we made several architectural adjustments.

We removed the last six convolutional and fully-connected
layers (conv5-1 to FC-8). Although responsible for only 10%
of multiply-add operations, they account for 95% of the total
parameters. Besides that, they are responsible for learning
most high-level concepts related to the target identities of
VGGFace, which are not appropriate for our task of identity-
independent face verification.

We replaced these layers with 8 Fire modules [19] with
64/256/256 filters in their squeeze1x1 / expand1x1 / expand3x3
layers. After the last Fire, a convolutional layer with 1 × 1
filters, followed by a global average pooling and softmax
activation outputs the probability probHF

2 .
As we are now dealing with a binary problem (face ver-

ification), we still need to modify the expected input of the
network so that it represents the probe and gallery images. For
this, we propose the concept of hybrid image, which combines
information regarding the probe and the gallery. We aimed
for a representation to capture the most relevant character-
istics from gallery face images while also attenuating small



variations present on them (e.g., facial expression, makeup,
hairstyles). In this vein, for a probe p and a gallery G, a hybrid
image is constructed by stacking, as two channels, p and the
average image g of the images in G.

The proposed CNN, which is referred to as Hybrid-Fire
CNN, or HF-CNN, is trained 3 with hybrid images. Differently
from VGGFace, which works with RGB images, HF-CNN ac-
cepts only two-channel images. To account for this difference,
conv1 1 layer was modified accordingly, while also mapping
the shape of its output feature maps to the expected input of
conv1 2. This allows us to adapt the pre-trained weights of
VGGFace to detect low-level patterns in hybrid images.

To reduce the number of operations performed by HF-
CNN, rather than directly altering the network architecture
and discarding the pre-trained weights, we feed smaller hybrid
images to our network. By reducing the image dimensions
by half (from 224 × 224 to 112 × 112), the internal maps
also shrink by the same ratio, thus decreasing the amount of
performed multiply-add operations.

V. DATASETS

In this work, we present the RECOD Selfie Dataset (RCD),
a public dataset4 created for this research, with videos from
56 identities recording self-portrait videos of approximately
30 seconds, using mobile front cameras. For each identity,
two videos were recorded: one indoors with artificial light
and the other outdoors with direct sunlight and occasional
cloud shadows. Each participant was instructed to slowly rotate
around his/her own axis during the capture, further increasing
variability from one frame to another. While rotating, the
person could act naturally, with spontaneous face expressions,
and moderately changing head pose and the angle of the phone
in relation to the face. Most of the videos were recorded with
1080×1920 resolution, while a minority has 480×640.

Besides RCD, we also consider Unicamp Video-Based At-
tack Database [22] (UVAD), Oulu-NPU database [23], [24]
(OULU) and Motorola Selfie Dataset (MOT)5. Examples of
images from each dataset are presented in Figure 2.

Combining all datasets, we end up with 564 identities,
totaling 27, 817 images in a wide range of illumination,
background, hairstyle, facial pose, and expression. We built
pairs with pictures pertaining to the same identity (positive
pairs) and the same number of randomly selected pairs of
images from distinct identities (negative pairs); totaling 5.5+
million pairs for analysis.

VI. EXPERIMENTAL RESULTS

The proposed 2-tiered verification method is a combination
of a series of complementary techniques. In this section, we
assess the impact of the individual components, not only to
evaluate the performance of the solution, but also as a way to
examine the possibility of integrating them into other methods.

3Trained on Caffe framework. http://caffe.berkeleyvision.org
4Link: http://dx.doi.org/10.6084/m9.figshare.5427142.
5Private dataset, created in cooperation with Motorola LLC, consisting of

videos from 49 identities, captured in the same setup of RCD.

Fig. 2. Samples from (a) UVAD, (b) MOT, (c) OULU, and (d) RCD datasets.

A. Experimental setup

We organized the datasets into random identity-disjoint
train, validation, and test sets. MOT, UVAD and OULU-
Train (20 identities of OULU) were used for training; RCD-
Validation (14 identities of RCD) was used for validation;
RCD-Test and OULU-Test (remaining 42 identities from RCD
and 15 from OULU, respectively) were used as test sets.

We randomly sampled a negative gallery O from the images
of MOT, UVAD, and OULU-Train. For each constructed pair
of RCD-Test and OULU-Test, we consider the first image of
the pair as probe p and the person depicted in the second
image as the user. We randomly sampled images of the user
from RCD-Test and OULU-Test to construct gallery G. Both
G and O have 10 images. Before training, pairs from RCD-
Validation were used to find the best hyperparameters.

B. 2-tiered solution experiments

Table I presents results for each tier alone, their individual
techniques and the whole 2-tiered solution. In this experiment,
we arbitrarily fixed thigh = 0.7 and tlow = 0.5.

Note the impact of each tier in the complete solution. The 1st

tier achieves a higher true positive rate, when compared to the
2nd tier, i.e., 1st tier is tailored to solve the common case – the
device owner seeking authentication. On the other hand, the
2nd tier achieves a higher true negative rate, being capable of
eliminating 1st tier’s false negatives. This is especially evident
when analyzing the performance on OULU-Test.

While we used fixed thigh and tlow in the last experiment,
these thresholds provide a simple way to balance the trade-off
between speed, TPR, and TNR. For example, by increasing
thigh it is possible to be stricter when the 1st tier authenticates
a probe. This increases false rejection (by lowering TPR), but
decreases false acceptance (by increasing TNR).

Besides security, there is also an efficiency aspect related
to the selection of these thresholds. They control how many
images are sent to the 2nd tier and how many are authenti-
cated or denied by the 1st tier, which directly relates to the
overall speed of the solution. In a modern smartphone, feature
extraction using HOG and LRPCA takes less than 1 ms, while
forwarding an image through HF-CNN takes approximately 1
s. Consequently, it is faster to have most attempts solved by



TABLE I
PERFORMANCE OF THE COMPLETE 2-TIERED VERIFICATION METHOD, 1ST

AND 2ND TIER SEPARATELY, AS WELL AS EACH OF THEIR INNER METHODS.

RCD-Test OULU-Test

Method TPR % TNR % TPR % TNR %

US-HOG 96.1 97.4 99.8 77.0

US-LRPCA 93.4 94.9 99.8 82.6

1st tier only 96.1 97.9 99.8 82.5

Pairwise
HOG 85.6 94.5 81.5 90.2

Pairwise
LRPCA 95.4 89.0 99.9 87.9

HF-CNN 91.0 97.4 96.6 94.4

2nd tier only 93.7 97.6 96.9 94.6

2-tiered
method 94.1 99.5 99.7 94.5

70%

76%

82%

88%

94%

100%

0.2 0.3 0.4 0.5 0.6

TPR TNR                 

tlow

% of samples 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thigh fixed in 0.7
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88%

94%

100%
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TPR TNR                 
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tlow fixed in 0.5

Fig. 3. Threshold (thigh and tlow) selection exploration for the complete
2-tiered method in RCD-Validation.

the 1st tier, while the next tier only processes those near the
1st tier’s decision frontier. Figure 3 presents some threshold
setups and the corresponding results for the whole solution
in RCD-Validation. We also show the percentage of samples
processed by each tier.

For the 2nd tier, the decision cutoff learning was proposed
as a way to adapt the methods to images with different
characteristics than the ones present during training, while also
incorporating information about the device owner. For these
experiments, the 2-tiered solution was evaluated in a cross-
dataset scenario. Training was done with MOT and UVAD,
keeping OULU-Train out, while RCD-Test and OULU-Test
were used for testing. For the decision cutoff learning, both P
and N sets have 100 tuples, with l = 7, and we selected the
cutoff value of each user that maximized accuracy, maintaining
TPR > 0.9 and TNR > 0.99.

Table II shows each tier’s components separately and their
fusion to achieve the tier performance, with and without the
decision cutoff learning. When not using OULU for training,
HOG and LRPCA are considerably affected. However, cutoff
learning is able to improve the complete solution for OULU-
Test. For RCD, the cutoff learning has negatively impacted
individual methods, but this was lessened by the fusion of all

TABLE II
METHODS WITH AND WITHOUT DECISION CUTOFF LEARNING.

RCD-Test OULU-Test

Cutoff
Learning Method TPR % TNR % TPR % TNR %

7

pairwise classifier
w/ HOG features 84.3 96.3 93.8 62.4

pairwise classifier
w/ LRPCA features 95.9 88.8 100.0 27.3

HF-CNN 93.9 95.5 97.2 72.0

2nd tier only 94.3 97.5 98.2 58.8

2-tiered method 94.3 99.4 99.7 85.6

3

pairwise classifier
w/ HOG features 86.7 93.1 98.5 91.3

pairwise classifier
w/ LRPCA features 88.9 94.5 99.3 87.8

HF-CNN 92.5 96.6 97.2 84.9

2nd tier only 92.4 97.9 99.5 92.4

2-tiered method 93.3 99.3 99.7 94.0

components and the combination with the 1st tier.

C. Comparison with existing methods

Several methods in the literature have approached the facial
recognition task. However, only few have focused on the mo-
bile environment, where it is necessary to ponder other factors
besides accuracy. For this comparison, we have considered:

• VGGFace: The output of layer FC-7 is used as feature
vector for an image. The pair feature vector consists of
the concatenation of absolute difference and element-
wise multiplication of the feature vectors of individual
images. A LogReg trained with such pair of feature
vectors determines the verification outcome.

• Fine-tuned VGGFace: VGGFace fine-tuned with hybrid
images, using the same protocol of HF-CNN.

• ResFace101: ResNet-101 network fine-tuned for face
recognition with CASIA [25], following the data aug-
mentation described in [26]. For the verification task, we
considered the same steps performed for VGGFace.

• Fine-tuned SqueezeNet: SqueezeNet [19] fine-tuned for
face verification. We used the same method described
in [27], as well as the provided model and weights.

Table III presents results for the considered methods. Our
method outperforms or compares to the other solutions.

We also compared state-of-the-art CNNs with HF-CNN.
Table IV presents the analysis regarding number of opera-
tions and parameters, and time and memory consumption. In
comparison with VGGFace, we have significantly reduced the
number of parameters and performed operations. HF-CNN is
still behind some architectures tweaked for efficiency, such as
MobileNet and SqueezeNet. however they were not proposed
for face verification.

VII. CONCLUSION

In this work, we have proposed a 2-tiered method for facial
verification optimized for the mobile environment.



TABLE III
COMPARISON OF THE PROPOSED 2-TIERED METHOD WITH METHODS

PROPOSED FOR FACE RECOGNITION IN THE LITERATURE.

RCD-Test OULU-Test

Method ACC % TPR % TNR % ACC % TPR % TNR %

2-tiered
method 96.8 94.1 99.5 97.1 99.7 94.5

VGGFace 96.9 97.0 96.9 89.0 88.1 89.8

Fine-tuned
VGGFace 92.8 87.7 97.9 94.8 91.7 97.9

ResFace101 93.8 95.6 91.9 91.2 90.7 91.6

Fine-tuned
SqueezeNet 72.1 72.8 71.4 67.5 67.5 67.5

TABLE IV
COMPUTATIONAL TIME AND MEMORY ANALYSIS FOR CNNS IN Device A

(MOTOROLA MOTO G5, 2GB RAM, ANDROID 7.0) AND Device B
(MOTOROLA MOTO Z, 3GB RAM, ANDROID 7.1.1).

Forward pass time (s)

Architecture Million
multiply-add Dev A Dev B Thousand

parameters
Model size

(MB)

HF-CNN 3, 572 1.15 0.80 9, 208 35

VGGFace 15, 468 10.27 3.03 134, 263 553

ResFace101 7, 610 4.31 2.35 64, 060 256.7

MobileNet 574 1.08 0.34 4, 230 16

SqueezeNet 388 0.23 0.21 1, 230 4.7

GoogLeNet 1, 600 0.97 0.89 6, 990 51

The proposed Hybrid-Fire CNN (HF-CNN), inspired by
VGGFace [13] and SqueezeNet [19], was able to outperform
VGGFace, but with a model 16 times smaller and 4 times
faster. HF-CNN uses hybrid images to combine the informa-
tion of a probe and gallery images, as a way to limit the
necessity of multiple forward passes. Hybrid images can also
be viewed, parallel to siamese networks, as a simple way to
adapt a multiclass formulation such as face identification to a
binary verification formulation.

In addition, we have also collected a new dataset of selfie
pictures, with varying capture conditions regarding illumina-
tion, head pose, background, and facial expression.

This work resulted in a USPTO patent application, filed on
March 12, 2018
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