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Abstract— In this paper, we propose the use of dynamic-
images-based approach for action recognition. Specifically, we
exploit the multimodal information recorded by a Kinect sensor
(RGB-D and skeleton joint data). We combine several ideas from
rank pooling and skeleton optical spectra to generate dynamic
images to summarize an action sequence into single flow images.
We group our dynamic images into five groups: a dynamic color
group (DC); a dynamic depth group (DD) and three dynamic
skeleton groups (DXY, DYZ, DXZ). As action is composed of
different postures along time, we generated N different dynamic
images with the main postures for each dynamic group. Next,
we applied a pre-trained flow-CNN to extract spatiotemporal
features with a max-mean aggregation. The proposed method
was evaluated on a public benchmark dataset, the UTD-MHAD,
and achieved the state-of-the-art result.

I. INTRODUCTION

Human action recognition is one of the leading components
in the recent research field of human-computer interaction
(HCI) and one of the most important topics in computer
vision. It can be used as a natural and welcoming interface
of interaction by users in HCI systems. These systems use
movement and pose patterns to identify, learn and generalize
actions executed by a user. Due to the enormous possibilities
for practical application, there are several applications in the
area of action recognition [1]: video surveillance; robotics;
games; among others.

The downside of video-based methods for action recognition
are the intensity images, which are vulnerable to illumination
variations and cluttered backgrounds hindering the body detec-
tion and tracking. However, with the development and emer-
gence of depth sensors, such as Microsoft Kinect [2], human
action recognition from RGB-D data has attracted attention
from several researchers [2]-[4]. Moreover, the Kinect sensor
allows the acquisition of 3D data, can be used to capture body
movements and offers 3D coordinates for the joints (skeleton
data). This skeleton data is commonly available as input for
human action and gesture recognition [S]-[7].

In the last years, several approaches have been proposed
for human action recognition in the literature [8]-[11], e.g.,
Chen et al. [12] proposed a method that merges the probability
outputs of depth features from Kinect and inertial signal fea-
tures from inertial sensor to feed collaborative representative
classifiers. Imran et al. [13] proposed a deep convolutional
neural network to classify human actions based on RGB-

D data. First, the authors generated Motion History Images
(MHIs) from RGB videos and three Depth Motion Maps
(DMMs) from depth data corresponding to the front, side and
top views. Zhang et al. [14] presented a feature descriptor and
a decision-level fusion method for action recognition, called
3D histograms of texture (3DHoTs), that combines depth maps
and texture description from a depth video sequence. They
modified the Adaboost optimization function by adding the in-
equality constraints from SVMs in the decision-level fusion. In
[15], the authors developed an integrated system that supports
natural human-computer interaction and primitive cognitive
task, called Cognitive Immersive Room (CIR). This system
combines multimodal modalities (action, identity, attention
and speech transcription) to understand or disambiguate the
user intention. First, they evaluated the core techniques such as
gesture and face recognition, and head pose estimation. Then,
they evaluated the system by several use cases as language
learning, meeting assistance, and user registration.

Currently, there are mainly two ways of using deep learning
techniques to capture the spatiotemporal information in video
sequences [16]: Recurrent Neural Networks (RNNs) and Con-
volutional Neural Networks(CNNs). RNNs are used to capture
temporal information from extracted spatial skeleton features.
In contrast, CNNs directly extract information from texture
images which are encoded in skeleton sequences [17], [18] or
from RGB-D data. Some recent works focus on the second
way and propose different approaches to generate texture
images for extracting relevant spatiotemporal features. Hou
et al. [17] adopted Skeleton Optical Spectra (SOS) to encode
dynamic spatial-temporal information. Wang et al. [18] used
Joint Trajectory Maps to encode joint trajectories of the body
(positions, motion directions, and motion magnitudes) of each
time instance into HSV images. Li et al. [19] adopted joint
distances as spatial features and a color bar for color encoding.
Ding et al. [16] proposed an approach for encoding five
spatial skeleton features into images with different encoding
methods. Other authors followed the same ideas presented
previously and proposed methods to encode video sequences
into movement maps. In [20]-[22], the authors proposed a
process named rank pooling to generate a unique dynamic
image that summarizes an action sequence with posture and
motion information to be processed by a CNN architecture.

Based on these ideas, in this paper, we propose a multimodal



human action recognition method that exploits the RGB-D
and skeleton joint data recorded by a Kinect sensor. We focus
on generating movement maps or dynamic images to encode
spatiotemporal information. For skeleton joint data, we extend
the method proposed in [17] to generate different spectra
channels for each body part. For RGB-D data, we use the
rank pooling process to generate dynamic color images and
dynamic depth images. Moreover, we propose generating [N
different dynamic images to represent the main postures in
an action sequence. To extract spatiotemporal features from
the dynamic images, we use a pre-trained flow-CNN with a
max-mean aggregation process.

The remainder of this paper is organized as follows. In
Sec. II, we describe our proposed approach. Experimental
results are presented in Sec. III. In Sec. IV, we discuss the
conclusion and future works.

II. METHOD OVERVIEW

Our approach focuses on processing multimodal informa-
tion (RGB-D and skeleton joint positions) recorded by a
Microsoft Kinect sensor. As shown in Fig. 1, the proposed
method consists of three main components: dynamic images
generation, feature extraction with max-mean aggregation and
classification.

A. Dynamic Images Generation

We combine several ideas from rank pooling and skeleton
optical spectral to generate Dynamic Images (DI). Each one
is discussed in turn. Our goal is to summarize efficiently an
action of the video sequence in single flow images with posture
and motion information, which can be processed later by a
standard CNN architecture.

1) Skeleton Optical Spectra: Several approaches proposed
a map generation from images to represent the skeleton joint
data [16]-[19]. Inspired by [17], the color texture images
(named Skeleton Optical Spectra or SOS images) are used
to encode the skeleton joint data to capture spatiotemporal
features.

Mapping of Joint Distance: Let p; = (pz,py,p-) be
the coordinates of the jth joint in each frame, where j €
{1,...,m} and m is the number of joints. For each subject,
the m joints (skeleton) from all subjects in each frame can be
represented as: s = p1, P2, . . ., Py and the numbering of joints
follows a fixed order to maintain the correspondence between
frames. Thus, a skeleton sequence of an action A is expressed
as follows:

A={s's* ... s"} (1

where s* = pi,pb, ..., pl, indicates the ith skeleton of A and
p; represents the 3D coordinates of the jth joint in s".

Unlike [17], we first convert each p’ joint to a new origin of
coordinates to avoid the translation problems of the user posi-
tion regarding the Kinect. Therefore, our new joint coordinates
are defined as follows:

p;‘n = (p; - pnew) 2

In this work, we consider the shoulder center position as the
new origin called p,.,. For an action video, the skeleton joints
are projected on three orthogonal Cartesian planes: XY, YZ,
and XZ. Hence, we generate three sparse scatter plots in each
Cartesian plane for generating the dynamic SOS images DXY,
DYZ, and DXZ.

Spectrum Coding, Joint Velocity Weighted Saturation,
and Brightness: Similar to [17], we use the HSB color
model to generate our SOS images. To further enhance the
encoded spatiotemporal information, we encode the velocity
of the joints into the saturation (S) and brightness (B) of the
SOS images. Moreover, we consider the relevant movement
regarding each body part from the skeleton to distinguish each
one. Arms and legs often have more motion information, but
different frequency. Therefore, it is not recommend grouping
these body parts in the same spectra. Thus, we generate five
spectral distributions (H) to encode five different body parts
with its respective joints: left leg part K; = {left hip, left
knee, left ankle, left foot}, right leg part Ko = {right hip,
right knee, right ankle, right foot}, left arm part K3 = {left
shoulder, left elbow, left wrist, left hand}, right arm part K,
= {right shoulder, right elbow, right wrist, right hand}, and
middle body part K5 = {head, neck, torso, hip center}.

The spectrum, i.e. the range of hue (H) in Eq. 3, of the right
arm part, is the reversed spectrum assigned to the left arm part.
The range of hue of the right leg part is the reversed spectrum
assigned to the left leg part. For the middle body part, we adopt
a gray scale from light gray to black (we assign hue = 0),
because of the subtle motion of these joints [17].

In general, the encoding and enhancement of hue (H),
saturation (S), and brightness (B) can be expressed as follows:
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Fig. 1. Overview of our proposed method for action recognition. Multimodal data is used to extract spatiotemporal features. We generate Dynamic Images
(DI) to summarize the motion and posture from an action divided in N main postures for a particular time ¢;. Next, we smooth the ¢y dynamic images to
improve the image quality and highlight regions with movement. Then, we apply a pre-trained flow-CNN on the DIs to extract our features. Finally, we apply
a max-mean aggregation process to integrate all features and use a linear SVM classifier with the goal to boost the recognition performance.

(a) DXY (b) DYZ (c) DXZ

Fig. 2. Dynamic SOS images generated for each Cartesian plane (using the
skeleton joint data).

Thus, for each joint pé in the skeleton s* of an action A,
we apply the Eq. 3 to compute its respective hue, saturation
and brightness values. Next, these values are plotted in each
Cartesian plane to generate three Dynamic SOS images (DXY,
DYZ, DXZ). Finally, we convert the SOS images to RGB color
model to process them with a pre-trained flow-CNN network.
Fig. 2 shows an example of the DXY, DYZ, DXZ dynamic SOS
images generated for a particular action.

2) Rank Pooling: For RGB-D data, we use the dynamic
images generation based on rank pooling proposed in [21],
[22]. The core idea is to represent a video through a standard

RGB image that summarizes the appearance and dynamics of
a whole video sequence.

We can represent an action video as a ranking function
for its frames Iy,...,Ir. In more detail, let ¢;, € R? be a
representation or feature vector extracted from each individual
frame I, in the video. Let V; = + >°" _, 4(I;) be time average
of these features up to time t [22]. The ranking function
associates each time ¢ a score S(t|d) = (d, V;), where d € IR®
is a vector of parameters. The function parameters d are
learned, so that the scores reflect the rank of the frames in
the video. Therefore, later times are associated with larger
scores, i.e. ¢ >t = S(g|d) > S(t|d). Learning d is posed
as a convex optimization problem using the RankSVM [23]
formulation:

d* =p(l1,...,Ir;9¢) = argmin E(d) %)
d

B = 514 + 7

q>t

(6)

Thus, computing a dynamic image entails solving the op-
timization problem of Eq. 5. In [21], the authors presented
an approximation to rank pooling which is much faster and
works well in practice. They derivated the approximate rank

x> max{0,1 - S(q|d) + S(t|d)}.
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Fig. 3. Dynamic Images generated using ranking pooling on the RGB-D data.

pooling based on the idea of considering the first step in a
gradient-based optimization reducing the Eq. 5 to:

T
AL, -y Irsp) =Y agp(LL). (7)
t=1

The coefficients o are given by:

where H; = '_, 1/t is the t — th Harmonic number and
Hy = 0. Likewise, we can use directly individual video frames
1, replacing ¢ (1).

Hence, the authors show that d* can be interpreted as
a standard RGB image. Furthermore, since this image is
obtained by rank pooling the video frames, it summarizes
information from the whole video sequence. The complete
process is explained and detailed in [21], [22].

To generate dynamic images from depth data, we normal-
ized each video frame vy to the interval [0 : 255] using the
Min-Max normalization defined by:

vg — min(vg) o 055 ©)

Vg =

max(vg) — min(vq)
Finally, we generate two dynamic images from RGB-D
videos as shown in Fig. 3. In Fig. 3a, we show the dynamic
color image (DC) computed for all frames from RGB video. In
Fig. 3b, is presented the dynamic depth image (DD) computed
from the normalized depth video. It is possible to notice that
dynamic images tend to focus mainly on the active body part,
such as the right arm in Fig. 3. In contrast, background pixels
and background motion patterns tend to be averaged. Hence,
the pixels in dynamic images seem to focus on the appearance
and motion of the user body, which indicates that they can
contain the necessary information to recognize the action.

B. Multiple Dynamic Images Generation

As we can see, the generation of a dynamic image for
each multimodal channel summarizes an action sequence more
efficiently. Nevertheless, different approaches showed that is
possible to divide an action into different relevant sequences
[5], [24]. In consequence, we can represent an action by

different postures A = {A;, Ay,..., Ar} along time 7. It
is possible to identify the N main postures which are more
relevant in A, so we generate a dynamic image for each one. In
this manner, we create [N dynamic images for an action video
dividing it into N sub-movements from the time t;,; = 1 to
t;, where t; = {t1,t2,...,tn} and ty represent the complete
dynamic image along time [1 : 7. In Fig. 4, we show DIs
generated for an action divided into N = 3 sub-movements.

C. Feature Extraction and Aggregation

To improve the dynamic image quality (contrast enhance-
ment) and highlight regions with movement, we first apply
a smoothing process by an isotropic Gaussian kernel with
a standard deviation o = 3 for all the generated dynamic
images. Next, based on the transfer learning property of the
CNNs [25] and the ideas presented in [26], we use a pre-
trained flow-CNN architecture proposed in [27] to process
the dynamic images. The flow-CNN network contains five
convolutional and three fully-connected layers. It was trained
with optical flow images to compute robust descriptors from
dynamic images. The output of the second fully-connected
layer with m = 4096 values is used as our feature vector.
Therefore, for each dynamic image group DI’ (DC, DD,
DXY, DYZ, DXZ) we computed N feature vectors ft]i, where
t; € {t1,ta,...,tn}, and m are the dimension of ftj Finally,
we obtained a three-dimensional matrix of spatiotemporal
features Mj,,n, as shown in Fig. 1.

To integrate the spatiotemporal features presented in the
M., n matrix, we follow these simple steps: First, we apply
a max-mean function between the ¢ dynamic images for a
DI7 group, i. e. we apply the max-mean operators between the
M,, and M dimensions, so we obtain the most discriminative
features for each DI7 group. Next, we apply an aggregation
process to convert the Mo, matrix to one-dimensional feature
vector Fy (10m)-

III. EXPERIMENTAL RESULTS

In this section, we present the parameter setting for our
experiments. Then, we evaluate the performance of our pro-
posed method by testing the discriminative ability of our
spatiotemporal features on a public action dataset.

A. Dataset

The UTD-MHAD dataset was collected using Kinect V1
sensor and a wearable inertial sensor in an indoor environ-
ment [28]. The dataset contains 27 actions performed by 8
subjects (4 females and 4 males). Each subject repeated each
action 4 times. The dataset includes 861 data sequences. Four
data modalities of RGB videos, depth videos, skeleton joint
positions, and the inertial sensor signals were recorded in three
channels. One channel was used for simultaneous capture of
depth videos and skeleton positions, one channel for RGB
videos, and one channel for the inertial sensor signals (3-axis
acceleration and 3-axis rotation signals). Fig. 5 illustrates an
example of the multimodal data corresponding to the action
basketball-shoot.
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Fig. 4. Dynamic Images generated for N = 3 in each multimodal channel.

To conduct experiments, the authors divided the dataset into
two sub-datasets for training and testing that are mutually
exclusive. Moreover, we only use the Kinect data without

including the inertial information. Table I shows the detailed
information of the UTD-MHAD dataset.

TABLE I
EXPERIMENTAL INFORMATION FOR THE UTD-MHAD DATASET.
Sets Gestures | RGB | Depth | Skeleton | Subjects
Training 432 432 432 432 4 (1,3,5,7)
Testing 432 432 432 432 4 (2,4,6,8)

-14 -4 - -14- e -1

2.8\\\/ 2.8\\\/ 28 - zs\\\/‘
2.6 0.1 26 >o o P1 2.6 o1 2.6 _o.P1
7 24 —0.3§'P —0.30'10 of .32'10

7 24 < 7 24 -0_3X z 24 -0

Fig. 5. An example of the multimodal data corresponding to the action
basketball-shoot in the UTD-MHAD dataset [28]. The first row shows the
color images; the second row, the depth images (the background of each
depth frame was removed); the third row, the skeleton joint frames.

B. Parameter setting

1) All experiments were conducted and measured in a
notebook with a CPU Intel Core i7 inside, 2.5 GHz U,
12 GB of memory and a GPU GEFORCE GTX 950M
with 4GB of memory.

2) The proposed method was implemented using the MAT-
LAB development IDE R2016a (64 bits).

3) In all experiments, we used Support Vector Machines
(SVM) [29] with linear kernel using the LIBSVM li-
brary [30].

4) Results were obtained from the testing dataset and
reported on all Tables. Additionally, we compared our
method with the state-of-the-art using the experimental
protocol indicated by the authors.

5) In all experiments, we consider: h; = 0, hypar = 360,
Smin = 0, Smaz = 1.0, bpmin, = 0, and by, = 1.0.

C. Finding the Optimal value for N postures

We conducted an initial experiment using the training
dataset to find the optimal value of N to compute the ¢y
dynamic images for each DI’ group. We used only dynamic
skeleton images as input because it is most feasible to observe



results in the DXY generated images. As the UTD-MHAD
dataset does not provide a validation set, we used cross-
validation with K = 4 folds.

We tested six N; possible values N; = {1,2,3,4,5,6}.
Results are shown in Fig. 6. We obtained top results for N < 4.
When N is bigger (i. e., N > 4), the recognition rate started
to drop greatly owing to the inconsistency in the skeleton
joint distribution that assigns a similar quantity of skeleton
points for a t; posture. This problem generates dynamic images
with poor dissimilarity and redundant information (Fig. 7).
Consequently, we used the best value N = 4 to conduct the
rest of the experiments.
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Fig. 6. Results for different values of IV; for N = 1, we generated only a
dynamic image using all skeleton joint positions.
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Fig. 7. Dynamic DXY images for N = 4 (up) and N = 5 (bottom). When
N = 4, we obtained dynamic images with a major dissimilarity. For N =
5, there is an inconsistency in the skeleton joint distribution that generates
dynamic images with poor information. This inconsistent increases when N
is bigger, generating a loss in the recognition rate.

D. Evaluation of Different Encoding Schemes

We defined and evaluated the effectiveness of different
encoding schemes to determine which method capture spa-
tiotemporal information effectively. Following, we list the
schemes to be evaluated:

o SCHO1 (DCp): uses only dynamic color images with
N =1 postures (a unique dynamic image for an action
video) in the classification process.

e SCHO2 (DDpy1): uses only dynamic depth images with
N =1 postures in the classification process.

e SCHO3 (DXY +DYZ+DXZ)y=1: uses only dynamic
skeleton images with N = 1 postures in the classification
process.

e SCH4 (DC + DD + DXY + DYZ + DXZ)n=1:
combines dynamic images from color, depth and skeleton
with NV = 1 postures in the classification process.

e SCHO5 (DCpy4): uses only dynamic color images with
N = 4 postures in the classification process.

e SCHO06 (DD py): uses only dynamic depth images with
N = 4 postures in the classification process.

e SCHO7 (DXY +DY Z+DXZ)n=4: uses only dynamic
skeleton images with N = 4 postures in the classification
process.

« SCH08 (DC + DD + DXY + DYZ + DXZ)y=u:
combines dynamic images from color, depth and skeleton
with N = 4 postures for each dynamic image type in the
classification process.

1) Unique Dynamic Image vs. Dynamic Images with differ-
ent posture: From Table II, we can see that the integration of
all dynamic image features effectively capture spatiotemporal
information. Likewise, we can see that the generation of [NV
postures for each DI7 along different times t;, contribute to
improve the recognition rate since the schemes with N = 4
overcome schemes with N = 1. A particular case, we note
that SCHO3 scheme outperforms the research proposed in [17]
(Table III), in which only works with three body parts (in our
case we use five); this may be due to the fact that arms and
legs have movement with different intensity and we grouped
them in different spectrum channels. The SCHO8 scheme
integrates all dynamic image features with N postures through
a max-mean aggregation process and reaches the best result
(94.57%). In general, the creation of N dynamic images for a
particular posture provides additional spatiotemporal features
that improve the action recognition rate.

The confusion matrix is shown in Fig. 8. The individual re-
sults for each action in the UTD-MHAD dataset are presented
in Fig. 9. The UTD-MHAD is a challenging dataset, so we had
to use a method to integrate all our dynamic image features to
get the better result. However, in the confusion matrix we can
see that our final SCHO8 scheme does not distinguish some
actions very well, e.g. jogging in place-22 and walking-23 or
wave-03 and throw-05. There are many probable reasons for
these, such as the filters of the pre-trained flow-CNN may not
be adequate for distinguishing similar actions or the max-mean
operators of the aggregation process which may eliminate
some valuable information. In fact, we will review all these
problems in future works. Finally, we take into account the use
of depth data to extract relevant features. Many recent works
focus on exploiting this information to obtain relevant features
capable of overcoming RGB features. In our experiments,



dynamic depth images (SCH02, SCHO06) achieve better results
than dynamic color images (SCHO01, SCHO0S5). These results
show the importance of the depth information to generate
spatiotemporal features for action recognition.

on the UTD-MHAD dataset. To generated N dynamic images
for each dynamic group (4 x 5 = 20), we reached an average
execution time of 4.35 seconds per video with a frame number
between 45 and 125.

TABLE 11 TABLE III
RESULTS OF DIFFERENT ENCODING SCHEMES ON THE UTD-MHAD COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE
DATASET. UTD-MHAD DATASET.

Code Encoding Scheme Accuracy (%) Method Accuracy (%)
SCHO1 DCpn1 58.29 Chen and Forbus [31] 81.00
SCHO02 | DDy 78.22 Zhang et al. [14] 84.40
SCHO3 | (DXY +DYZ+ DXZ)n=1 87.42 Chen et al. [12] (Kinect sensor only) 85.10
SCH04 | (DC+ DD+ DXY +DYZ+ DXZ)n=1 91.27 Chen et al. [12] (Kinect and inertial sensors fusion) 97.20
SCHOS | DCny 69.86 Wang et al. [18] 85.81
SCHO6 | DDy 86.20 Hou et al. [17] 86.97
SCHO7 (DXY +DYZ+ DXZ)N=4 90.42 L1 and Hou [19] 2310
SCH08 | (DC + DD + DXY 1 DYZ + DXZ)n_4 9457 Zhao et al [15] 30.00

Imran and Kumar [13] 91.20
SCHO8 (DC + DD+ DXY + DYZ + DXZ)N=4 94.57
Accuracy: 94.57% .
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Fig. 8. Confusion Matrix from the best encoding scheme: SCH08 (DC' +
DD+ DXY +DYZ + DXZ)nN=4.

E. Comparison with the state-of-the-art

Table III compare the performance of the SCHO8 scheme
with the state-of-the-art methods. Please notice that the method
proposed by Chen et al. [12] achieved 97.2% of accuracy
when used both Kinect and inertial sensor data; 85.10%, when
used only Kinect data. In contrast, we achieve 94.57% of
accuracy using Kinect data and overcome them under the same
conditions. Other methods achieved results between 81% and
89%. Recently, methods proposed by Zhao et al. [15] (90.90%)
and Imran and Kumar [13] (91.20%), achieved results greater
than 90% using Kinect data only. Imran and Kumar [13]
followed a line of research similar to ours. They used a deep
convolutional neural network to classify human actions based
on RGB-D data using Motion History Images and different
modalities to fusion features. Within all methods, our SCH08
scheme achieves the best result overcoming the second best
result in 3.3% of the difference in performance.

Finally, our method recorded an average execution time of
0.26 seconds to generate only a dynamic image from a video

In this paper, we address the problem of human action
recognition based on the calculation of spatiotemporal features
from multimodal data recorded by a Kinect sensor (RGB-
D and skeleton joint data). We combined several ideas from
rank pooling and skeleton optical spectra to generate dynamic
images to summarize an action sequence into single flow
images. We grouped our dynamic images into five groups:
a dynamic color group (DC); a dynamic depth group (DD)
and three dynamic skeleton groups (DXY, DYZ, DXZ). As
the action is composed of different postures along time, we
generated N different dynamic images which are the main
postures for each dynamic group. Next, we applied a pre-
trained flow-CNN to extract spatiotemporal features with a
max-mean aggregation. Experimental results showed the effi-
cacy of the proposed method, we obtained 94.57% of accuracy
and outperformed in 3.3% the second best method of the
literature. Likewise, results showed that our method presented
mistakes to recognize similar actions. In fact, as future work,
we pretend to explore new CNN architectures and new fusion
schemes to integrate the features extracted from each dynamic
group to improve these limitations, so our method will be
capable of differentiating similar actions.
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