
Example-based Skin Wrinkle Displacement Maps
Ing. Ron Vanderfeesten, MSc.

Departement of Geometrical Computing
Universiteit Utrecht

Princetonplein 5 (4.21), 3584 CC Utrecht, The Netherlands.
Email: r.g.f.p.vanderfeesten@uu.nl

Dr. Ing. Jacco Bikker
Departement of Geometrical Computing

Universiteit Utrecht
Princetonplein 5 (4.24), 3584 CC Utrecht, The Netherlands.

Email: j.bikker@uu.nl

Abstract—We present an algorithm for generating procedural
displacement maps for wrinkle patterns measured from pho-
tographs or scans. These displacement maps can contain wrinkle
patterns that appear at the meso- and microscale, and are
modeled using several spatially varying parameters such as the
size, shape and distribution of each individual skin wrinkle. We
present an algorithm to measure the parameters of skin wrinkle
patterns, and show how to adapt the measured parameters
to generate displacement maps with similar properties for 3D
models other than the one measured. Lastly, we evaluate the
quality of the generated maps by comparing them to maps
acquired by scanning human skin.

I. INTRODUCTION

Displacement maps are used to model the fine geometry on
the surface of a 3D mesh. Such maps work by locally perturb-
ing the height of the surface defined by the mesh geometry,
and can greatly enhance the apparent detail and realism of a
3D model [1] [2]. The creation of such displacement maps is
a task that often emerges in the production of characters for
video games or movies. Drawing realistic displacement maps
can be a labor intensive task for computer graphics artists
and may yield substandard results depending on the artist’s
skill [3] [4]. This difficulty is especially apparent when the
character in question has no actor from which high resolution
surface scans can be aquired [5] [6]. To alleviate these issues,
we propose an algorithm that is able to synthesize realistic
looking displacement maps for human skin for 3D characters
where no scans are available.

This paper presents three contributions to address these
issues.

• We first present an improvement over the wrinkle tracing
method used in Kim [7], that extracts wrinkles that cross
each other and is able to follow shapes with arbitrary
cross sections.

• Second, we propose an improvement over the displace-
ment map generating method presented inBando [8] and
Kim [7] by not requiring additional user input and allow-
ing wrinkles to overlap regardless of the number input
vector fields. Our algorithm can generate a displacement
map of arbitrary resolution for skin wrinkles at the meso-
and microscale depending on the input data. The algo-
rithm uses geometric objects as an intermediate format.
The objects can be easily edited, and used as an example
for generating new wrinkle patterns that look similar.

• Lastly, we propose a method to generate a similar wrinkle
pattern on a different 3D model without stretching or
distorting the displacement map.

A. Related Work

There are many algorithms that support computer graphics
artists to simulate the appearance of skin for 2D images or 3D
models. Tsumura et al. [9] provide a method that is able to fill
in shadowed or obscured parts of photographs of faces using
a generated texture. They estimate the distribution and effects
of melanin and hemoglobin on the visible parts of the face.
This data is then used to synthesize a texture for the obscured
parts of the photograph.

In a work by Golovinskiy et al. [10], noise parameters are
estimated for detailed texture geometry and then new texture
maps are generated using the same distributions.

Several methods exist to directly capture the geometry and
reflections of a human face. This captured geometry can serve
as the input for wrinkle measurements, after it has been con-
verted to an image. Cula et al. [11] provide a database of skin
texture photographs under different illumination conditions
taken from different parts of the face. The method by Ghosh
et al. [12] uses photo cameras and polarized light to obtain
high resolution texture maps and 3D models of real faces.
The method by Beeler [6] and the method by Garrido et
al. [13] are able to capture the surface shape and texture
of a face even during motion. In Saito et al. [14], a neural
network is used to match input photographs to a database
of 3D information to create a 3D model of the face in the
photograph. These methods include the effects of specularity
and are able to generate displacement maps. Large wrinkles
can also be captured by low cost 3D cameras when they are
enhanced using an existing scan [15]. Graham et al. [16] uses
a method to take small samples of the skin’s microstructure
and synthesizes a more detailed topology based on an existing
normal map.

These methods are able to faithfully reproduce the appear-
ance of a real actor, however the wrinkle patterns in these
displacement maps cannot easily be edited or transferred to
another 3D model and will not work for characters for which
no actor is available. The editing of wrinkles is possible in
a paper by Kim et al. [7] which uses strokes by an artist to
generate believable wrinkles on a 3D model of a human face,
and Cao et al. [5] and Shin et al. [17] are able to capture

and transfer wrinkles and deformations onto other 3D models.
These algorithm all work on large scale wrinkles.

Methods that physically simulate the deformation of skin
also exist. In a paper by Larboulette and Cani [18] wrinkles
are generated on a surface using a control curve that is used
to perturb the surface geometry directly as the compression
across the surface increases. This system is essentially a 1-
dimensional effect that is applied onto the surface and can not
be directly applied to generate 2D displacement maps.

Other models based on the physical properties of skin
deformation and growth have been proposed by Flynn and
McCormack [19] and Yang and Zhang [20]. Simulation can
create realistic looking wrinkles, and can work for many
3D models but does not allow the editing of wrinkles after
simulation.

What is lacking is a method that is able to generate high
resolution displacement maps for skin (i) at both large and
small scales, (ii) that allows for editing after measurement,
(iii) and can be used for many different 3D models surfaces,
and (iv) is not dependent on specific skin areas such as the
face.

B. Contributions

To address these issues, this paper presents a model to
quantify the size, shape and distribution of skin wrinkles on
human skin and an algorithm to measure these from images
of real skin. We focus on generating displacement maps for
human hands. The algorithm is not limited to hands, and is
able to generate wrinkle patterns for any skin area at the
meso- and microscale. Hands were chosen as an example since
they feature prominent wrinkling while being relatively free
from other skin features that play an important role for the
appearance of skin, such as hairs and moles, which would
distract from observing the skin wrinkles. Simulating other
skin features is beyond the scope of this paper.

The remainder of the paper is structured as follows: first
we discuss the underlying biology of skin wrinkles and their
formation in Section II-A. From this and related work we
define a parametrized model of an isolated skin wrinkle in Sec-
tion II-B. We then use this in Section II-C as a basis to perform
measurements of the properties of skin wrinkles on human
hands. After that in Section II-F we discuss observations made
from the measured data. In Section II-G we examine how
to model the layout of wrinkle primitives on the surface.
After this, in Section III-A use these distribution functions to
quantify the measured wrinkle sets, and generate new wrinkle
primitive sets with similar properties. Next, we show how to
render displacement maps from a given wrinkle primitive set
(measured or generated) in Section III-B. We also show how
to sample the measured data to generate displacement maps
for meshes other than those similar to the measured data in
Section 3. In addition we present how to use the algorithm to
generate microscale displacement maps in Section III-D. We
conclude the paper by discussing the results in Section IV as
well as discussing future work in Section V.

II. MEASUREMENTS

A. Wrinkle Biology

Wrinkles form on the skin due to the continuous breaking
and rearranging of fibrous connective tissue that gives skin
its strength and elasticity. This effect occurs more in places
where the skin is subjected to larger compressive or expansive
stresses. Larger stress causes more pronounced wrinkles to
be formed there. The orientation of the stress also induces a
direction on the formation of wrinkles, as the breaking of fibers
occurs orthogonal to the stresses. These effects are described
by Pageon et al. [21], and are similar to the wear and tear
undergone by materials. This observation forms the basis for
some wrinkle formation simulations [22].

In addition skin is living tissue that continuously regrows.
In particular, when fibrous tissue breaks, the tissue heals and
undergoes fibrosis which pronounces the wrinkles even more.
This effect increases with age and depends on nutrition [23].
These effects permanently change the shape of the surface of
skin which we perceive as wrinkles. These are the wrinkles
that are modeled in the next section.

B. Wrinkle Primitive

We build on the concept of a wrinkle as introduced by
Bickel et al. [24]. A wrinkle primitive is a geometric object
embedded in a 2-manifold. The manifold represents the surface
of a 3D mesh. We assume that we are provided externally
with a 3D mesh that describes the 0-level set of points, e.g.
the surface without any displacement. In addition we assume
that the 3D mesh has a global parametrization where each
texture coordinate uniquely identifies a point on the surface.
Given this, we say that the surface manifold is equipped with a
bijection UV that maps a point on the surface to some unique
pair of coordinates (u, v).

A wrinkle primitive models the shape of a wrinkle by quan-
tifying the displacement of the surrounding area. It consists
of a centerline, which is a curve that represents the center or
deepest part of a wrinkle, and a cross section shape that varies
with the distance p from the centerline. The cross section used
by Bickel et al. [24] is given as:

S(p) = S(w, d, p) = d ·
(p
w
− 1

)
· exp(− p

w
)

where w is the width of a wrinkle, d the depth, and p the
distance of a point on the surface to the centerline curve. We
will use a similar parametrization of a wrinkle except for the
following:
• We allow the parameters to vary along the centerline

curve. For this we introduce a parameter t that runs from
0 at one end of the curve to 1 at the other end, and write
the fixed w and d values as described in Bickel et al. [24]
as a parameter set P that maps each t to a parameter w
and d.

• Instead of a fixed S(p), we generalize by allowing any
arbitrary cross section function that accepts a parameter
set. We model this by introducing an arbitrary profile and

write it as Φ(x, P) where x is the distance from the spline
and P is a parameter set that contains w and d for any
t. This is similar to the cross section defined as by Kim
[7].

Modeling a wrinkle as a geometrical shape has several
advantages: it is closer to how we intuitively think about the
surface of skin, and it also allows us to quantify the layout, size
and distribution of these shapes with a small set of parameters
that can be estimated from images. In addition parametrized
shapes can be more readily generated using computer graphics
techniques.

C. Measuring Wrinkles from Photographs

Real wrinkles form in specific patterns. In order to replicate
the approximate appearance of these patterns, we extract
wrinkle primitives by tracing these in images taken from real
hands. During tracing we also estimate the parameter sets
that belong to the traced wrinkles. The input images can be
scans taken using polarized light, such as in Ghosh et al.
[12], or photographs preprocessed using high-pass filtering and
contrast enhancement such that wrinkles can be clearly seen
and have little distortion.

Extracting the parameters from these images amounts to
finding continuous curves in a rasterized image, along with
some extra parameters such as their width. There are many
algorithms available that find lines, curves or shapes in im-
ages such as the Hough transform and their variants for
parametrized curves [25], edge detection filters such as Canny
[26], or the Sobel operator [27, page 578] as well as Steger’s
algorithm [28].

In our application we try to detect a large set of narrow dark
lines with given cross sections in relatively noisy images. The
Hough transform has difficulty detecting curves that exhibit
strongly varying directions, and the noise presents a problem
for the edge detection filters. Halftoning algorithms also do
not work well since wrinkles that are not clearly visible are
often clustered together. While Steger’s algorithm is able to
find faint lines in images and works on noisy images it has
trouble finding crossings of lines, a situation that is ubiquitous
in wrinkle images.

D. Tracing Algorithm

To address these issues we use the following wrinkle tracing
algorithm. Assume that we are given a grayscale image where
each pixel represents the height of the surface. We follow the
wrinkle by taking small steps of length r along the surface,
and at each point estimate the parameters for the width and
depth. We use bilinear interpolation to find the height of any
point p within the height image.

We start by choosing a point p at a pixel center that is
likely to belong to wrinkle, e.g. the pixel is darker than some
threshold Tdark. We then draw a circle of radius r around p
and interpret the boundary as a function f(α) that gives the
height for the points at distance r from p and angle α. We use
a minimum finding algorithm to find the lowest point of f(α).
This angle becomes the initial direction αprev . We now take

a step of length r in the direction of αprev and this becomes
the new point p.

For the next step we do the same. However, since we want
the wrinkle traces to follow straight lines, we multiply f(α)
with a weight function ω(α) after the initial direction and then
find the minimum. This weight function should be 0 at angles
that differ more than 90◦from αprev to prevent wrinkle traces
from stepping backward, and should assign a greater weight
to steps that continue in the direction of αprev .

We continue taking steps and recording each point p and
its direction α in a list, which we call the wrinkle trace, until
one of the following happens:
• We reach the boundary of the image, in that case we

terminate the trace and return the list of points.
• The next point p is within distance r of another point q

we traced before, we then have three cases:
1) Either the direction αq of q is very close to the direc-

tion we are stepping in, e.g. within some threshold
Tangle, and the point q is one of the endpoints of
another wrinkle trace. This means we are actually
tracing the same wrinkle and we combine the two
traces together.

2) The direction αq of q is within Tangle but q is not
an endpoint. This means the two wrinkles form a
junction and the rest of the wrinkle has already been
traced, and we can terminate the trace.

3) The direcion αq is larger than Tangle, which means
the wrinkles overlap each other and we can continue
tracing while ignoring the other wrinkle trace.

4) We step to a point p which has a height that is larger
than some threshold Tbright, which means that the
surface under the trace can no longer be considered
a wrinkle and we can terminate the trace.

We continue findind traces in the image until we either reach
a preset maximum number of wrinkles or there is no pixel
center left in the image that is not within distance r of some
traced point q.

The only thing that is left is to estimate the depth and width
parameters at each point. To find the depth parameter d at
point p we take a line segment of length 2r orthogonal to the
direction α of p centered at p. We consider the height values
along this line as a function g(d) that describes the height of
the cross section at point p at distance d from the center line of
the trace. We can compare g(d) to the function S(d) provided
by Bickel [24] and find the values of w and d that result in
the closest fit, e.g. has the least squared difference with g(d).

E. Threshold parameters

As with most computer vision algorithms, there are param-
eters that need to be chosen depending on the input image.
The values for Tdark and Tbright depend on the dynamic
range of the input image. In general higher values for Tdark
will result in more wrinkles being started, which adds more
small wrinkles to the result, while lower values of Tbright will
result in longer traces. In our results we first rescaled the input

images to the range [0 . . . 1], then used values of Tdark = 0.25
and Tbright = 0.75.

For the angular threshold Tangle we used a low value of
5◦. Too high values of Tangle can cause wrinkle traces to be
merged together incorrectly, while too low values can produce
wrinkle sets where intermittend parts are missing.

The wrinkle sets measured in Section II-C can be edited
and then be used to generate displacement maps. Additionally,
we want to adapt the measured data to fit onto different 3D
models. This means we want to generate different wrinkle sets
with similar parameters as the measured data.

F. Observations

We have studied the measurements and scanned images and
made several key observations:

1) Wrinkle patterns appear to follow curves along the
surface.

2) Wrinkles that follow the same direction tend to be
equally spaced.

3) Wrinkles resist radical changes in direction. At each
point along the center curve of a wrinkle the angles stay
within a small range.

4) Wrinkles that are shorter than they are wide do not occur.
Any wrinkle set generator should adhere to these observa-

tions. To model observation 1, we need a function that gives
the possible directions that wrinkles can have at each point. For
this we introduce a function Od(p) which is the distribution of
wrinkle orientations at point p. Since the wrinkle’s orientations
are rotationally symmetric, the angles drawn from Od(p)
always lie in the range [0..180] degrees. The distribution can
be interpreted as the probability that a wrinkle has the angle
α at a point p on the surface.

In addition to the orientation of wrinkles at a point p on
the surface, when we generate new wrinkle sets we also
need to assign a width w and depth d to each point of the
wrinkle primitive, which forms the wrinkle’s parameter set.
The distribution of w and d depends not only on the location
of point p but also on the wrinkle orientation α. For example
wrinkles on the finger are more pronounced on the joints and
orthogonal to the finger’s direction.

We model this phenomenon by introducing two distribution
functions: the width or “thickness” distribution Td(p, α) and
the height distribution Hd(p, α) that give the distribution of
width w and maximium depth d for a point p in a direction
α. In Section II-G we show how the distributions (Od(p),
Td(p, α) and Hd(p, α)) can be estimated from the data.

G. Obtaining Distributions from Data

We want to use the data obtained in Section II-C to generate
new wrinkle sets with similar appearance denoted as W ′. To
do this we need to estimate the distribution properties of a
wrinkle set W . The most straightforward way to do this is
to aggregate the data from W . There are several ways to
aggregate geometric data, each with their cost and benefits
which will all give different results [29].

In our implementation we aggregate the data by taking all
the points Q around the query point p within a distance r, and
then select a point q ∈ Q uniform at random and return its
direction and parameter set. If sufficient samples are taken, this
will approximate the distribution of the parameter set around
that point.

The choice for the value of r has a tradeoff. Larger values of
r tend to smooth out the data more but may miss fine details,
while smaller values generally have more variance and are
prone to yield invalid results when the density of the data
points is low.

To model observation 2, that parallel wrinkle primitives have
a minimum distance from each other, we define a spacing
distance D. To calculate the spacing distance D from a
measured wrinkle set, we average the distance from each point
p in the measurement to the closest point q on another wrinkle
primitive such that the angular difference is less than Tangle,
ignoring it if no such point exists.

III. GENERATING DISPLACEMENT MAPS

A. Generating new Wrinkle Sets from Distributions

Using the distributions defined in the previous Section,
we can now create an algorithm for generating new wrinkle
sets W based on existing measurements (see Alg. 1). This
algorithm is similar to the tracing algorithm, and is as follows:

Repeat the following process until no more wrinkles can
be placed: Choose a point p within the area where wrinkle
primitives are to be generated. Draw a sample α from the
direction distribution Od(p), this becomes the initial direction
of the wrinkle. Take an step of fixed length l in the direction
α; this becomes the new point p. We used a step length l
equivalent to 1 pixel in the resulting image.

Sample Td(p, α) and Hd(p, α) for the values of w and d
and assign them to the point p as its parameter set.

Check if there is another wrinkle segment q within the
spacing distance D from p. If so, and that point has an angular
difference less than Tangle, it means that we are violating
observation 2 and we should terminate this wrinkle primitive.
We also ensure that the change in angle from the previous
point is no larger than 45◦. This both models observation 3,
and prevents the generation algorithm from stepping back. If
neither cases occur we can continue generating points until
some maximum wrinkle length is reached or we step outside
of the boundaries of the area in which we want to generate
wrinkles.

Now, perform the process again starting at the initial point
but now generate the wrinkle points in the opposite direction,
and combine the two traces to form a single wrinkle primitive.

Since wrinkle points are not allowed to approach each other
arbitrarily close, eventually the space will be filled, and no
more wrinkle points can be placed. However in an actual
implementation this may take a long time. It can be beneficial
to impose upper limits on the number of wrinkles placed, or in
the case that the initial points are placed randomly, a maximum
number of attempts before the algorithm terminates.

Fig. 1. Top left: Original photograph of the back of a hand. Top middle: Pre-processed image with high contrast and highpass filters applied to make the
wrinkles visible. Top right: Image with wrinkle traces indicated in red. Bottom left: Closeup of skin rendered with a realistic skin material with the generated
displacement map. Bottom middle: Rendered displacement map from the measured wrinkle traces. Bottom right: Real scan of the displacement of human
skin, captured using polarized lighting and photography. (Image courtesy of texturing.xyz)

Note that in the wrinkle generation algorithm, the sampling
of Td(p, α) and Hd(p, α) always occurs strictly after Od(p)
has been sampled. This suggests that we do not need to
resample the distributions again but we can simply return the
recorded value of w and d when Td and Hd are sampled.

B. Generating Displacement Maps

Given a wrinkle primitive set W ′, we can
construct an actual displacement map using algorithm
GENERATEDISPLACEMENTMAP(W). An image is a
rectangular grid of Iw×Ih pixels i, each of which is assigned
a displacement z which represents the distance the actual
surface differs from the mesh geometry. This algorithm is
presented in pseudocode in Alg. 2.

A wrinkle primitive only has non-zero values close to the
wrinkle curve. In order to speed up the implementation we
place a bounding box around a wrinkle primitive and then
place those bounding boxes in an R*-Tree [30]. We take the
bounding box to be the smallest axis aligned rectangle where
the Φ(d) is non-zero. We then only sum the contributions of
each wrinkle primitive where pixel i is within the bounding
box of w.

The values of the resulting image can then be rescaled (and
clamped where required) to the desired range and converted
to a suitable image format for use in rendering.

C. Remapping Data to Alternate Models

We can use the measured data directly to generate a dis-
placement map for a new hand mesh when the difference in
underlying geometry is small. However, hands can differ quite
significantly in size, shape and appearance. If for example we
would directly render the curves onto a hand that is e.g. twice
as large as the hand that we measured, the wrinkles would
be stretched to two times their size. This is not what would
happen in reality as the physical properties of skin do not scale
up when the hand size increases. Instead, about twice as many
wrinkles would form (see Fig. 3).

Assume we have a function R(p) with p = (u, v) that maps
the uv-coordinates of hand mesh A to hand mesh B in such a
way that its general shape is preserved, e.g. the uv-coordinate
of the tip of the finger in mesh A corresponds to the tip of
the finger in mesh B, the uv-coordinates on the back of the
hand of mesh A roughly correspond to the same locations in
mesh B and so on (see red lines in Fig. 4).

Fig. 2. Three different generated variants of a wrinkle set based on the same set of distributions measured from input data.

Algorithm 1 Pseudocode for generating variant wrinkle sets.

GENERATEVARIANT(W)

1 � Let W ′ be a wrinkle set, l the step length.
2 � Let DIST(a, b) be the distance between points a and b.
3 � Let ANGLE(α, β) be the angular difference.
4 � Let STEP(q) be the direction of the wrinkle at q.
5 � Let B be area within which wrinkles are placed.
6 while there are still wrinkles to be placed
7 do while p is valid or the first iteration
8 do choose a point p.
9 � Let v be a wrinkle primitive.

10 α← Od(p)
11 w ← Td(p, α)
12 d← Hd(p, α)
13 Add point d to the trace of v with w, d
14 Find a unit vector u with direction α
15 valid← TRUE
16 if p is outside B
17 then valid← FALSE
18 if there exists another wrinkle point q
19 then if DIST(p, q) < D
20 then if ANGLE(α, STEP(q)) < Tangle
21 then valid← FALSE
22 p← p+ l · u
23 Perform the process again for the opposite direction.
24 Add v to W ′

25 return W ′

Using the remapping function R(p) we can generate a new
wrinkle set W ′ using the algorithm in Section III-A, but
instead of sampling point p we sample R(p). In this way the
set generated fits onto B without any distortion.

D. Generating Microstructure Displacement Maps

The algorithm presented in Section III-B is not limited to
hands, but can also be used for generating displacement maps

Algorithm 2 Displacement map generating algorithm.

GENERATEDISPLACEMENTMAP(W)

1 � Let I be an image with Iw × Ih pixels.
2 for each pixel i in I
3 do Let h← 0 be the displacement at pixel i
4 for each wrinkle primitive v in W
5 do Find the closest point from i to p on v
6 Lookup w and d for v.
7 Find the t that belongs to point p on v.
8 h← h+ Φ(t)
9 Write h into I at pixel i

10 return I

Fig. 3. Applying the measured data to a longer finger by rescaling the image
directly results in distortion of the displacement map, while rescaling the
distributions instead will simply add more wrinkles in that area.

for other parts of the skin, or generate displacement maps that
are guaranteed to be seamless.

In Graham et al. [16] several microstructure displacement
maps are used to enhance the realism of a virtual face. The
maps are aquired by illuminating a small patch of skin with
polarized light in 16 different directions and capturing it with
a camera with a polarized light filter which filters out almost
all of the specular reflections. The technique of Gradient-

Fig. 4. A remapping function R(p) would map similar areas on one 3D
model to another.

Fig. 5. Left: Displacement map acquired from a real person (Image courtesy
of Nagano, Debevec and Fyffe). Right: Displacement map generated using
our algorithm where the angles in Od(p) have been rotated by about 20
degrees. The image has noise added and has a high pass filter with a cut-off
of 5 pixels applied, to simulate image effects added by the scanning process.

illumination estimates of how much that part of the surface is
oriented towards the light source, and can be used to extract
an approximate normal. The image with extracted normals
can then be converted to a displacement map by performing
integration over these normals.

The algorithms presented in this paper can also be used to
generate similarly looking microstructure displacement maps.
Generating displacement maps procedurally has some ad-
vantages over scanning. Namely, a subject and an intricate
polarized lighting rig are not required, and the microstructure
displacement maps can also be modified easily where required.
For example the orientation of the wrinkles can be rotated or
the images can be made seamless by performing the generation
step and generating in a modulo space.

IV. RESULTS

We created an implementation of the algorithms presented
in this paper. The presented displacement maps were generated
at a resolution of 4096 by 4096 pixels, which took about 30
seconds to complete on a Intel CoreTMi7-4702MQ 2.2 GHz
notebook.

In Fig. 1 we see the results at each stage of our method.
A source photograph (top left) is given as the input, and
is pre-processed to make the wrinkle patterns more visible
(top middle). This image is then processed by the algorithm
in Section II-D that extracts the wrinkle primitives from the
image (top right). These wrinkle sets can then be edited, or a
new wrinkle set can be generated based on the traces. These
wrinkle primitives are then rendered as a displacement map

Fig. 6. Closeup of the 3D model of a hand with displacement map applied.

Fig. 7. A full displacement map generated from a hand image.

using the algorithm in Section III-B, and serves as the input
for a skin material (bottom middle). This skin material can be
applied to a 3D model and rendered (bottom left).

In Fig. 7 we see a displacement map generated from
measured data. Many effects of skin wrinkles, such as overlap
in several directions, the tendency for parallel wrinkles to not
be too close to each other and the variation in depth and
thickness can clearly be seen in the image.

The algorithm can also be used to generate micro-structure
displacement maps for use in other algorithms. In Fig. 5 we
see a scan and a variant generated by our algorithm where
the α distribution function was rotated. The properties of
this generated displacement map can be modified to suit the
algorithm in question. For example the texture can be made

seamless or rendered at a higher resolution.
We can create variants of wrinkle sets by generating new

sets with similar distributions. This is shown in Fig. 2. These
distributions can also be used to generate displacement maps
for skin with different geometry without becoming implausible
(Fig. 3). In Fig. 6 we rendered a hand model using a generated
displacement map in NVidia iRay R©.

V. FUTURE RESEARCH

The algorithm uses two user defined constants, namely the
angular difference Tangle and the maximum angular deviation
of 45◦. It may be possible to estimate these from the data as
well. The angle under which wrinkles may cross may be found
by filtering all points where wrinkles cross and then finding the
distribution of angles. The maximum deviation may be found
by examining the distribution of curvature along the wrinkles
using different data sets.

Currently we simply generate the properties of wrinkles
from a measured data set, but the biology suggests that we
could actually find the directional distribution of wrinkles by
inspecting the direction of the stresses induced by motion.
This indicates that it may be possible to find Od(p) by using
the rigging information of a 3D animated hand. In essence
we would calculate how far the skin stretches and in which
direction(s) under animation at that point and then use that
information to generate a wrinkle primitive set.

We also assume that we are provided a remapping function
R. However, it may be possible to automatically create a
remapping function based on the rigging information present
in a character model. For example, the uv-coordinates of points
nearby a joint in one 3D model may be mapped to a point
nearby the same joint of another 3D model.

VI. CONCLUSION

The displacement maps generated with the algorithms in
this paper contain dense wrinkle patterns that are difficult
or would otherwise be time consuming to draw manually.
The generated displacement maps use measurements taken
from photographs, and the maps will therefore display patterns
similar to those that occur in nature. It is not required to
perform a computationally expensive physical simulation to
generate wrinkles for a hand mesh, which allows character
artists to create displacement maps in the order of minutes
without requiring detailed biological knowledge about the
size, shape and distribution of skin wrinkles. In addition the
wrinkles can be edited, and new sets of wrinkles and their
accompanying displacement maps can be generated and even
adapted to fit onto other 3D models without distortion.

REFERENCES

[1] L. Szirmay-Kalos and T. Umenhoffer, “Displacement mapping on the
gpu - state of the art,” Computer Graphics Forum, vol. 27, 2008.

[2] R. L. Cook, “Shade trees,” ACM Transactions on Graphics, vol. 18, pp.
223–231, 1984.

[3] E. Schneider, “Mapping out the uncanny valley: A multidisciplinary
approach,” in ACM SIGGRAPH 2008 Posters, 2008, pp. 33:1–33:1.

[4] M. Mori, K. F. MacDorman, and N. Kageki, “The uncanny valley [from
the field],” IEEE Robotics and Automation Magazine, vol. 19, pp. 98–
100, 2012.

[5] C. Cao, D. Bradley, K. Zhou, and T. Beeler, “Real-time high-fidelity
facial performance capture,” ACM Transactions on Graphics, vol. 34,
pp. 46:1–46:9, 2015.

[6] T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross, “High-
quality single-shot capture of facial geometry,” ACM Transactions on
Graphics, vol. 29, pp. 40:1–40:9, 2010.

[7] H.-J. Kim, A. C. Öztireli, I.-K. Shin, M. Gross, and S.-M. Choi, “In-
teractive generation of realistic facial wrinkles from sketchy drawings,”
Computer Graphics Forum, vol. 34, pp. 179–191, 2015.

[8] Y. Bando, T. Kuratate, and T. Nishita, “A simple method for modeling
wrinkles on human skin.” in Pacific Conference on Computer Graphics
and Applications, 2002, pp. 166–175.

[9] N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu,
H. Nabeshima, S. Akazaki, K. Hori, and Y. Miyake, “Image-based
skin color and texture analysis/synthesis by extracting hemoglobin and
melanin information in the skin,” ACM Transactions on Graphics,
vol. 22, pp. 770–779, 2003.

[10] A. Golovinskiy, W. Matusik, and H. Pfister, “A statistical model for
synthesis of detailed facial geometry,” ACM Transactions on Graphics,
vol. 25, 2006.

[11] O. G. Cula, K. J. Dana, F. P. Murphy, and B. K. Rao, “Skin texture
modeling,” International Journal of Computer Vision, vol. 62, pp. 97–
119, 2005.

[12] A. Ghosh, G. Fyffe, B. Tunwattanapong, J. Busch, X. Yu, and P. De-
bevec, “Multiview face capture using polarized spherical gradient illu-
mination,” in SIGGRAPH Asia 2011, 2011.

[13] P. Garrido, M. Zollhoefer, D. Casas, L. Valgaerts, K. Varanasi, P. Perez,
and C. Theobalt, “Reconstruction of personalized 3d face rigs from
monocular video,” , vol. 35, pp. 28:1–28:15, 2016.

[14] S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li, “Photorealistic facial
texture inference using deep neural networks,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 2326–2335.

[15] J. Li, W. Xu, Z. Cheng, K. Xu, and R. Klein, “Lightweight wrinkle
synthesis for 3d facial modeling and animation,” Comput. Aided Des.,
vol. 58, pp. 117–122, 2015.

[16] P. Graham, B. Tunwattanapong, J. Busch, X. Yu, A. Jones, P. Debevec,
and A. Ghosh, “Measurement-based synthesis of facial microgeometry,”
in EUROGRAPHICS, 2013.

[17] I.-K. Shin, A. C. ztireli, H.-J. Kim, T. Beeler, M. Gross, and S.-M.
Choi, “Extraction and transfer of facial expression wrinkles for facial
performance enhancement,” in Pacific Graphics Short Papers, 2014.

[18] C. Larboulette and M.-P. Cani, “Real-time dynamic wrinkles,” in Com-
puter Graphics International, 2004.

[19] C. Flynn and B. A. McCormack, “Simulating the wrinkling and aging of
skin with a multi-layer finite element model,” Journal of Biomechanics,
vol. 43, pp. 442–448, 2010.

[20] X. S. Yang and J. J. Zhang, “Modelling and animating hand wrinkles,”
in Computational Science ICCS 2005, ser. Lecture Notes in Computer
Science, 2005, pp. 199–206.

[21] H. Pageon, “Reaction of glycation and human skin: The effects on the
skin and its components, reconstructed skin as a model,” Pathologie
Biologie, vol. 58, pp. 226–231, 2010.

[22] L. Boissieux, G. Kiss, N. M. Thalmann, and P. Kalra, “Simulation of
skin aging and wrinkles with cosmetics insight,” in , 2000, pp. 15–27.

[23] F. W. Danby, “Nutrition and aging skin: sugar and glycation,” Clinics
in Dermatology, vol. 28, pp. 409–411, 2010.

[24] B. Bickel, M. Botsch, R. Angst, W. Matusik, M. Otaduy, H. Pfister, and
M. Gross, “Multi-scale capture of facial geometry and motion,” ACM
Transactions on Graphics, vol. 26, 2007.

[25] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol. 15, pp. 11–15, 1972.

[26] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions Pattern Analysis and Machine Intelligence, vol. 8, pp. 679–698,
1986.

[27] R. C. Gonzalez and R. E. Woods, Digital Image Processing (2nd
Edition). Pearson, 2002.

[28] C. Steger, “An unbiased detector of curvilinear structures,” IEEE Trans-
actions Pattern Anal. Mach. Intell., vol. 20, pp. 113–125, 1998.

[29] N. Mamoulis, Spatial Data Management. Morgan & Claypool Pub-
lishers, 2011.

[30] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-
tree: An efficient and robust access method for points and rectangles,”
SIGMOD Record, vol. 19, pp. 322–331, 1990.

