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Abstract—Segmentation of anatomical structures in Chest
Posterior-Anterior Radiographs is a classical task on biomedical
image analysis. Deep Learning has been widely used for detection
and diagnosis of illnesses in several medical image modalities
over the last years, but the portability of deep methods is
still limited, hampering the reusability of pre-trained models
in new data. We address this problem by proposing a novel
method for Cross-Dataset Transfer Learning in Chest X-Ray
images based on Unsupervised Image Translation architectures.
Our Transfer Learning approach achieved Jaccard values of
88.20% on lung field segmentation in the Montgomery Set
by using a pre-trained model on the JSRT dataset and no
labeled data from the target dataset. Several experiments in
unsupervised and semi-supervised transfer were performed and
our method consistently outperformed simple fine-tuning when
a limited amount of labels is used. Qualitative analysis on the
tasks of clavicle and heart segmentation are also performed on
Montgomery samples and pre-trained models from JSRT dataset.
Our secondary contributions encompass several experiments in
anatomical structure segmentation on JSRT, achieving state-of-
the-art results in lung field (96.02%), heart (89.64%) and clavicle
segmentation (87.30%).

I. INTRODUCTION

Radiology has been an useful tool for the detection of
several kinds of illnesses for over a century. Radiation allows
physicians to peek through human tissue without having
to perform invasive procedures. Computer-Aided Diagnosis
(CAD) systems have followed the advances in radiology
during the last decades, providing automated second opinions
for physicians.

An important radiological exam on a physician’s toolkit
is the Posterior-Anterior (PA) Chest Radiograph, more com-
monly called Chest X-Ray (CXR). CXRs are the single most
acquired medical image modality [1]. These images are impor-
tant for the detection and diagnosis of several pulmonary dis-
eases, such as tuberculosis, interstitial lung disease, pulmonary
embolism and lung cancer [1]. Lung field segmentations can be
used as important markers for the detection of such illnesses,
as they often affect the lung’s shape and volume. Therefore,
the automation of lung segmentation tasks is an active research
area in biomedical image analysis. Other health abnormalities
which may be detected using CXRs are bone fractures in
the thoracic area and health diseases that affect heart shape
and/or volume. Therefore, we explore three tasks on CXR
images: lung field segmentation, clavicle segmentation and
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Fig. 1. Example of ground truths for two CXRs. (a,e) Original image. (b,f)
Lungs. (c,g) Clavicles. (d,h) Heart.

heart segmentation. Examples of ground truths for these three
tasks can be seen in Figure 1.

As in most Computer Vision applications, Deep Learning
has been widely used in the area of biomedical image analysis,
including CXRs. A major problem in Deep Neural Net-
works (DNNs) is the lack of generalization between different
datasets, image modalities and/or tasks. There are a lot of CXR
data publicly available on the Internet, but very few labeled
datasets are within reach in the public domain. Therefore, a
technique that transfers the knowledge obtained in a labeled
dataset to the images of another and is also capable of learning
from unlabeled data would be helpful for producing more
general representations over CXR images.

The main contribution of this work is the proposal of a
novel Transfer Learning technique for knowledge transfer, as
detailed in Section IV-C. Secondary contributions include:

• Evaluation of DNN architectures for semantic segmen-
tation of lungs, clavicles and heart in supervised, semi-
supervised and unsupervised settings;

• State-of-the-art results in CXR segmentation tasks;
• Assessment of the superiority in stability of Deep Learn-

ing methods compared to classical machine learning
approaches and to secondary human annotations.

The remaining sections of this work are organized as
follows: Section II shows related research projects in CXR



segmentation, including deep-based ones; Section III presents
the DNN architectures used in our work; Section IV describes
the proposed approach for cross-dataset knowledge transfer;
Section V shows the experimental procedures, datasets and
evaluation metrics chosen for this work; Section VI presents
and compares the results obtained in our experiments; and
Section VII contains our final remarks about the results.

II. RELATED WORK

As it is a classical problem in the area of biomedical
image analysis, CXR segmentation has been approached by
using traditional image processing techniques. Ginneken et
al. [1] performed tests with several automated segmentation
algorithms and comparisons of the gold standard with other
human-generated labels. Their best automated results were a
mean Jaccard value of 94.9% for lung field segmentation,
87.8% for heart segmentation and 73.6% for the clavicles,
while human observers achieved 94.6%, 87.8% and 89.60%
for these tasks, respectively. Ginneken et al. [1] found no
significant differences between accuracies of the automated
methods and the labels obtained by the human observers
in most tasks, which highlighted inter-observer inaccuracies.
Candemir et al. [2] used Atlas to perform lung field segmen-
tation in CXRs, achieving Jaccard scores of 95.4%. Hogeweg
et al. [3] focused on clavicle segmentations using Hybrid Dy-
namic Programming/Active Shape Model/Pixel Classification
(HDAP), achieving 86% Jaccard.

During the last year, some works already introduced DNNs
in the area of CXR segmentation [4], [5]. Dai et al. [4]
developed an adversarial architecture for the task and reported
Jaccard scores of 94.7% for lung field segmentation and
86.6% for heart segmentation. Novikov et al. [5] proposed a
change in the existing U-net architecture [6] (Section III-A2)
– called InvertedNet – to perform segmentation on CXR data,
achieving Jaccards of 95.1% for the lungs, 87.1% for the heart
and 87% for the clavicles.

Semi-supervised transfer using regression objectives for the
unlabeled data/domain have been proposed in the literature
[7]. These methods rely mostly on supervised loss functions
being used together with unsupervised losses. Early experi-
mental evaluations of this work pointed that Chen and Chien’s
approach [7] for transfer in classification settings achieved
subpar segmentation results in the CXR image domain. We
observed that the source domain achieves good segmentation
results, while the target domain is not optimized correctly.

III. DEEP SEMANTIC SEGMENTATION

Most DNNs for image analysis have been based on convo-
lution operations. Vanilla implementations of Convolutional
Neural Networks (CNNs) [8] are essentially stackings of
three types of layers: Convolutional, Pooling and Fully Con-
nected (FC) layers. Convolutional and Pooling layers are often
stacked in the beginning of these networks and serve as
learnable feature extractors, while FC layers play the role of
the classifier at the end of the network.
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Fig. 2. Transforming fully connected layers into convolution layers enables a
classification net to output dense predictions. Each conv2d box corresponds to
multi-channel convolutions followed by downsampling (pooling). Each vector
represents a feature vector in an FC layer. Adapted from [9].

A. Deep Semantic Segmentation

Segmentation has been an active research topic in the area
of biomedical image analysis for decades, as it is a rather
common preprocessing and evaluation tool for several medical
applications. Traditionally this field of research uses several
active contour, clustering, atlas and interactive methods. More
recently, with the advent of DNNs, segmentation in Computer
Vision has become dominated by semantic deep-based meth-
ods. Therefore, several algorithms comprising the state-of-the-
art of deep semantic segmentation were used in our experimen-
tal setup. Most of these architectures are discriminative models
based on improvements over CNNs and Fully Convolutional
Networks (FCNs) [9].

1) Fully Convolutional Networks: The most basic segmen-
tation architectures are the FCNs [9], which are often based
on CNN models like AlexNet [8] and VGG [10] adapted
to dense prediction (Figure 2). An FCN can be understood
as a patchwise approach, wherein each pixel in an image
is a sample. Whole image fully convolutional training is
identical to patchwise training where each batch consists of
all the pixels in an image or set of images. Replacing fully
connected layers in a CNN by convolutional layers and adding
a spatial loss produces an efficient machine for end-to-end
dense learning [9], as can be seen in Figure 2.

2) U-nets: Ever since the appearance of FCNs, several
attempts to mitigate the vanishing gradient problem have
been proposed, most of them relying in alternative paths for
information flow [11], [12]. Skip connections are the most
common way to create these alternative paths, serving as
highways for backpropagation to reach earlier layers in the
network without passing through all the layers in front of
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Fig. 3. U-net architecture. Each conv2d box corresponds to multi-channel
convolutions followed by downsampling or upsampling. Arrows denote the
skip connections between symmetric layers. Adapted from [6].
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Fig. 4. An illustration of the SegNet architecture. Arrows denote the passage
of pooling indices to forward layers. Adapted from [13].

them. U-nets [6] take advantage of skip connections to map
higher semantic-level information to low semantic-level pixel
information. These networks are Encoder-Decoder architec-
tures wherein the downsampling half (Encoder) is symmetrical
to the upsampling half (Decoder), as shown in Figure 3. There
is also a larger amount of feature channels in the upsampling
layers, which allows for more information to be propagated to
higher resolution layers [6].

3) SegNets: SegNets [13], like U-nets, are Encoder-
Decoder architectures for segmentation with symmetric layers.
The Encoder half of the network is composed of VGG-like
3 × 3 convolutional layers. The construction of the Decoder
network is accomplished by mirroring the Encoder layers and
replacing the pooling layers for upsampling components, as
can be seen in Figure 4. One main advantage of SegNet
compared to other segmentation architectures is the use of
the pooling indices in the upsampling process. SegNet uses
the max pooling indices to upsample (without learning) the
feature maps and deconvolves with a trainable decoder filter
bank [13].

IV. DEEP TRANSFER LEARNING

DNNs are powerful overcomplete statistical models that can
learn to extract features from and infer over unstructured data
such as images, sounds or texts. One great limitation for DNNs
is the amount of data available for feeding these models, as
generalizing patterns over unstructured can be an exceptionally
hard task. Transfer Learning is an important tool in this
context, as it allows for less data to be used in the training
procedure of more specific domains. We used fine-tuning [14]
as our baseline, as it is currently the most common method for

Transfer Learning in the field of Computer Vision. It is easy to
find several pre-trained neural network architectures in large
datasets such as ImageNet1. CV applications can benefit from
this strategy [14], as fine-tuning a pre-trained net only requires
a small fraction of the data needed to train a DNN from
scratch. This section introduces the proposed methodology for
Cross-Dataset Transfer Learning.

A. Image-to-Image Translation

Isola et al. [15] proposed the first DNN architecture for
domain-agnostic image-to-image translation. Before this work,
image translation tasks were tackled with special-purpose
methodologies [16]–[20], but the problem remains the same
in all of these settings: mapping pixels to pixels. The main
contribution of [15] was, therefore, to provide a general
architecture – henceforth referred to as pix2pix2 – and loss
for this kind of task.

Before pix2pix, the literature had already discovered that
naive approaches for image translation losses – such as using
Euclidean Distance – tend to produce blurry results, as the
network tries to minimize sample means [20], [21]. The
solution to this problem was to introduce an adversarial loss
to the pipeline by using a Generative Adversarial Network
(GAN) [22] architecture. Adversarial losses tend to produce
more photorealistic images than traditional losses, as the
discriminator is able to identify blurry images and force the
generator to produce images with sharper edges.

The generator network is normally an Encoder-Decoder
network such as U-net [6], which receives the image in the
source domain and translates it to the target domain. The
discriminator network is a traditional architecture for image
classification, such as a CNN [8], [10]. The discriminator has
the job of determining if the image is a natural sample from
the specific domain or if it is a translated sample originally
from another domain.

Samples are fed to the network during the training phase
in a supervised manner and, therefore, pix2pix requires paired
images in the source and target domains. The need for paired
samples represents a serious hampering for many real world
applications of pix2pix, including biomedical ones. These
difficulties in obtaining paired samples from different domains
encouraged the creation of Unpaired Image-to-Image Transla-
tion models [23]–[25], further detailed in Section IV-B.

B. Unpaired Image-to-Image Translation

Unpaired Image-to-Image Translation [23]–[25] can be
achieved by using the property of Cycle Consistency (Fig-
ure 5). When using paired networks as pix2pix, one can simply
compare images from the source domain to images from the
target domain, but this strategy does not work for unpaired
samples, thus the need for cycle consistent losses.

Cycle Consistency is based on the premise that image
translation can be modeled as follows. Let A and B be two
image domains and GAB : A → B and GBA : B → A two

1www.image-net.org/
2https://phillipi.github.io/pix2pix/
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Fig. 5. Typical adversarial architecture for Unpaired Image-to-Image Translation based on Cycle Consistency. (a) Translation of a sample A→ B → A. (b)
Translation of a sample B → A→ B.

translation functions between these domains. Given two sam-
ples a ∈ A and b ∈ B, it is possible to derive an adversarial
loss based on the following comparisons: a ≈ GBA(GAB(a))
and b ≈ GAB(GBA(b)). This objective function enforces
that GAB and GBA are inverses of each other, that is,
GAB = G−1

BA and GBA = G−1
AB . Generative networks such

as GAB and GBA are generally implemented as Encoder-
Decoder architectures, similar to U-nets [6] and SegNets [13].

The counterparts of the generative networks in GANs are
discriminative networks, which are trained to identify if an
image is natural from the domain or a translated sample
originally from another domain. DA and DB will be hence-
forth referred to as the discriminative networks for datasets
A and B, respectively. Discriminators are normally traditional
supervised networks, such as CNNs [8], [10], which are trained
in the classification task of distinguishing real images from
fake images generated by the generators.

Even though there are several architectural differences be-
tween the methods of Unpaired Image-to-Image Translation,
the core of the idea of Cycle Consistency can be seen in
Figure 5. Specific architectures of GAB , GBA, DA and DB , as
well as customly designed losses can grant different translation
methods special characteristics such as different encodings for
style and content in an image [25].

C. Proposed Method

A recent survey on Cross-Dataset Transfer Learning [26]
foresees the use of Image-to-Image Translation Networks [15],
[23], [25] for Unlabelled Target Dataset Transfer. The Transfer
Learning DNN architecture proposed in this paper builds up
on this prediction and can be used in unsupervised and semi-
supervised settings, that is, with few or no target labels.

With only simple modifications, one can adapt the Unpaired
Image Translation architecture shown in Figure 5 in order to
perform Cross-Dataset Transfer Learning. Let A be a labeled
dataset and B be a weakly labeled or unlabeled dataset. We
propose the architecture shown in Figure 6 for transfering
knowledge from A to B. The unsupervised part (circled in
green) is simply an unpaired translation network, such as [23].
The supervised section (in red) uses a model MA pre-trained
on A to enforce discriminative translations by GAB and GBA

– that is, translations from B to A that preserve the visual
features important for the class discrimination in MA. As

shown in Figure 6b, if there are any labels for the dataset B,
they are also taken into account by the architecture, allowing
for a better training of GBA.

Discriminative and generative models in GANs are trained
intermittently. At first, the generators are frozen while both
discriminators are trained simultaneously using backpropaga-
tion. Later the inverse occurs: the discriminative networks are
frozen and both generators are trained at the same time. Our
method adds a third optimization procedure to this pipeline,
wherein MA is fine-tuned and backpropagates the training
errors to GAB and GBA, while DA and DB are frozen.
These training steps will be henceforth called generative,
discriminative and supervised steps.

If convergence is met, it is possible to forward an image
b ∈ B to GBA, get its counterpart in A and forward it to MA,
as GBA was enforced to preserve the visual features important
for MA. If there are no labels for B samples, only the A labels
are used in the supervised part of the network. Therefore, our
architecture can use A labels to train a model for B samples in
a completely unsupervised setting. Contrary to fine-tuning, our
method uses the whole B dataset to transfer the knowledge,
not only the labeled samples in B.

As the proposed Transfer Learning architecture is built
on top of a generic Unpaired Image Translation architecture
(Figure 5), it is agnostic to the choice of Cycle Consistency
network. That is, one could easily shift between implementa-
tions of CycleGANs [23], UNIT [24] or MUNIT [25].

V. EXPERIMENTAL SETUP

A. Chest X-Ray Datasets

The most used CXR datasets are the Japanese Soci-
ety of Radiological Technology (JSRT [27]3), the Mont-
gomery/Shenzhen Sets [28]4 and the ChestX-ray8 [29]5.

JSRT contains 247 PA Chest Radiographs, while the Mont-
gomery Set is composed of 138 cases. JSRT has pixel-level
labels for lung field segmentation tasks as well as heart
and clavicle ground truths, while the Montgomery Set only
contains ground truths for the lungs. ChestX-ray8 and the
Shenzhen Set do not provide pixel-level labels. Therefore our

3http://db.jsrt.or.jp/eng.php
4https://ceb.nlm.nih.gov/repositories/tuberculosis-chest-x-ray-image-data-sets/
5https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/37178474737
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Fig. 6. Proposed architecture for unsupervised and semi-supervised Transfer Learning. Unsupervised modules correspond to a cycle consistency-based
translation network. (a) Training procedure for a sample A→ B → A. (b) Training procedure for a sample B → A→ B. One should notice that most or
all labels for b ∈ B samples might be missing. This is the reason why there is a conditional in the B → A→ B diagram.

quantitative experimental procedure only took into account the
JSRT and Montgomery Sets, as they are the only ones with
pixel-level annotations. Qualitative assessments of heart and
clavicle Transfer Learning results using models pre-trained in
JSRT are presented for the Montgomery Set, which does not
have ground truths for these tasks.

B. Segmentation Experimental Procedure

We resized all images and ground truths to 256 × 256
pixels in order to lower GPU memory requirements and due
to exploratory tests that showed no benefits in using larger
image sizes. We built all architectures in pytorch6, using the
pytorch-semantic-segmentation7 implementation as a basis on
an NVIDIA Titan X Pascal with 12GB of memory.

Results were obtained using a 5-fold cross-validation
methodology over the datasets. For each test fold, one of the
other 4 training folds was not used in training and served as
a second validation step in order to select the epoch with the
best results. All networks were trained for 150 epochs using
4 images per batch, the Adam [30] solver and Cross Entropy
loss. Momentum was set to 0.9, while a Learning Rate of
1× 10−4 was used and a weight decay of 5× 10−4.

C. Transfer Learning Experiments

The exploratory tests for the proposed Transfer Learning
architecture were performed using MUNIT [25]. This archi-
tecture was chosen because it is designed to split the encoding
of content and style information in the images. This allowed
our Transfer Learning method to encode images from the
unlabeled/semi-labeled dataset B (Montgomery) with the style
of the labeled dataset A (JSRT), while still preserving the
content – that is, the basic shape – of the original image b ∈ B.

In order to prevent the vanishing gradients problem in GBA

and GAB , we chose for MA a segmentation architecture with
skip connections: a U-net [6]. This U-net was pre-trained on
a training fold comprised of 60% of the samples in the JSRT
dataset according to the parameters shown in Section V-B. The
other 40% of the JSRT images were used as validation (20%)

6http://pytorch.org/
7https://github.com/ZijunDeng/pytorch-semantic-segmentation

and test sets (20%) for the U-net. For convenience, we matched
the fold used in the Transfer Learning experiments with one
of the 5-folds used in the segmentation tests (Section V-B),
aiming to use one of the pre-trained segmentation models
in the transfer experiments. The Montgomery Set was also
divided in a 60%-20%-20% configuration. The knowledge
acquired by the pre-trained U-net was then transferred to
the Montgomery Set using both fine-tuning and our Transfer
Learning method.

Due to GPU memory constraints, we needed to use rather
shallow models for the generators (GAB and GBA) and for
the discriminators (DA and DB). Each generative network
only contained a total of 4 layers (2 in the Encoder and 2
in the Decoder), while each discriminative network only had
2 convolutional layers and one FC layer.

We noticed that trying to transfer the knowledge in MA

since the first training epoch was detrimental to the conver-
gence of the translation model, probably due to competing
supervised and unsupervised objectives. Therefore, we first
trained the generators and discriminators for 20 iterations and
made sure they converged via visual assessment. Only then
we started training the supervised part of the model coupled
with the unsupervised translation method. This strategy also
allowed us to train one single translation model in a completely
unsupervised fashion for the first 20 epochs, only then starting
the supervised training steps for different tasks using the same
pre-trained GAB , GBA, DA and DB .

VI. RESULTS AND DISCUSSION

This section presents the results from both supervised
semantic segmentation (Section VI-A) and unsupervised/semi-
supervised Transfer Learning (Section VI-B). Supervised re-
sults are shown according to Jaccard J̈ (Intersection over
Union – IoU) and Dice D̈ (F1-score) metrics, while Transfer
Learning only contains J̈ comparisons, as it is the most
common metric in the literature.

A. Segmentation Results

Segmentation metrics for the JSRT dataset can be seen in
Table I. This table compares the fully supervised semantic



TABLE I
JACCARD AND DICE RESULTS FOR THE JSRT DATASET ON THE LUNG
FIELD, HEART AND CLAVICLE SEGMENTATION TASKS. BOLD RESULTS

SHOW THE BEST VALUES FOR EACH METRIC IN EACH TASK.

Lung Field

Methods J̈ D̈
FCN 95.05 ± 0.20 97.45 ± 0.11
U-Net 96.02 ± 0.33 97.96 ± 0.17
SegNet 95.54 ± 0.32 97.71 ± 0.17

InvertedNet [5] 95.10 97.50
SCAN [4] 94.70 ± 0.40 97.30 ± 0.20
Atlas [2] 95.40 ± 1.50 96.70 ± 0.80

Hybrid Voting [1] 94.90 ± 2.00 -
Human Observer [1] 94.60 ± 1.80 -

Heart

Methods J̈ D̈
FCN 89.25 ± 0.56 94.24 ± 0.35
U-Net 89.21 ± 1.32 94.16 ± 0.88
SegNet 89.64 ± 0.91 94.44 ± 0.55

InvertedNet [5] 87.10 93.10
SCAN [4] 86.60 ± 1.20 92.70 ± 0.20

Hybrid Voting [1] 86.00 ± 0.56 -
Human Observer [1] 87.80 ± 5.40 -

Clavicles

Methods J̈ D̈
FCN 75.52 ± 1.03 85.90 ± 0.68
U-Net 86.54 ± 0.99 92.58 ± 0.80
SegNet 87.30 ± 0.67 93.08 ± 0.49

InvertedNet [5] 87.00 93.00
ASM [1] 73.40 ± 13.70 -

Hybrid Voting [1] 73.60 ± 10.60 -
Human Observer [1] 89.60 ± 3.70 -

segmentation results obtained by our networks with the results
of Atlas-based methods [2], InverseNets [5], GANs [4] and the
techniques used by [1].

One can see that our DNNs achieved better results than all
other methods in all tasks but in clavicle segmentation, where
humans observers obtained better results. This is likely due to
the fact that clavicle segmentation is an extremely unbalanced
task, as these bones are quite small when compared to CXR
image dimensions. SegNets and U-nets performed better than
FCNs in all tasks, mainly in clavicle segmentation, where
FCNs obtained much lower results (J̈ = 75.52 ± 1.03 and
D̈ = 85.90 ± 0.68%), while other DNNs achieved Jaccard
values close greater than to 86.5%.

In heart and lung field segmentation, DNNs surpassed the
results of human observers, which is an indication that the
inter-observer variability is larger than the variability between
automatic segmentations. In other words, the DNNs are able
to match the labeling characteristics of the golden standard
observer – which was used as ground truth for the dataset –
better than other human observers. This conclusions is aligned
with what [1] reported in their conclusions.

DNNs obtained considerably lower standard deviations than
shallow methods. This is evidence that deep methods tend to
produce lower magnitude errors and more reliable predictions.
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Fig. 7. Confidence Intervals (CIs) for the JSRT dataset [27] in lung field, heart
and clavicle segmentation. Vertical axis represent Jaccard metrics for p ≤
0.05. The lower end of the plot was trimmed at 75% to improve visualization.

TABLE II
TRANSFER LEARNING RESULTS FOR THE MONTGOMERY SET [28] IN AN

U-NET PRE-TRAINED IN THE JSRT DATASET [27]. BOLD VALUES
INDICATE THE BEST RESULTS FOR EACH LINE.

Label % Our Method Fine-Tuning From Scratch
0% 88.20 ± 9.80 4.30 ± 4.13 –

1.25% 88.83 ± 9.81 78.94 ± 13.32 54.23 ± 13.37
2.5% 88.25 ± 10.19 83.32 ± 12.32 56.01 ± 13.76
5% 90.79 ± 7.05 83.46 ± 8.60 55.10 ± 14.42

10% 89.18 ± 9.18 83.66 ± 9.69 87.80 ± 6.78
20% 91.26 ± 7.20 88.71 ± 8.73 89.50 ± 7.65
50% 92.15 ± 5.90 93.78 ± 5.42 89.82 ± 4.34
100% 93.18 ± 5.47 94.81 ± 5.15 94.16 ± 4.57

Confidence Intervals (CIs) for p ≤ 0.05 regarding the results
presented in Table I can be seen in Figure 7.

B. Transfer Learning Results

Table II shows the results obtained by the proposed Transfer
Learning method compared with normal fine-tuning and train-
ing the networks from scratch with the limited labels. Figure 8
shows the CIs using p ≤ 0.05 for the results in Table II.
The horizontal axis represents the amount of labels kept by
the experiment, while the vertical axis denote Jaccard values
achieved in these settings. It is clear that our Transfer Learning
method significantly surpasses the effectiveness of fine-tuning
when using between 0% and 20% of the labels from the target
training set. When using 50% and 100% of the target labels,
fine-tuning marginally surpassed our method, even though the
difference was not statistically significant.

When using no labeled data in the target dataset, it can
be seen that J̈ drops to only 4.30%. This result renders
it infeasible to interchange models between CXR datasets
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Fig. 8. CIs for the Montgomery Set [28] in lung field segmentation using a
model pre-trained in the JSRT dataset [27].

without labeled data in the target dataset using traditional
transfer methods. Our method achieves a Jaccard of 88.20%
even without labeled data in the target set, as it uses all the
unlabeled target samples to perform the transfer and the source
labels to ensure visual feature preservation by GAB and GBA.

1) Qualitative Assessment of Other Tasks: As the Mont-
gomery Set [27] does not have pixel-level labels for clav-
icle and heart segmentation, we performed qualitative tests
on our Transfer Learning method for these tasks using the
unsupervised case, that is, without labeled data in the target
dataset. One can see in Figure 9 that clavicles and heart regions
were accurately recognized. In most Montgomery images the
algorithm correctly identified the clavicles, with only 4 cases
of inadequate segmentations in one or both clavicles among
the 27 images tested for this task. One example of misidenti-
fication of the clavicle area is shown in Figure 9d. Most heart
segmentations were near perfect, but, as the Montgomery Set
contains more diverse samples, hearts with abnormal shapes
were not fully identified, as can be see in Figure 9h.

VII. CONCLUSION

CXR segmentation results showed that DNNs yielded better
metrics than all baselines, both shallow and deep. Our use of
classic semantic segmentation architectures [6], [9], [13] for
CXR tasks obtained better results than customly made DNNs
[4], [5]. This is probably due to hyperparameter optimization,

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Segmentation results for the Montgomery Set [28] in the tasks of
(a-d) clavicle and (e-h) heart segmentation from a model pre-trained in JSRT
[27] and transferred with 0% of labeled data in the target dataset.

as [4] reported much worse segmentations with FCNs than the
ones achieved in our experimental results.

Transfer Learning experiments showed the superiority of
our semi-supervised methodology over both fine-tuning and
training from scratch when dealing with few labels on the
target dataset. These results could be explained by the fact
that out method uses both the labeled and unlabeled data of the
target domain, while fine-tuning and training from scratch only
consider labeled images. This hypothesis will be investigated
in future works. The proposed method produced good Jaccard
results close to 90% even when no target labels were used.
Qualitative assessments also proved that the transfer was
successful in segmenting heart and clavicle regions even with
0% of labeled data on the target dataset. The Montgomery Set
is a much more challenging dataset than JSRT, as the former
contains much more lung abnormalities due to diseases that
alter the shape and size of the lungs [4]. The Montgomery
Set also contains a broader range of imaging quality, further
assessing the generalization capabilities of our method.

Disadvantages of the proposed method when compared with
fine-tuning are: extended training time required for the trans-
lation and tuning procedure of MA and larger GPU memory
requirements. Stability was also a major concern during the
training procedure, as sometimes the translation network did
not converge properly, hampering the transfer procedure. In
these early tests we simply repeated the training procedure
when visual comparisons and objective metrics showed that
GAB and GBA did not properly achieved convergence. There-
fore, the lack of stability in our training procedure is a pressing
issue that will be addressed on future iterations of this work. At
last, as our model is agnostic to the unpaired translation GAN
architecture, future advances in this front should be compatible
and further benefit our approach.

As explained in Section V-C, the discriminator and gener-
ator networks used in the transfer procedure contained only
2 and 4 layers, respectively. As shallower models allow
for simpler semantic representations, using deeper models
should further improve the results presented in Section VI-B.



Therefore, future works include testing the proposed method
with deeper models for both generative and discriminative
networks. Future experiments will also feature other semantic
segmentation architectures with skip connections, such as
SegNets [13], ResNets [11] and DenseNets [12].

It was mentioned in Section V-C that we chose MUNIT [25]
as a basis for the Transfer Learning tests because it has the
ability to split content information from style information in an
image. One should also expect the model MA (see Figure 6) to
act as a regularizer for enforcing content preservation between
translated domains. This effect will be further evaluated in
future tests with the use of CycleGANs [23] and UNIT [24],
which do not possess the ability to explicitly separate style
from content. MUNIT is also not ideal for Cross-Dataset
Transfer Learning tasks, as it uses only one image a ∈ A for
extracting the dataset’s style. If the chosen image is an outlier
or if it simply does not represent correctly the general style
of A samples, the transfering procedure can be compromised.
Authors intent to solve this problem by extracting one single
style for each dataset by adding a style regularization loss
component between samples from the same dataset.

No aspect of our method ties it only to CXR images,
as all network components are general purpose semantic
segmentation and image translation DNNs, therefore, tests
in different biomedical domains are planned. Cross-Domain
Transfer Learning in different but similar domains (i.e. Mag-
netic Resonance and Computerized Tomography) are also
planned for future iterations of this work.
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