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Abstract—Vector fields play an essential role in a large range
of scientific applications. They are commonly generated through
computer simulations. Such simulations may be a costly process
since they usually require an intensive computational time.
When researchers want to quantify the uncertainty in such kind
of applications, usually an ensemble of vector fields realizations
are generated, making the process much more expensive. The
main contribution of this paper is to present a new method,
based on the inverse projection technique, to quickly and
consistently generate 2D vector fields similar to the ones in the
ensemble, which after an evaluation of a specialist could enlarge
the ensemble in order to better represent the uncertainty.
Through the Helmholtz-Hodge Decomposition, we obtain the
divergence-free, rotational-free and harmonic components of a
vector field. With those components and the original ensemble
in hand, it is possible to derive new realizations from their
projections into a 2-dimensional space. To do so, we propose
the use of an inverse projection technique individually in each
component projected space. Results are obtained in real-time,
through an interactive interface. A set of multi-method wind
forecast realizations were used to demonstrate the results
obtained with this approach.
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I. INTRODUCTION

Modeling a physical spatial/temporal phenomenon is a very
important task on several decision making applications [1]. To
represent uncertainty is for sure a relevant step on this task
not only because there is an incomplete understanding of the
process itself, but also because it is difficult to restrict their
physical parameters [2].

The modeling methods of several physical phenomena under
uncertainty have two building blocks: a deterministic and
a stochastic. On one side, deterministic models come up
with physically-based simulated outcomes. On the other side,
stochastic models try to provide realizations that somehow
cover the uncertainty space and mimic the physics (providing
a certain level of realism) [2] as well. The uncertainty space
is generally represented by an ensemble of scenarios.

Vector fields are very important in several problems related
to Scientific Computing. Applications that make use of vector
fields include, for example: fluid flow simulation [3], analysis
of MRI data for medical prognosis [4] and weather prediction
[5], just to cite a few. The deterministic simulation of vector
fields in such applications may require expensive numerical
computations [3]. When researchers want to quantify the
uncertainty in such kind of applications, usually an ensemble
of vector field realizations are generated, making the process

much more expensive. The main contribution of this paper
is to present a new method based on the inverse projection
technique to quickly and consistently generate 2D vector fields
similar to the ones in the ensemble, which after a evaluation
of a specialist could enlarge the ensemble in order to better
represent the uncertainty.

The dimensionality reduction, or multidimensional projec-
tion, is an approach used to represent a multidimensional data
in a low-dimensional space. Its goal consists in providing
an overview of similarities between instances of data in a
projection space [6], which can then be visually encoded and
interpreted. Many algorithms for dimensionality reduction can
be found in the literature. Among them, we can cite the well
know PCA [7], MDS [8], t-SNE [9] and LAMP [10].

The inverse projection works in the opposite way. Given a
multidimensional data set {X1, . . . , Xn}, with Xi ∈ Rm and
its corresponding 2D projection {Y1, . . . , Yn}, with Yi ∈ Rk,
where k << m, such technique allows the creation of a new
realization X in the input space Rm given a point Y in the
projection space Rk.

We propose two strategies to generate new realizations of
vector fields from an ensemble by the use of an inverse
projection technique. The first one is accomplished based on
the original vector field ensemble. The second one is obtained
through the combination of the rotational-free, divergence-free
and harmonic components derived from the Helmholtz-Hodge
Decomposition (HHD) [11] of each element in the original
vector field ensemble. This strategy increases the variability
of vector fields that can be obtained, enlarging the range of
possible outcomes. Moreover, it is also possible to fix some of
the original components to be used in the inverse projection
step. In that case, the desirable component will be present in
the output data.

The proposed approach can be summarized as follows: the
HHD is calculated to obtain the divergence-free, rotational-
free and harmonic components of a given set of vector fields.
Multidimensional projection is then performed on the original
data set as well as on each set of the HHD components. After
that, for any point p in the projection space, it can be mapped
into the original space to generate a new vector field realization
by the use of an interpolation method. Amorim et al. [12]
applied the RBF interpolation method to perform the inverse
projection; here we propose the use of Shepard’s interpolation
method because it shows to be more robust. As a next step, a
specialist could interpret and include a new realization on the
ensemble to enlarge the uncertainty representation.



The remainder of this document is organized as follows:
Section II presents some previous and related works. Section
III briefly describes the Helmholtz-Hodge Decomposition.
Section IV presents the concepts of Multidimensional Pro-
jection and Inverse Projection, depicting their applicability
to synthesize vector fields from an ensemble. Then, Section
V describes the proposed approach to generate vector field
realizations from a given data set. In the following, Section
VI presents the achieved results of the proposed approach.
Finally, Section VII describes final remarks and future works.

II. RELATED WORK

Dimensionality reduction has been largely applied to different
problems and research areas. For instance, in [13] one can find
a proposal of the use of multidimensional projection for image
colorization. Through an interactive tool, users can manipulate
the projected data to improve clusters and the colorization
results. By the time of the study, the authors concluded that
their technique outperformed existing techniques in terms of
accuracy and flexibility. As another example, we can cite its
applicability on the visual analysis of social network. In [14],
the authors describe each individual as an array of attributes,
projecting them in a low dimensional space. Hence, they are
able to visually encode individuals that are highly related
to one another. They also conclude that the achieved results
present better node distribution when compared to conven-
tional force-based graph drawing. Finally, other applications
of dimensionality reduction include sentiment analysis [15],
face recognition [16] and email classification [17].

Working together with the dimensionality reduction tech-
nique, the inverse projection provides flexible mechanisms
to simultaneously visualize and actively explore high-
dimensional spaces [12]. [18] presented a visualization-
assisted methodology for interacting and transforming data
attributes embedded in feature spaces. In their work, the
projected data can then be manipulated to create groups
of interest. Changes made in the projection space are then
mapped back to the feature space so as to modify the dis-
tance relationship among a subset of instances. This is then
mapped back to the projection space, in a cycling process.
This approach was tested with data sets ranging from spam
classification to image segmentation. For each data set, the
authors noted an increase in their silhouette after few user
interactions, which lead to an improvement in the cohesion and
separation of these data sets. They also relate an improvement
in accuracy of classification methods. [12], on the other hand,
depicts an inverse linear affine multidimensional (iLAMP)
projection that enables a novel interactive exploration tech-
nique for multidimensional data. Firstly, a given data set is
projected onto a 2D space, in which the exploration takes
place. Then, iLAMP allows the user to create points and
regions in the visual space and map them back into high-
dimensional instances, based on the distance of the selected
point and the projected data. Following this work, Amorim
et al. [6] proposed an inverse projection technique based on
the Radial Basis Function interpolation (RBF). Opposite to the

iLAMP technique, which is local and piece-wise continuous,
the proposed technique provides a smooth and global mapping
from low to high dimensions. To test this approach, a 3D
human-faces data set was used to interactively reconstruct
and generate new 3D faces. According to the authors, results
demonstrate the simplicity, robustness and efficiency of the
proposed approach to create new face models from a structured
data set, a task that would typically require the manipulation
of hundreds of parameters. As another example, Motta et
al. [19] introduce a interactive framework for unsteady fluid
flow segmentation and visualization that uses steady and
unsteady vector fields segmentation and combines streamlines,
multidimensional projection, and machine learning.

The Helmholtz-Hodge Decomposition aims to rewrite a
vector field as a sum of three meaningful components: the
rotational-free, the divergence-free and the harmonic compo-
nents. For a survey about this technique, we recommend the
paper of Bhatia et al. [20]. This decomposition is particularly
useful to extract features and singularities of a flow [4]. It has
been used as an important tool in different fields of study,
ranging from complex ocean flow [21] to fingerprint images
[22]. Recently, an application of the HHD in the uncertainty
analysis of 2D vector field ensembles has been proposed [23].

In this paper we apply these techniques to interactively
generate vector fields from an ensemble of vector fields.

III. HELMHOLTZ-HODGE DECOMPOSITION

The Helmholtz-Hodge Decomposition describes a vector field
as the sum of a divergence-free, a rotational-free and a
harmonic component [4]. In this work we will deal with vector
fields in R2.

For a smooth vector field V : D ⊂ R2 → R2 defined on
a bounded or unbounded domain D, there is a decomposition
satisfying the following property:

V = ∇g + J(∇r) + h,

where g and r are scalar fields, h is a vector field and J is
an operator that rotates a 2D vector counterclockwise by π/2
(J(v1, v2) = (−v2, v1)). They satisfy the following equations:
• ∇× (∇g) = 0;
• ∇ · (J(∇r)) = 0;
• ∇× h = 0 and ∇ · h = 0.
Given that, from now on we will name ∇g, J(∇r) and

h, respectively, the rotational-free component, the divergence-
free component, and the harmonic component of V. Moreover,
g and r are called the potential functions of V.

In order to have an unique Helmholtz-Hodge Decomposi-
tion, some special boundary conditions have to be applied [20].
However, these boundary conditions lead to some artifacts
in the decomposed vector field components. To overcome
this problem, in this paper we decided to adopt the Natural
Helmholtz-Hodge Decomposion (NHHD) [24] to decompose
a vector field in order to obtain the rotational-free, divergence-
free and harmonic components. The NHHD aims to compute,
on a point-wise basis, an artifact-free HHD on vector fields
with open boundaries or unknown boundary conditions.



IV. INVERSE PROJECTION OF 2D VECTOR FIELDS

Consider a discrete sampling of a 2-dimensional domain on a
Cartesian grid structure Sr,c = {xi,j ∈ R2 : 1 ≤ i ≤ r, 1 ≤
j ≤ c}. Also, let V = {V1, . . . ,Vn} be a 2D vector field
ensemble, i.e., a set of 2D vector fields where each one is
defined in Sr,c.

In this section we describe how the concepts of Multidi-
mensional Projection and Inverse Projection can be applied to
generate new 2D vector fields from an ensemble V .

A. Multidimensional Scaling

Given an integer k ≥ 2, a collection of n objects O =
{o1, . . . , on} and a similarity function that returns for each
pair i, j of objects in O the value δi,j , the Multidimensional
Scaling (MDS) method [25] associates n objects to n points
{p1, . . . ,pn} ∈ Rk such that ||pi − pj || approximates δi,j .
The MDS method is usually formulated as a minimization
problem whose objective function could be, for example, the
so called stress function:(∑n

i=1

∑n
j=1,j 6=i(||pi − pj || − δi,j)2∑n
i=1

∑n
j=1,j 6=i δ

2
i,j

)1/2

The point pi corresponds to the projection of the object oi ∈ O
in the space Rk. A poor representation of a high-dimensional
data in a Rk space is reflected on a high stress value. In this
paper, we fix the value of k as 2 to facilitate user interaction
and visualization.

B. Dissimilarity Matrix of 2D vector fields

As described above, to perform a dimensional reduction on
a collection of objects O, it is necessary to obtain a similarity
measure for each pair of elements in O. Considering that O is
an ensemble of 2D vector fields V , this means that, for each
pair of vector fields Vi,Vj ∈ V it is necessary to define how
close they are to each other. To take into account both the
magnitude and orientation of a vector field, we propose the
following transformation and similarity measure.

Firstly, for a 2D vector field Vi ∈ V , with Vi = (vix , viy )
being defined on the grid Sr,c, we rewrite vix and viy as two
r × c arrays. After that, we transform Vi by the use of a
function F into a pair of features f1, f2 according to the
following formulas:

f1i =
atan2(viy ,vix )

π/2

f2i =
‖(vix ,viy )‖

maxj=1...n{f2j}
F (Vi) = (f1i, f2i)

Finally, we define the similarity function δ for each pair
of vector fields Vi and Vj in V as the Cosine Similarity
according to this formula:

δ(Vi,Vj) = δi,j =
F (Vi) · F (Vj)

‖F (Vi)‖ · ‖F (Vj)‖
(1)

We propose two strategies to generate new realizations of
vector fields from an ensemble using an inverse projection

technique. One approach is to project the original vector field
ensemble in an R2 space using MDS and, for a given point p,
perform an inverse projection to generate a new realization.
Another approach consists in, through the NHHD method,
derive three ensembles for the rotational-free, divergence-free
and harmonic components. After that, similarly to the first
strategy, performing an inverse projection on points in these
three projection spaces it is possible to obtain a new vector
field realization. Here, we compared both RBF and Shepard’s
interpolation methods to perform the inverse projection step.

C. Radial Basis Interpolation

A Radial Basis Function (RBF) φ is a function whose value
at x depends only on the distance from x to a certain point p,
i.e., φ(x) = f(‖x− p‖) with ‖ · ‖ being often the Euclidean
norm.

Recently, an inverse projection technique based on RBF
interpolation was proposed [6], providing a smooth and global
mapping from low to high dimensions. In RBF interpolation,
for n data points pi ∈ R2 and their respective function values
qi ∈ R, an interpolation function s : R2 → R is computed
in such a way that is possible to derive the value s for any
arbitrary point in p ∈ R2 according to the equation:

s(p) =

n∑
i=1

λiφ(‖p− pi‖), (2)

where λi, i = 1, . . . , n, are the real-valued coefficients
obtained by the interpolation method given the RBF kernel
function φ. Such function s has to satisfy s(pi) = qi,
for i = 1, . . . , n. Thus, to find the scalar coefficients λi,
we have to solve the linear system ΦΛ = Q, where Φ is
the interpolation matrix with φij = φji = φ(‖pi − pj‖),
Λ = [λ1 · · ·λn]T and Q = [q1 · · · qn]T . In this work, we
adopted the Gaussian kernel φ(r) = e−εr

2

, where ε is a
positive parameter set to 1 and r is the Euclidean distance
between a pair of points in R2. It is well known that the choice
of ε affects the smoothness of the interpolation function s(p).

Similar to Amorim et al. [6], this work aims to use an
inverse projection technique of a point p ∈ R2 to obtain a
new 2D vector field realization. To do so, we have to build
2 (one for the x− and the other for y− coordinates) times
r× c (the grid dimension) interpolation functions, or in other
words: we have to solve 2×r× c linear systems of equations.
An efficient way to do that is to decompose the symmetric
matrix Φ in the LU or in the LDLT form [26], and to solve
the 2 × r × c linear systems of equations ΦΛl = Bl by the
use of the forward and backward substitution methods. So, for
the x− and y− coordinates and for each point pi in the 2D
grid we find the associated λi coefficients. Then, these can be
used to derive the correspondent vector field for any arbitrary
point p ∈ R2 according to Equation 2.

D. Shepard’s Interpolation

Inverse Distance Weighting (IDW) is a type of deterministic
method for multivariate interpolation given a scattered set



of points. Unknown points are derived through a weighted
average of the values at the given ones. Shepard’s Interpolation
method [27] is a IDW originally proposed to produce a
continuous surface from an irregularly-spaced one. To find the
interpolated value f at a given point p based on known values
qi = f(pi), i ∈ 1 · · ·n consists in calculating:

f(p) =

{∑n
i=1 qi · wi(p), if di(p) 6= 0 for all i

qi, if di(p) = 0 for any i
, (3)

where di(p) = ‖ x− xi ‖, and wi(x) = 1/di(x)
l∑n

j=1 1/di(x)
l .

Given that, the weights w increase accordingly to the
distance of p to the known points, where greater values means
greater influence of a given point. The parameter l controls the
influence of the input points. In this work, we set l to 2.

Opposite to Amorim et al. approach [6], Shepard’s Interpo-
lation doesn’t require solving any linear system of equations.
Notwithstanding, for each given point p in the projection
space, it is necessary to calculate once the weight values
wi = i ∈ 1, . . . , n to be used in Equation 3. In this work,
we apply the formula in Equation 3 to the vector coordinate
at each point in Sr,c = {xi,j ∈ R2 : 1 ≤ i ≤ r, 1 ≤ j ≤ c}. In
other words, we use two interpolation functions, one for each
coordinate.

V. GENERATING VECTOR FIELD REALIZATIONS

As described above, we propose two ways to interactively
generate a new vector field realization from an ensemble. The
first one is accomplished based on the original vector field
ensemble. The second one is made through the combination of
the HHD components of the original data set. In both cases, the
first step consists in performing a multidimensional reduction,
through MDS, transforming the vector field data from R2×r×c

to R2. Doing that, we can provide a visualization of those data
allowing an user to generate a new realization exploring a low
dimensional space, i.e., a new vector field can be generated
for any given point in the screen.

For the first case, when a point is selected in the projection
space (Figure 1), its inverse projection is obtained according
to the techniques presented in the previous section. For the
second case, three points – one for each of the HHD compo-
nents – are required to generate a new realization (Figure 2).
Here, a new realization is obtained as the sum of the inverse
projection of each one of the given points, as stated by the
Helmholtz-Hodge Decomposition.

Using the Ctrl key, a selected point is bonded to the closest
projected point. This means that, for the HHD-based vector
field generation, an original component can be used.

VI. RESULTS AND DISCUSSION

To test the proposed approach, we make use of a 2D vector
field ensemble comprehended by eight multi-method wind
forecast realizations ξ, provided by the Brazilian Instituto
Nacional de Pesquisas Espaciais (INPE). These realizations
are delimited, in polar coordinates, by −47◦, 11.0195◦ and
277.867◦, 333.097◦ as the latitude and longitude coordinates

Fig. 1: A black marker in the MDS plot represents the chosen
point to be used in the inverse projection. The bottom plot
shows the resulting vector field.

Fig. 2: Generating a realization from the HHD components re-
quires a point to be selected for the rotational-free, divergence-
free and harmonic components projection spaces.

range, in that order. This region is defined over a Cartesian
grid structure of 72 × 82 cells. Figure 3 presents the mean
vector field for this data set, as well as for its rotational-free,
divergence-free and harmonic components, in that order. Their
multidimensional projection can be found in Figures 1 and 2.

A. Quality Assessment

To verify the quality of the results obtained with the
proposed method, we performed two tests. Firstly, we would
like to check the hypothesis that the HHD inversion technique
approach is capable of providing higher variability than deriv-
ing new realizations from the original data ensemble, which
we will state as the standard approach. To do so, we generated
100 scenarios using the HHD technique and 100 other ones
through the latter. For each one of these two sets (from now on
we will call them EV F and EHHD, respectively) we calculated
the curl and divergence operators, as well as the norm, and
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Fig. 3: Mean vector field for the the multi-method wind fore-
cast realizations (a) and its HHD components (rotational-free
– (c), divergence-free – (e), and harmonic – (g), respectively).
The color map represents the vector field magnitude and its
common for all realizations, original or derived.

computed their variability. Secondly, we randomly chose some
of the generated scenarios, for both approaches, to qualitatively
analyze their similarity with the input ensemble.

From the first test we have got to the following conclusions:
a) RBF Interpolation: The HHD approach provides

higher variability than the standard approach. However, it
generates a wider number of outliers. Moreover, in some
cases the RBF Interpolation can lead to extreme scenarios,
inconsistent with the input data ensemble.

b) Shepard’s Interpolation: To overcome the problem
faced when using the RBF Interpolation method, we chose
to apply the Shepard’s Interpolation technique to generate
new scenarios given a set of projected points. We chose this
interpolation method due to the higher control of the outcomes
that it can provide. Whilst it leads to a lower variability of
scenarios when compared to the RBF (Figure 4), no extreme
scenarios were observed.

Curl Div Norm
Measure

1000

0

1000

Va
lu

e

Interpolator = RBF

Curl Div Norm
Measure

Interpolator = Shepard

Approach
Standard
HHD

Fig. 4: Distribution of the curl, divergence and norm for the
scenarios generated using the proposed approaches.

For the second test, Tables I and II present some of the
realizations obtained using both interpolation techniques, for

the standard and HHD approaches, respectively. One can see
that the RBF Interpolation can lead to inconsistent outputs, in
which both the norm and the vector field’s direction present
discontinuities. In opposition, the Shepard’s Interpolation pro-
vide smooth outputs. However, they are more similar among
themselves, i.e., they lead to a lower variability when com-
pared to the latter method. Notwithstanding, as this variability
is similar to the original ensemble one, we believe that this
interpolation is capable of generating a good range of different
scenarios.

VII. CONCLUSION

In this work, we proposed the application of dimensional
reduction and inverse projection to generate 2D vector fields
given an ensemble. Through the Helmholtz-Hodge Decom-
position we presented an approach to increase the range of
the possible outcomes. More than that, through this technique
the maintenance of specific features can be achieved. We also
compared the use of the RBF Interpolation with the Shepard’s
Interpolation. Results show that, in both cases, the Helmholtz-
Hodge approach is capable of increase the variability of the
possible generated vector fields. Notwithstanding, we could
verify that the RBF Interpolation generated extreme scenarios,
where the norm of the vector fields, as well as the curl and
divergence operators, presented a huge amount of variability
in comparison with the input ensemble, which means that this
approach lead to inconsistent and unstable scenarios. On the
other hand, using the Shepard’s Interpolation we were able to
achieve better results, since this method provides more control
of the possible outputs. However, as a drawback the obtained
variability was a bit smaller than the input ensemble’s one. In
general, this approach was capable of generating realizations
with some variability whilst respecting the given ones.

For the future, we plan to evaluate the achieved results
with expertises in applications that make use of this kind
of data, to access the validity of the scenarios application-
based. We also would like to test the presented approach
with a multidimensional projection that uses control points,
as the LAMP [10], for example. Besides, we plan to apply
this technique with 3D vector fields, as well as to expand this
study to other types of multivariate data.
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TABLE II: Samples of the obtained realizations for the RBF and Shepard’s Interpolations, for the HHD approach. The points
(·, ·) used for the inverse projection are listed on the top.
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