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Abstract—Video understanding is the next frontier of computer
vision, in which activity recognition plays a major role. Despite
the recent improvements in holistic activity recognition, further
researching part-based models such as context may allow us
to better understand what is important for activities and thus
improve our current activity recognition models. This work
tackles contextual cues obtained from object detections, in which
we posit that objects relevant to an action are related to its spatial
arrangement regarding an agent. Based on that, we propose
Egocentric Pyramid to encode such spatial relationships. We
further extend it by proposing a data-centric approach named
Temporal Segment Relational Network (TSRN). Our experiments
give support to the hypothesis that object spatiality provides
an important clue to activity recognition. In addition, our data-
centric approach shows that besides such spatial features, there
may be other important information that further enhances the
object-based activity recognition, such as co-occurrence, relative
size, and temporal information.

I. INTRODUCTION

Context plays an important role in activity recognition from
videos. Certain activities are strongly tied to its surround-
ings, which give important priors for activity discrimination.
Such contextual cues might include objects, pose, and scene,
to name a few of the most evident. Not only that, but
characterizing such cues may enable applications in which
the relationship between context and activities are important,
such as fine-grained activity recognition, video understanding,
and retrieval. For instance, in video retrieval, one might be
interested in videos that contain one ball, but that are played
only with feet, such as soccer, while ignoring videos such
as basketball and volleyball. In this kind of task, the spatial
location of the ball regarding the agent is one of the most
discriminative features. Therefore, characterizing the video
surroundings and its synergy with activities is an important
task.

With recent advances in image and scene classification,
object detection, and pose estimation, there are several context
cues that can be gathered for characterizing activities. Jain
et al. [1] investigated the importance of context provided by
surrounding objects, using an object classifier. Other works
also considered objects [2], [3], temporality [4], scene [3],
audio [5], and pose [6]. Unlike existing works, our approach
turns our attention to spatial cues and its role in activity
recognition. For such purpose, we rely on object bounding
boxes obtained by state-of-the-art object detectors and their
spatial relationships.

In this work, we propose two different approaches to exploit
such object detections. Initially, we build object histograms
in a pyramid fashion to capture spatial relationships. To
reduce issues regarding viewpoint differences, we consider
that relevant objects to recognize the activity in execution
move along with the performing agent. Thus, we compute the
spatial pyramid on top of the most salient agent, which we call
Egocentric Pyramid. After that, we turn to a data-centric ap-
proach, named Temporal Segment Relational Network (TSRN),
to learn relationships between Egocentric Pyramids and object
detections, while also including temporal features. Our exper-
imental results show that Egocentric Pyramid is able to im-
prove upon spatial pyramid, giving support to our hypothesis.
Furthermore, Temporal Segment Relational Network is able to
improve over Egocentric Pyramids and reach results similar to
others in the state-of-the-art [7], [8].

The contributions of this paper are threefold, namely, (i)
we conduct a study on object spatial information for activity
recognition; (ii) we propose Egocentric Pyramid, a spatial
pyramid that encodes relative spatial relationships regarding
the main agent in an activity; and, finally, (iii) we propose the
Temporal Segment Relational Network (TSRN), a data-centric
approach which leverages both Egocentric Pyramids and other
non-explicit relationships between objects and temporal cues.
To the best of our knowledge, this is the first approach to focus
on spatial and temporal relations between objects for activity
recognition, which is also learned through a full end-to-end
network architecture.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work in contextual information
for activity recognition. Section III describes our proposed
approaches to leverage contextual cues provided by an object
detector. Section IV presents our experimental evaluation of
the proposed approach. Finally, in Section V, we present our
concluding remarks and future directions of work.

II. RELATED WORK

Contextual cues are auxiliary information to the main task
at hand, which in the case of activity recognition from videos,
comprises information extracted from video that may not be
the activity itself but that may help in the recognition of
activities. In particular, Jain et al. [1] thoroughly investigated
the use of contextual clues using an object classifier and
showed that objects matter for activity recognition. They use



a classifier trained on 15,000 object categories and combine
them with HOG [9], MBH, and HOF [10] with improved
trajectories [11]. In contrast, in our approach, we expand
on this investigation by exploring spatial and temporal cues
through an object detector. Additionally, our experimental
evaluation (Section IV) showed that using only 200 object
categories are enough for the UCF101 Dataset, given that a
more accurate detector is employed.

SR-CNN [2] exploits contextual information for activity
recognition, similarly leveraging the most salient agent for
recognition. SR-CNN is an end-to-end deep learning archi-
tecture to integrate object detections with two-stream features.
Niebles et al. [12] built concentric ellipsis around an agent per-
forming an action, in addition to other features such as relative
size and occupancy. Our approach also builds a pyramid, but
as a grid instead. More importantly, we also provide a more
thorough evaluation by conducting our experiments on a more
challenging dataset, which includes camera movements, more
activities, and background objects unrelated to the activity.
Furthermore, we also employ a data-centric approach to learn
the semantic relationships between other features.

In the literature, several works also exploit context in
a variety of tasks. Object bank [13] builds a hierarchical
spatial pyramid using the prediction scores of multiple object
detectors aiming at scene classification. In contrast to our
approach, it employs a regular spatial pyramid which does
not focus on the main agent and it is not aimed at activity
recognition. Similarly, word spatial arrangement (WSA) [14]
encodes the spatial relationship of visual words for image
retrieval and classification. Egocentric Pyramids can be seen
as WSA employed for encoding the spatial arrangement of
object detections. However, WSA is a lower level descriptor
modeling keypoints’ arrangement, while Egocentric Pyramid
is oriented towards higher semantic concepts.

Since relational networks [15] were not originally conceived
for activity recognition, adapting it to this task is not trivial.
First, we modify it to also gather temporal information using
the framework proposed by Temporal Segments Network [8].
Second, we modify the input feature descriptor by augmenting
it with Egocentric Pyramids, relative frame position, and also
quantizing the object coordinates. The latter is due to object
distribution on these videos being more sparse. Thus, we
do not need much precision to encode the object coordinate
as well as required by other tasks, such as question-and-
answering. Third, we replaced the sum pooling operation by
averaging, and instead of using ReLU activations, we replace
them by SELU [16], as both featured better convergence
properties in our experiments. We also tried architecture varia-
tions with/without layers and without duplicating the last fully
connected layer parameters, and residual connections [17],
[18].

Concurrent to our work, Zhou et al. [19] propose an
architecture for temporal relational reasoning also based on
relational networks [15]. This approach builds a hierarchical
relational network pyramid, with varying time scales, to en-
code temporal information given CNN features. In contrast,

our proposed approach models both spatial and temporal
relationships between objects given by an object detector. The
spatial relationships are obtained by the objects’ coordinates
and Egocentric Pyramid, while the temporal information is
encoded through normalized frame position and the Temporal
Segment Networks [8] framework.

III. CONTEXTUAL CUES

In this section, we describe our proposed approach to take
contextual cues into account aiming at activity recognition
from videos. Such cues include object spatiality, temporality,
and co-occurrence. For encoding such contextual information,
we propose two novel approaches, namely Egocentric Pyramid
and Temporal Segment Relational Network (TSRN). Aiming
at understanding spatial cues, we first conduct a case-study
in which we design Egocentric Pyramid, a feature descriptor
that encodes the spatial arrangement of objects around an
agent (see Section III-A). This approach is drawn from the
hypothesis that, not only the location of an object matters, but
also how they are arranged regarding the agent performing the
action.

Afterwards, we turn to a data-centric approach that encodes
latent relationships between objects. The proposed approach,
Temporal Segment Relational Network (TSRN), is designed
to reason about contextual cues through time (Section III-B).
Both Egocentric Pyramids and the raw object detections are
fed as input to TSRN, enabling it to learn latent features
which will be used for classification. Considering that both
approaches require object detections, we employ a state-of-
the-art object detector [20] to provide bounding boxes for each
frame. Each object detection is a 5-tuple comprising a confi-
dence score and the bounding box coordinates {(z,y), (w, h)}.
The following sections detail how these detections are em-
ployed in our representation.

A. Egocentric Pyramid

We begin by investigating the objects’ spatial arrangement
through a spatial pyramid [13]. The spatial pyramid approach
builds a pyramid composed of a hierarchy of levels, where
a frame in each level is divided into an equally spaced grid.
Each quadrant in the grid accounts for the objects that occur
within a given region. The grid resolution is determined by
the pyramid level, which allows capturing the objects’ position
with increasing precision as the pyramid level increases, in a
coarse-to-fine fashion. For each quadrant in the grid, we com-
pute a histogram of the softmax scores. Then, the histograms
across all pyramid levels and quadrants are concatenated into
a single vector and presented to a classifier. The resulting
dimensionality of the feature vector is a function of the number
of pyramid levels and histogram bins, which is given by the
number of object categories.

One issue with spatial pyramid is that it is not invariant
to the position of the agent performing the action, as we
are taking the center of the frame as reference. It can be
a problem because it assumes that all activities are always
performed at the center of the video, which is not necessarily
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Fig. 1. Difference when computing pyramids through time. Faded-out persons represents someone in the previous frame, while fully-colored represents current
frame. (a) Spatial pyramids, in which the pyramid is always at the frame’s center; and (b) Egocentric Pyramid, whose center moves according to the agent.

true. For instance, if we are targeting the walking with dog
activity and the person escorting the dog starts on the upper-
left corner of the frame and then moves to the bottom-right
corner, the corresponding ‘dog’ bin will be assigned into the
histograms corresponding to the second and fourth quadrants
(see Figure la). That will generate a different histogram
signature for the same activity but in one case that the person
with the dog starts at the bottom-left and moves to the bottom-
right. However, this could be prevented if we took as reference
the agent position instead of the frame’s center, since the
relevant objects seem to move around the one performing the
action.

In human activities, we argue that the most important
objects interact by surrounding the person/agent performing
the action, hence, moving in relation to this person. Therefore,
we propose to extract object spatial pyramids regarding the
center of the agent, hence, an Egocentric Pyramid. By taking
the agent performing the activity as the reference for the
pyramid, we minimize the aforementioned issues. Considering
the previous example, in both cases, the ‘dog’ bin will be
assigned to the third histogram. In other words, the dog is
always at the bottom-left or bottom-right quadrants regarding
the person (Figure 1b).

Before computing the pyramid, we first need to determine
who is the agent. We define an agent as the person performing
the action, and to determine it, we use saliency [2], i.e., the
one that is more noticeable. Given this assumption, we adopt
a simple heuristic: we consider the agent as the person with
the highest score predicted by the object detector. A more
sophisticated approach would be to track the main agent.
However, the score-based heuristic suffices for our purposes
because picking another agent will happen occasionally, as
background persons’ saliency usually lack consistency through
time. In addition, as it is aggregated for multiple frames, it
will not affect the descriptor significantly. Finally, in case this
heuristic misses an agent, we switch to the frame’s center as
reference.

As a further enhancement of the descriptor, we evaluate a
soft-assignment strategy for bin assignment. While the hard-
assignment uses the centroid to determine to which quadrant
an object belongs, that will be then assigned to its respective
bin, the soft-assignment strategy estimates the area that an
object occupies in each quadrant. Such area is then normalized
and used to weigh in the scores assigned to each bin. This
would allow removing unfairness of assigning an object to a
single quadrant, even though it might occupy a large portion of
the other three quadrants. However, as we shall see in the ex-
perimental evaluation, such strategy worsened the recognition
accuracy.

B. Temporal Segment Relational Network

So far, we have described context through object spatiality
alone. As aforementioned, our goal is also to explore other
contextual features from object detections that are discrim-
inative for activity recognition. Hand-crafting each of these
features might be a daunting task and we might miss im-
portant correlations between certain features. Therefore, in
this section, we investigate a data-centric approach to encode
meaningful context features which complements Egocentric
Pyramids. For this task, we propose a temporal model for
relational reasoning, named Temporal Segment Relational Net-
work (TSRN), based on relational networks [15] and Temporal
Segment Networks [8].

Relational networks (RN) compute relations by taking pairs
of features as input, which is performed for the cartesian
product of all pairs of objects. This phase can be seen as
encoding all pairs of relations into a single, small representa-
tion, from which we will make predictions. However, RN were
not originally designed to handle temporal data. An important
principle to have in mind is how to encode object consistency
across the temporal dimension. With this intention, TSRN
resorts to the framework proposed by Temporal Segment
Networks to leverage such consistency by sampling multiple
snippets from a video. In each of these snippets, we extract
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Fig. 2. Overall workflow of the proposed Temporal Segment Relational Network (TSRN). At training time, the input video is split in ¢ segments, from
which snippets of length |S;| are sampled. Each snippet representation is composed of object detections augmented with Egocentric Pyramid, which are then
encoded by Rg. The relational encodings of each snippet are then merged in the consensus layer G, and we get the predictions after softmax. At test time,

snippets are uniformly sampled throghout the whole video [8].

features—in our case, object detections—which are fed to the
relational network. The relational network yields activations
for each snippet, which are then combined in a segmental
consensus layer.

Formally, given a sequence of
{51, 853,...,S5;:}, we define TSRN as

snippets S =

TSRN(S) = G(Rs(S1), Re(S2), ..., Ra(St)) €))
where S, is a video snippet, Rg is a relational network with
parameters ®, and G is a pooling operation. In particular,
a relational network Rg, given parameters ® = [¢1, P2, is
defined as

1
Re(0) = for | -5 > 96:(0i,05) 2

04,05

Here, O = {0;}"_, represents an input set of n objects, where
0; is the i object such that o; € R; and functions f,, and
g4, are stacked multilayer perceptrons (MLP) parameterized
by parameters ¢, and ¢5, respectively. Notice that in this for-
mulation we replaced the original sum operation by averaging,
since it showed better convergence in our experiments.

Figure 2 depicts TSRN overall workflow. During training,
the video is first split into ¢t segments of equal size T". From
each segment, a random snippet .S; is sampled with length
|S;| such that |S;] < T. The object detections within a
snippet are combined in all pairs possible and then presented
to the relational network. Notice that object pairings are only
performed within a segment, not across them to avoid a
large dimensionality. In this training setting, sampling random
snippets is a data augmentation where every time a different
snippet is seen by the network. At the same time, we ensure
that the video is seen as a whole, according to the number of
segments and the snippet length. For instance, if we choose
three segments, then we ensure that the network will see
data from the beginning, middle, and end of the video. The
consensus layer then pushes the network to learn weights that
favors consistency across them.

As a well-established principle in neural networks, part
of architecture design lies in building invariance properties
into its structure [21]. One common design principle is in
efficiently reusing weights. For instance, convolutional lay-
ers share weights between locations, while recurrent neural
networks reuse weights through time. Similarly, relational
networks share weights between object pairings through g,
while the temporal segments reuses Rq through time. This im-
poses constraints that act as regularizers, while also reducing
the amount of parameters [22].

Egocentric Pyramids (Section III-A) and TSRN are or-
thogonal contributions. In fact, we can augment the input
of relational networks with spatial or Egocentric Pyramids—
although should be noted that there is a trade-off regarding
the representation size due to pyramids having a considerable
dimensionality size starting from three levels. In our exper-
iments, we augment the feature descriptor with Egocentric
Pyramids applied to every object pairing. Given that there are
only two objects concatenated, Egocentric Pyramid does not
require bins for all object categories in each quadrant, thus,
it will only require four dimensions, each corresponding to a
quadrant. Differently from Egocentric Pyramids, here we are
computing the spatial arrangement regarding all objects instead
of a single main agent, which may decrease the contribution
of noisy detections.

IV. EXPERIMENTAL EVALUATION

This section evaluates the proposed approaches for activity
recognition based on context. We first evaluate Egocentric
Pyramid, which allows us to understand how spatiality is rele-
vant for activity recognition. Afterwards, we evaluate different
TSRN architectures and combine them with a state-of-the-art
architecture for action recognition using a late-fusion strategy.

Experimental setup. We conduct our experiments regarding
Egocentric Pyramid and TSRN on the well-known UCF101
Dataset [23]. The object detections are computed by the SSD
detector [20], with 500 x 500 resolution. The Egocentric
Pyramid is evaluated with 2 levels and compared to a spatial
pyramid with up to three levels. In addition, we propose



TABLE I
ARCHITECTURES USING SHORTHAND NOTATION. NUMERIC VALUES
SPECIFIES THE AMOUNT OF NEURONS IN EACH MLP; %« STANDS FOR
ALPHA-DROPOUT OF 0.5; AND SUBSCRIPTS INDICATE RESIDUAL
CONNECTIONS (f; FROM THE i" MLP LAYER, G FROM POOLING).

NAME  ACTIV.  ARCHITECTURE
(f1, f2, f3, f4)-G-(91, 92, 93)
TSRN-R ReLU (32, 32, 32, 32)-sum-(32, 64*,101)
TSRN-A SELU (32, 32, 32, 32)-avg-(32,64*,101)
TSRN-B SELU (64,64, 64, 64)-avg-(64,64*,101)
TSRN-C SELU (128,64,1285,,128f, 1, )-avg-(128, 128, 101)
TSRN-D SELU (128,128,128, , 128, )-avg-(128, 1283, 101)

a simple extension to the contextual descriptor for action
recognition proposed by Jain et al. [1] by incorporating the
number of occurrences of objects, which here is only possible
because we are using an object detector instead of an object
classifier. Occurrence is computed similarly to scores [1], i.e.,
given a video V' with n frames, let 1 be the indicator function
and H a histogram with D bins (object categories), then the
q™ bin is defined by H, = 1/n> 1 (p; < 6) for an object
detection with score p; and a threshold 6.

TSRN is trained using the top-20 object detections extracted
from 10 frames and 3 temporal segments. As features, we
use the relative frame position, prediction score, coordinates
{(z,y), (w,h)} quantized by a factor of 8, label in one-
of-k encoding (200 object categories); Egocentric Pyramid
between objects, i.e., relative quadrant between two objects.
Therefore, the total number of feature dimensions is 210,
which is doubled when presented as input due to concatenation
of two objects. The coordinates are quantized because the
object positions are very sparse in human action recognition,
hence this task does not require fine-grained resolution. The
factor of 8 was obtained experimentally.

We train TSRN for 200 epochs, with the initial learning rate
set to 0.01 and decreased by 10! at epochs {35,90,135}
and a batch size of 22. As data augmentation, we employ
mirroring along the x-axis. For normalized coordinates, the
operation is done as 1 — x — w (clipped within [0, 1]). We
also tried adding noise to coordinates and scores, however,
it was omitted as it did not provide significant gains. During
the test, we sample 25 equally spaced segments and fuse their
predictions. Architectures are detailed in Table I.

Discussion. We begin by conducting preliminary experiments
on the 1st split of the UCF101 dataset to evaluate Egocentric
Pyramid and its baselines, namely, spatial pyramid, object
scores as reported by Jain et al. [1], our implementation using
an object detector, and our extension based on occurrences.
Table II shows that using the SSD detector [20] to reproduce
the baseline yields a gain of 5 percentual points (p.p.) when
compared to the original report by Jain et al. In addition, by
evaluating the representation of number of occurrences alone,
we achieve a similar result to the baseline (65%). It shows
that occurrences by itself are not as representative as object
scores, despite obtaining similar results to Jain et al.’s [1]

TABLE II
RESULTS ON THE UCF101 1ST SPLIT. ALL MODELS WERE EXECUTED
USING AN OBJECT DETECTOR COMPRISING 200 CLASSES, EXCEPT FOR
JAIN ET AL. [1] WHICH USED A 15000 OBJECT CLASSIFIER.

APPROACH 1ST SPLIT
scores [1] 65%
scores 70%
#occurrences 65%
#occurrences + scores 72%
spatial pyramid (2 levels) 73.37%
spatial pyramid (3 levels) 73.52%
egocentric 73.98%
egocentric (soft) 70.47%
TSRN-R —_
TSRN-A (no mirroring) 73.56%
TSRN-A 74.96%
TSRN-B 75.90%
TSRN-C 70.12%
TSRN-D 75.38%

due to a better object detector. Combining both scores and
occurrences yields an accuracy of 72%, demonstrating that
there is spatial information that is not captured by scores
alone. We further delve into this hypothesis by evaluating the
spatial and Egocentric Pyramids. The improvement obtained
by the spatial pyramid over #occurrences + scores shows that
more fine-grained spatial relationships may be relevant for
action recognition. In addition, Egocentric Pyramid slightly
improves upon spatial pyramids, suggesting that it addresses
the aforementioned spatial pyramid issues. We also tried
Egocentric Pyramid with a soft-assignment approach whose
object positions are weighted according to the area it occupies
in each quadrant, however, it yields less accuracy.

Afterwards, we evaluate different TSRN architectures cou-
pled with the egocentric representation. Initially, we evaluated
TSRN using the same sum pooling and ReLU activation as
the original RN [15], which we named TSRN-R (Table II).
However, it was unable to converge. By iteratively tweaking
components, we found out that replacing the ‘sum’ operation
by ‘avg’, and then changing the activations to SELU [16]
helped convergence. Thus, the remaining architectures all
followed these modifications. In our first experiment, we see
that data augmentation using mirroring is important, showing
an improvement of 1.4 p.p., as demonstrated by TSRN-
A with/without mirroring. We therefore train architectures
TSRN-B, TSRN-C, and TSRN-D also with mirroring. TSRN-
B, featuring slightly more capacity, shows an improvement
of 0.94 p.p. over TSRN-A. Comparing these results with the
Egocentric Pyramid, we see that there is an improvement in
all architecture variations, which suggest that there are other
non-explicit contextual features that might be exploited besides
spatial arrangements, such as temporal cues from relative
frame position and multi-snippets, and other spatial cues such
as size and fine-grained localization. In TSRN-C and TSRN-
D, we tried to increase TSRN capacity and added residual
connections to handle convergence during training. However, it
did not provide significant gains regarding TSRN-B, possibly
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Fig. 3. Accuracy difference between TSRN and TSRN + TSN two-stream. Improvements are shown in blue.

related to the amount of data used. As TSRN-B performed
better, we used it in our remaining experiments, referring to
it simply as TSRN.

Table III presents TSRN evaluated over the three UCF101
splits, where the last column is the average of the accuracies.
We compare these results with the well-known two-stream
networks [24], with modifications by Wang et al. [7]. Results
of Wang et al. [7] were obtained by running the code provided
by the authors. We also include the Temporal Segment Net-
works [8], whose results on each UCF101 split are available
at the authors webpage'. We see that, compared to the spatial
stream, TSRN obtains a similar result, which might suggest
that it is encoding part of the necessary spatial information
encoded by the spatial stream. However, it still lacks other
cues such as appearance and scene, which explains why it was
unable to overcome the spatial stream. When the spatial stream
is also imbued in the TSN framework [8], the gap between
the two approaches increases. The reason might be that TSN
enables the spatial ConvNet to learn temporally consistent
visual patterns that are not available from object detections
alone, such as scene/background and pose cues. Fusing TSRN
predictions with temporal stream yields an improvement close
to two-streams itself, suggesting complementarity between the
two modalities. Comparing to two-stream alone, we see that
our fusion of TSRN + two-stream is able to slightly improve
recognition (1.34 p.p). However, this gain is smaller when
fused with TSN (0.04 p.p.), showing a smaller complementar-
ity between the two approaches.

To better understand how TSRN and TSN affect each other,
we analyze the difference in accuracy for each activity class
regarding the fusion of TSRN + TSN two-stream. Figure 3

Thttp://yjxiong.me/others/tsn/

shows a summary of the scenarios that TSRN + TSN two-
stream performed better (blue) and worse (red) than TSN two-
stream alone. We see that activities that have objects easier to
recognize, such as archery, boxing punching bag, shotput, and
typing performed better, while it performed worse for classes
that objects are difficult to detect (apply eye makeup), or
that appearance and/or motion plays a major role (long jump,
punch), or objects are absent among the detector categories
(javelin throw). Comparing TSRN alone with TSN, we see that
TSRN only performed better in situations that objects played
an important role, such as playing guitar or horse riding.
Still, appearance and motion perform better in the majority of
classes, as expected. However, as we have seen in Figure 3 and
Table III, there are activity categories that benefit from fusing
it with TSRN, suggesting that there are contextual cues that

TABLE III
TEMPORAL RELATIONAL NETWORKS COMPARED TO STATE-OF-THE-ART
ARCHITECTURES ON THE UCF101 DATASET.

APPROACH | SPLIT1  SPLIT2  SPLIT3 | AVG

spatial stream [7] 79.8% 77.3% 77.8% 78.4%
temporal stream [7] 85.7% 88.2% 87.4% 87.0%
two-stream [7] 90.9% 91.6% 91.4% 91.4%
TSN spatial [8] 85.5% 84.9% 84.5% 85.1%
TSN temporal [8] 87.6% 90.2% 91.3% 89.7%
TSN two-stream [8] 93.5% 94.3% 94.5 % 94.0 %
TSRN 7590%  76.34%  73.51% | 75.25%
TSRN + spatial 88.77%  81.31%  87.47% | 87.85%
TSRN + temporal 87.91% 90.98%  89.70% | 89.53%
TSRN + two-stream 92.33% 93.04% 92.85% 92.74%
TSRN + TSN spatial 86.14%  85.09%  84.26% | 85.16%
TSRN + TSN temporal 88.01% 91.05%  90.95% | 90.00%
TSRN + TSN two-stream | 93.64%  94.24%  94.23% | 94.04%




may be exploited by action recognition architectures besides
appearance/motion.

V. CONCLUSIONS

In this work, we studied the role of spatial cues provided
by object detections in activity recognition. We proposed two
approaches to leverage object detections, namely, Egocentric
Pyramid and Temporal Segment Relational Network (TSRN).
The former captures spatial relationships centred around an
agent, while the latter is an end-to-end network architecture
to learn relations between object detections and egocentric
pyramids itself. Our experimental results showed that spatiality
is significant in activities, even in challenging datasets like
the UFC101. Egocentric pyramid obtained better results than
spatial pyramid, which suggests that our hypothesis of agent-
centred activities might be valid. TSRN improved on both
approaches, showing that it uses other features not origi-
nally encoded by the pyramid, such as temporality and co-
occurrence. TSRN yields similar results to spatial stream [7],
but slightly worse than TSN spatial stream [8]. This might
be due to TSN spatial stream encoding more information
than available from objects. Finally, fusing TSRN with TSN
shows that there are activity categories that benefit from object
spatiality/temporality, which shreds light on future directions
to improve two-stream architectures.

As future work, we will evaluate TSRN on datasets that
are more object-centric than UCF101, such as the Something-
Something [25] and the EPIC-KITCHENS datasets [26]. An-
other issue concerns the higher computational cost, because
it has the preprocessing step of running an object detector.
We posit that coupling egocentric pyramids and TSRN on top
of feature maps extracted from spatial and temporal streams
may encode spatial relationships without the need of an object
detector, reducing the computational cost of this approach.
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