Robust Iris Segmentation Based on Fully
Convolutional Networks and Generative
Adversarial Networks

Cides S. Bezerra*, Rayson Laroca®, Diego R. Lucio*, Evair Severo*,
Lucas F. Oliveira*, Alceu S. Britto Jr." and David Menotti*
*Federal University of Parana (UFPR), Curitiba, PR, Brazil

TPontifical Catholic University of Parand (PUCPR), Curitiba, PR, Brazil

{csbezerra, rblsantos,drlucio, ebsevero, lferrari, menotti}@inf.ufpr.br alceulppgia.pucpr.br

Abstract—The iris can be considered as one of the most
important biometric traits due to its high degree of unique-
ness. Iris-based biometrics applications depend mainly on the
iris segmentation whose suitability is not robust for different
environments such as near-infrared (NIR) and visible (VIS) ones.
In this paper, two approaches for robust iris segmentation based
on Fully Convolutional Networks (FCNs) and Generative Ad-
versarial Networks (GANs) are described. Similar to a common
convolutional network, but without the fully connected layers
(i.e., the classification layers), an FCN employs at its end a
combination of pooling layers from different convolutional layers.
Based on the game theory, a GAN is designed as two networks
competing with each other to generate the best segmentation.
The proposed segmentation networks achieved promising results
in all evaluated datasets (i.e., BioSec, Casial3, CasiaT4, IITD-
1) of NIR images and (NICE.I, CrEye-Iris and MICHE-I) of
VIS images in both non-cooperative and cooperative domains,
outperforming the baselines techniques which are the best ones
found so far in the literature, i.e., a new state of the art for these
datasets. Furthermore, we manually labeled 2,431 images from
CasiaT4, CrEye-Iris and MICHE-I datasets, making the masks
available for research purposes.

I. INTRODUCTION

The identification of individuals based on their biological
and behavioral characteristics has a higher degree of reliability
compared to other means of identification, such as passwords
or access cards. Several characteristics of the human body can
be used for person recognition (e.g., face, signature, finger-
prints, iris, sclera, retina, voice, etc.) [1]. The characteristics
present in the iris make it one of the most representative and
safe biometric modalities. This circular diaphragm forming
the textured portion of the eye is capable of distinguishing
individuals with a high degree of uniqueness [2], [3].

As described in [4], an automated biometric system for iris
recognition is composed of four main steps: (i) image acquisi-
tion, (ii) iris segmentation, (iii) normalization and (iv) feature
extraction and matching. The segmentation consists of locating
and isolating the iris from other regions (e.g., the sclera,
surrounding skin regions, etc.), therefore it is the most critical
and challenging step of the system. Incorrect segmentation
usually affects the subsequent steps, impairing the system
performance [5].

Over the last decade, many approaches have been em-
ployed for iris segmentation, such as those based on edge
detection [6], Hough transform [7], active contours [8], [9],
integro-differential equation [10], Maximum Radial Suppres-
sion (MRS) [11], Markovian Texture Models (MTMs) [12],
and Convolutional Neural Networks (CNNs) [13], [14]
(see Section II for more details).

Leveraging the advent of CNNs we propose two approaches
for iris segmentation task. The first is based on a Fully
Convolutional Network (FCN) [15] and the second one is
based on a Generative Adversarial Network (GAN) [16].
FCNs are used for segmentation in many different tasks since
medical image analysis to aerospace image analysis [17], [18],
while GAN is a young approach to semantic segmentation,
which has outperformed the state of the art [19].

The proposed FCN and GAN iris segmentation approaches
outperform three existing frameworks in the largest bench-
mark datasets found in the literature. There are two main
contributions in this paper: (i) two CNN-based approaches that
work well for near-infrared (NIR) and visible (VIS) images
in both cooperative (highly controlled) and non-cooperative
environments; and (ii) 2,431 new manually labeled masks from
images of three existing iris datasets' (see Section IV-A).

The remainder of this paper is organized as follows: we
briefly review related work in Section II. In Section III, the
proposed approaches used for iris segmentation are described.
Section IV presents the datasets, evaluation protocol and
baselines used in the experiments. We report and discuss the
results in Section V. Conclusions are given in Section VI

II. RELATED WORK

In this section, we briefly review relevant studies in the con-
text of iris segmentation, which use from conventional image
processing to deep learning techniques. For other studies on
iris segmentation, please refer to [20], [21].

Jillela and Ross [22] presented an overview of classical
approaches, evaluation methods and challenges related to

IThe new masks are publicly available to the research community at
http://web.inf.ufpr.br/vri/databases/iris-segmentation-annotations/.
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iris segmentation in both NIR and VIS images. Daugman’s
study [23] is considered the pioneer in iris segmentation.
The integro-differential operator was used to approximate the
boundary of the inner and outer iris, generating the central
coordinates and both pupil and iris radius.

Liu et al. [6] first detected the inner boundary of the iris
and then the outer boundary. In addition, noisy pixels were
eliminated based on their high/low-intensity level. Proenca and
Alexandre [7] used the Fuzzy K-means algorithm to classify
each pixel as belonging to a group, considering its coordinates
and intensity distribution. Then, they applied the Canny edge
detector in the image with the grouped pixels, creating an edge
map. Finally, the inner and outer iris boundaries are detected
by the circular Hough transform.

Shah and Ross [9] performed iris segmentation through
Geodesic Active Contours, combining energy minimization
with active contours based on curve evolution. The pupil
is detected from a binarization and both inner and outer
iris boundaries are approximated using the Fourier series
coefficients.

The winning approach of the Noisy Iris Challenge Evalua-
tion - Part I (NICE.I), proposed by Tan et al. [10], removes
the reflection points using adaptive thresholding and bilinear
interpolation. Region growing based on clustering and integro-
differential constellation segments the iris. Podder et al. [11]
applied an MRS technique to noise removal. Moreover, they
applied the Canny edge detector and Hough transform to detect
iris boundaries.

Haindl & Krupicka [12] detected the iris using the Daug-
man’s operator [23] and removed the eyelids employing a
third-order polynomial mean and standard deviation estimates.
Adaptive thresholding and MTM were used to remove iris
reflection. Ouabida et al. [8] applied the Optical Correlation
based Active Contours (OCAC), that uses the Vander Lugt
correlator algorithm, to detect the iris and pupil contours
through spatial filtering.

Liu et al. [14] proposed two approaches called Hierar-
chical Convolutional Neural Networks (HCNNs) and Multi-
scale Fully Convolutional Networks (MFCNs) to perform a
dense prediction of the pixels using sliding windows, merging
shallow and deep layers.

At present, CNNs are being employed to solve many com-
puter vision problems with impressive results being obtained in
several areas such as biometrics, medical imaging and security
systems [24]-[26]. Teichmann et al. [27] proposed a CNN
architecture, called MultiNet, to joint detection, classification
and semantic segmentation. Inspired by the great results re-
ported in their work, we apply the segmentation decoder of
the MultiNet to the iris segmentation context, as detailed in
Section III-B.

III. PROPOSED APPROACH

This section describes the proposed approach and it is
divided into two subsections, one for iris location and one
for iris segmentation.

A. Iris Detection

The datasets used in this work have many different sizes,
and just resizing the images would generate a distortion in the
iris format. In order to avoid this distortion, we first performed
the Periocular Region Detection (PRD).

YOLO [28] is a real-time object detection system, which
regards detection as a regression problem. As great advances
were recently attained through models inspired by YOLO [26],
[29], we decided to fine-tune it for PRD. However, as we
want to detect only one class (i.e., the iris), we chose to use
a smaller model, called Fast-YOLO? [28], which uses fewer
convolutional layers than YOLO and fewer filters in those
layers. The Fast-YOLOQO’s architecture is shown in Table 1.

TABLE I
FAST-YOLO NETWORK USED FOR IRIS DETECTION.
Layer Filters Size Input Output

0 conv 16 3x3/1 416 x 416 x 1/3 416 x 416 x 16
1 max 2x2/2 416 x 416 x 16 208 x 208 x 16
2 conv 32 3x3/1 208 x208x16 208 x 208 x 32
3 max 2x2/2 208 x208x32 104 x 104 x 32
4 conv 64 3x3/1 104 x 104 x 32 104 x 104 x 64
5 max 2x2/2 104 x 104 x 64 52 x 52 x 64

6 conv 128 3x3/1 52 x 52 x 64 52 x 52 x 128
7 max 2% 2/2 52 x 52 x 128 26 x 26 x 128
8 conv 256 3x3/1 26 x 26 x 128 26 x 26 x 256
9 max 2x2/2 26 x 26 x 256 13 x 13 x 256
10 conv 512 3x3/1 13 x 13 x 256 13 x 13 x 512
11 max 2x2/1 13 x 13 x 512 13 x 13 x 512
12 conv 1024 3x3/1 13 x 13 x 512 13 x 13 x 1024
13 conv 1024 3x3/1 13 x 13 x 1024 13 x 13 x 1024
14 conv 30 1x1/1 13 x 13 x 1024 13 x 13 x 30

15  detection

The PRD network was trained using the images, without
any preprocessing, and the coordinates of the Region of
Interest (ROI) as inputs. The annotations provided by Severo
et al. [26] were used as ground truth. We applied a small
padding in the detected patch to increase the chance that the
iris is entirely within the ROI. Afterward, we enlarged the ROI
to a square form with width and height that are power of 2.

By default, only objects detected with a confidence of 0.25
or higher are returned by Fast-YOLO [28]. We consider only
the detection with the largest confidence in cases where more
than one iris region is detected, since there is always only
one region annotated in the evaluated datasets. If no region
is detected, the next stage (iris segmentation) is performed on
the image in its original size.

In our previous work on sclera segmentation [30], this same
approach was used for iris detection.

B. Iris Segmentation

We chose FCN and GAN for iris segmentation since they
presented good results in other segmentation applications [30].
These results can be explained by the fact that FCN has no
fully connected layer which generally causes loss of spatial
information, while the representations embodied by the pair

2For training Fast-YOLO we used the weights pre-trained on ImageNet,
available at https://pjreddie.com/darknet/yolo/.
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of networks in a GAN model (the generator and the discrimi-
nator) are able to capture the statistical distribution of training
data, making possible less reliance on huge, well-balanced,
and well-labelled datasets.

1) Fully Convolutional Networks (FCNs): are deep neural
networks in which an image is provided as input and a mask
is generated at the output. This mask is a binary image (of
the same size) where each pixel is classified as iris or not
iris. Basically, we employed the MultiNet [27] segmentation
decoder without the classification and detection decoders.
The encoder consists of the first 13 layers of the VGG-16
network [31]. The features extracted from its fifth pooling
layer were then used by the segmentation decoder, which
follows the FCN architecture [32] (see Fig. 1).
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Fig. 1. FCN architecture for iris segmentation.

The fully-connected layers of the VGG-16 network were
transformed into 1 X 1 convolutional layers to produce a
low-resolution segmentation. Then, three transposed convolu-
tion layers were used to perform up-sampling. Finally, high-
resolution features were extracted through skip layers from
lower layers to improve the up-sampled results.

The segmentation loss function was based on the cross-
entropy. The pre-trained VGG-16 weights on ImageNet were
used to initialize the encoder, the segmentation decoder, and
the transposed convolutional layers. The training is based
on the Adam optimizer algorithm [33], with the following
parameters: learning rate of 107>, dropout probability of
0.5, weight decay of 5~* and standard deviation of 10~* to
initialize the skip layers.

2) Generative Adversarial Networks (GANs): are deep neu-
ral networks composed by both generator and discriminator
networks, pitting one against the other. First, the generator
network receives noise as input and generates samples. Then
the discriminator network receives samples of training data
and those of the generator network, being able to distinguish
between the two sources [34]. The GAN architecture for iris
segmentation is shown in Fig. 2.

Input Images

Generated

Fine Tune
Training

Fig. 2. GAN architecture for iris segmentation.

Basically, the generator network learns to produce more
realistic samples throughout each iteration, while the discrimi-
nator network learns to better distinguish the real and synthetic
data.

Isola et al. [16] presented the GAN approach used in
this work, which is a Conditional Generative Adversarial
Network (CGAN) able to learn the relation between an image
and its label, and from that, generate a variety of image
types, which can be employed in various tasks such as photo-
generation and semantic segmentation.

IV. EXPERIMENTS

In this section, we present the datasets, evaluation protocol
and baselines used in our experiments for comparison of
results and discussions.

A. Datasets

The experiments were carried out on well-known and chal-
lenging publicly available iris datasets with both NIR and VIS
images having different sizes and characteristics. An overview
of the number of images from each dataset is presented in
Table II. The ground truths of the BioSec, Casial3 and IITD
Iris Image Database 1.0 (IITD-1) datasets were provided by
Hofbauer et al. [35]. In the following, details of the datasets
are presented.

TABLE II
OVERVIEW OF THE IRIS DATASETS USED IN THIS WORK, WHERE (*)
MEANS THAT ONLY PART OF THE DATASET WAS USED.

Dataset Images Subjects Resolution Wavelength

BioSec [36] (*) 400 25 640 x 480 NIR
Casial3 [37] 2,639 249 320 x 280 NIR
CasiaT4 [38] (%) 1,000 50 640 x 480 NIR
IITD-1 [39] 2,240 224 320 x 240 NIR
NICE.I [40] 945 n/a 400 x 300 VIS
CrEye-Iris [41] (*) 1,000 120 400 x 300 VIS
MICHE-I [42] (%) 1,000 75 Various VIS

BioSec: a multimodal dataset [36] containing fingerprint,
frontal face and iris images, as well as voice utterances. The
entire dataset has 3,200 NIR iris images from 25 subjects with
resolution of 640 x 480 pixels, however, due to the available
segmentation masks, we use only the first 400 images.



CASIA-Iris-Interval-v3 (Casial3): a dataset [37] with 2,639
NIR iris images from 249 subjects with extremely clear iris
texture details and resolution of 320 x 280 pixels, acquired in
an indoor environment.

CASIA-Iris-Thousand-v4 (CasiaT4): a dataset [38] contain-
ing 20,000 NIR images from 1,000 subjects, collected in an
indoor environment with different lightings setups. For our
experiments, we manually labeled the first 1,000 images from
50 subjects.

IITD-1: a dataset [39] with 2,240 NIR images acquired from
224 subjects between 14-55 years comprising of 176 males
and 48 females. All images have a resolution of 320 x 240
pixels and were obtained in an indoor environment.

Cross-Spectral Iris/Periocular (CrEye-Iris): a dataset com-
posed of 3,840 images from 120 subjects [41]. The images
were captured with a dual spectrum sensor (NIR and VIS) and
divided into three subsets: iris, masked periocular and ocular
images. We manually labeled the first 1,000 VIS images from
the iris subset.

Mobile Iris Challenge Evaluation I (MICHE-I): a
dataset [42] with 3,191 VIS images captured from 92 sub-
jects under uncontrolled settings using three mobile devices:
iPhone 5, Galaxy Samsung IV and Galaxy Tablet II (1,262,
1,297 and 632 images, respectively). The images have reso-
lution of 1536 x 2048, 2320 x 4128 and 640 x 480 pixels,
respectively. We used the 569 ground truth masks made
available by Hu et al. [43] and labeled another 431 to complete
1,000 images from 75 subjects.

NICE.I: a subset of the UBIRIS.v2 dataset [44]. The
NICE.I [40] subset is composed of 500 images for training
and 500 for testing. However, the test set provided by the
organizers of the NICE.I contest has only 445 images. The
subjects of the test set were not directly specified.

Fig. 3 shows two samples (NIR and VIS) of the masks we
created. We sought to eliminate all noise present in the iris,
such as reflections and eyelashes.

B. Evaluation protocol

A pixel-to-pixel comparison between the ground truth
(manually labeled) and the algorithm prediction (i.e., the
mask/segmentation) generate an average segmentation error F
computed as a pixel divergence, given by the exclusive-or
logical operator ® (i.e., XOR) [40], denoted by

T hXw

K2

1
E= DO M(i, ) © GTi(i ) e
J

where ¢ and j are the coordinates in the mask M and ground
truth GT images, h and w stand for the height and width of
the image, respectively. Lower and higher I/ values represent
better and worse results, respectively. We also reported the
F-Measure (F1) measure which is a harmonic average of
Precision and Recall [13].

In order to perform a fair evaluation and comparison of the
proposed methodologies to the baselines in all datasets, we

(b)

Fig. 3. Two examples of the masks created by us. (a) shows a NIR image
(CasiaT4) and (b) a VIS image (MICHE-I).

randomly divided each dataset into two subsets, containing
80% of the images for training and the remainder for evalua-
tion. The stopping learning criteria was 32,000 iterations.

As suggested in [27], we trained the FCN with 16,000
iterations. However, we noticed that the more iterations, the
better was the model’s performance. Therefore, we doubled
the number of iterations (i.e., 32,000) to ensure a good con-
vergence of the model. According to our evaluations, 32,000
iterations were sufficient for all datasets.

C. Benchmarks

We selected three baseline frameworks described (and
available) in the literature to compare with our ap-
proaches with: Open Source Iris Recognition System Ver-
sion 4.1 (OSIRISv4.1), Iris Segmentation Framework (IRIS-
SEG) and Haindl & Krupicka [12].

The OSIRISv4.1 [45] framework is composed of four key
modules: segmentation, normalization, feature extraction and
matching. Nevertheless, we used only the segmentation mod-
ule to compare it with our method. Although the performance
of this framework was only reported in datasets with NIR im-
ages, we applied it on both NIR and VIS image datasets. This
framework has input parameters such as minimum/maximum
iris diameter. For a fair comparison, we tuned the parameters
for each dataset in order to obtain the best results.

The IRISSEG [46] framework was designed specifically for
non-ideal irises and is based on adaptive filtering, following
a coarse-to-fine strategy. The authors emphasize that this ap-
proach does not require adjustment of parameters for different
datasets. As in OSIRISv4.1, we report the performance of this
framework on both NIR and VIS images.

The Haindl & Krupicka [12] framework was used to
evaluate the results achieved by the proposed approach on VIS
datasets. This method was developed for colored eyes images
obtained through mobile devices and used as the baseline in



the MICHE-II [47] contest. We did not report the Haindl &
Krupicka [12] performance on NIR images datasets since it
was not possible to generate the segmentation masks using
the executable provided by the authors.

V. RESULTS AND DISCUSSIONS

The experiments were performed using two protocols: the
protocol of the NICE.I contest and the one proposed in
Section IV-B. Moreover, in order to analyze the robustness
among sensors from the same environment (i.e., NIR or VIS)
of the proposed FCN and GAN approaches, they were training
using either all NIR or VIS image datasets and then evaluated
on the same scenario. Finally, a visual and qualitative analysis
showing some good and poor results is performed.

We report the mean F1 and E values by averaging the values
obtained for each image. For all the experiments, we also
carried out a statistical paired t-test with significance level of
o = 0.05 between pairs of results for the same image, aiming
to claim (statistical) significative difference between the results
compared.

A. The NICE.I Contest

The comparison of the results obtained by our approaches
and those obtained by the baselines when using the NICE.I
contest protocol is shown in Table III. As can be seen, the
IRISSEG and OSIRISv4.1 frameworks presented the worst
results. They achieved F1 values of 21.76% and 30.70% on the
NICEL.I test set, respectively. These results might be explained
because these frameworks were developed for NIR images.
Therefore, their performances are drastically compromised
in VIS images. It is noteworthy that the distribution of F1
values for both frameworks presented high standard deviation
(approximately +32%). This occurs because, in some images,
the False Positives (FPs) were high in both frameworks,
including images that do not have iris, resulting in a very
poor segmentation.

TABLE III
IRIS SEGMENTATION RESULTS USING THE NICE.I CONTEST PROTOCOL.

to the discriminating power of the deep learning approaches
and also because our models were adjusted (i.e., trained)
specifically for each dataset. We emphasize that OSIRISv4.1
was also adjusted for each dataset.

Although higher standard deviation of F1 was presented for
the FCN approach, the paired t-test has shown that the GAN
approach presented a statistically better F1 value, however, the
FCN approach has presented a statistically smaller £ value.

B. Our protocol

We trained and tested the FCN and GAN approaches on
each dataset to compare them with the benchmarks. Table IV
shows the results obtained when using the proposed evaluation
protocol (see Section IV-B).

TABLE IV
IRIS SEGMENTATION RESULTS USING THE PROPOSED PROTOCOL.

Dataset Method F1 % E %
OSIRISv4.1 [45] 92.62 +03.19  01.21 4+00.47
BioSec IRISSEG [46] 93.94 +05.88  01.06 +01.20
(NIR) FCN Proposed 97.46 + 00.74 00.44 + 00.12
GAN Proposed 96.82 + 02.83 00.74 + 01.40
OSIRISvV4.1 [45] 89.49 +05.78  05.35 + 02.40
Casial3 IRISSEG [46] 94.61 +03.28  02.85 + 01.62
(NIR) FCN Proposed 97.90 + 00.68 01.15 + 00.37
GAN Proposed 96.13 + 05.35 01.45 + 03.71
OSIRISvV4.1 [45] 87.76 £ 08.01  01.34 + 00.64
CasiaT4 IRISSEG [46] 91.39 £ 08.13  00.95 + 00.54
(NIR) FCN Proposed 94.42 + 07.54 00.61 + 00.58
GAN Proposed 95.38 + 03.72 01.40 + 00.93
OSIRISv4.1 [45] 92.20 + 06.07  04.37 + 02.69
1ITD-1 IRISSEG [46] 94.25 +£03.89  03.39 + 02.16
(NIR) FCN Proposed 97.44 + 01.78 01.48 + 01.01
GAN Proposed 95.84 + 04.13 01.33 + 02.65
OSIRISv4.1 [45] 38.154+33.61 07.92 4+ 06.20
NICE.I IRISSEG [46] 28.64 +35.14 13.48 +12.36
(VIS) Haindl & Krupicka [12]  70.59 £26.11  04.72 £+ 05.87
FCN Proposed 89.54 + 13.79 01.00 + 00.70
GAN Proposed 91.12 + 05.08 03.34 + 02.31
OSIRISvV4.1 [45] 46.53 +29.25 13.22 + 06.33
CrEye-Iris IRISSEG [46] 61.72 +33.55 10.58 + 10.38
(VIS) Haindl & Krupi¢ka [12]  76.81 +£23.73  05.69 £ 04.58
FCN Proposed 97.04 + 01.21 00.96 + 00.36
GAN Proposed 92.61 + 05.86 03.02 + 03.22
OSIRISv4.1 [45] 33.85 +35.86  01.99 + 02.90
MICHE-I IRISSEG [46] 19.34 £33.03  01.90 £ 03.37
(VIS) Haindl & Krupicka [12] 63.12 £33.30 01.32 £02.10
FCN Proposed 83.01 + 19.47 00.37 + 00.43
GAN Proposed 87.42 + 13.08 03.27 + 03.13

Dataset Method F1 % E %
OSIRISv4.1 [45] 30.70 £32.00 08.67 £+ 06.29
NICE.I IRISSEG [46] 21.76 +£32.13 14.03 £ 12.33
(VIS) Haindl & Krupicka [12]  75.54 +22.93  03.27 4+ 04.29
FCN Proposed 88.20 + 13.73 01.05 + 00.86
GAN Proposed 91.42 + 03.81 03.09 + 01.76

We expected to obtain good results using the Haindl &
Krupicka [12] framework, due to the fact that it was developed
for VIS images and it was used for generating the reference
masks (i.e., the ground truth) of the MICHE-I dataset in the
recognition contest (MICHE-II). However, according to our
experiments, its performance was not promising, although it
obtained better results than IRISSEG and OSIRISv4.1.

The proposed FCN and GAN approaches achieved consid-
erably better mean values for F1 and F metrics than the other
approaches. We believe that these results were attained due

Remark that both IRISSEG and OSIRISv4.1 frameworks
presented good results in NIR datasets, always reaching F1
values over 90%. Nonetheless, our proposed approaches pre-
sented statistically better F1 values for all datasets even in
the NIR datasets, which are the IRISSEG and OSIRISv4.1
specific image domain. Observe that there are no results for
the approach by Haindl & Krupicka [12] since it was not
developed for NIR images.

Looking at VIS datasets, the results obtained were slightly
worse than in the NIR datasets. This is because VIS images
usually have more noise, e.g., reflections. The best F1 and



TABLE V

SUITABILITY (BOLD LINES) FOR NIR AND VIS ENVIRONMENTS.

TABLE VI

ROBUSTNESS (BOLD LINES) OF THE IRIS SEGMENTATION APPROACHES.

Dataset Method F1 % E % Dataset Method F1 % E %
BioS FCN  97.24+00.81  00.58 + 00.30 BioSec FCN  96.57+01.14  00.70 4 00.24
1osec GAN  90.194+05.52 02.22 +01.39 GAN  85.48+07.63 03.45 4+ 01.97
Casial3 FCN  97.43+00.74 00.55 =+ 00.29 Casial3 FCN  97.69+00.82  00.50 4+ 00.33
asia GAN  97.104+01.83 00.75+01.10 GAN  93.33+01.98  00.87 + 00.92
CasiaT4 FCN  95.87+02.66 01.25«+ 00.67 CasiaTd FCN  95.39403.20 01.46 +01.12
asia GAN 8265+ 13.98 05.52 + 04.15 ‘ GAN  85.68+12.92  03.98 + 02.80
D1 FCN  96.47 +01.56  00.72 = 00.59 TD.1 FCN  97.11+01.70  00.61 4 00.67
- GAN  96.18+02.52 01.09 + 01.80 GAN  94.99+03.88 01.28 +01.73
NIR FCN  96.69 & 01.43  00.78 + 00.63 NIR FCN  96.894 06,60  00.82 4+ 00.59
GAN  94.04 +07.93 0172 + 02.69 GAN  89.87+07.93  02.39 4 01.78
NICEL FCN  90.68 +14.01  02.67 + 02.04 NICEI FCN  89.25+14.06 03.31 4 02.77
: GAN  91.40+05.18  01.22 +00.71 : GAN  65.56 +23.32 11.53 + 05.87
. FCN  96.71+01.11 01.12 =+ 00.80 Crbvedris  FCN 96.15£01.90  01.38 £01.16
CrEye-Iris i\ 9391 +02.30 01.88 + 0053 yers GAN  88.964+08.98  04.57 4 04.63
FCN  88.36+11.88 01.90 & 02.20 FCN  80.49+20.65 02.73 4+ 02.76
MICHET  GAN 894940676  03.11 + 02.24 MICHET  GaN 619342497 1095+ 06.22
VIS FCN  89.56 - 1236  02.40 & 02.21 VIS FCN  88.63409.15  02.47 + 02.23
GAN 9258 +04.89  02.80 & 02.05 GAN  72.15+19.03  09.01 4 05.54
All FCN 94.36 +09.90  01.26 & 01.73
GAN  86.62+17.71  04.03 + 05.28

E values achieved for the VIS datasets were achieved by the
FCN approach with 97.04%(401.21) and 00.37%(£00.43),
respectively, in the CrEye-Iris and MICHE-I datasets.

It is worth noting that the FCN approach is the one with the
smallest E values in almost all scenarios. This result can be
explained by the fact that the FCN approach took advantage of
transfer learning, while the GAN approach was trained from
scratch.

C. Suitability and Robustness

Here, experiments for evaluating the suitability and robust-
ness of the proposed approaches are presented. By suitability,
we expect that models trained with a specific kind of images,
i.e. NIR or VIS images, work as well as when training on a
specific dataset. By robustness, we expect that models trained
with all kind of images (NIR and VIS) perform as well as
when training on a specific dataset.

In summary, the suitability is evaluated by training the
models using only NIR or VIS images (i.e., FCN and GAN
trained on the NIR merged and VIS also merged datasets). The
robustness is evaluated by training the models using all images
available (NIR and VIS merged). The results are presented
in Tables V and VI, respectively. Note that we report the
results of the separate test subsets as well, to facilitate visual
comparison between the tables.

By comparing the values presented in Table V with those
reported in Table IV, we can observe that the values vary
slightly, and thus we can state that the proposed approaches
are stable in the suitability scenario.

When comparing the results presented in Table V and
Table VI, we noticed that the obtained values of F'1 and

FE were similar in NIR datasets. On the other hand, the per-
formance was considerably lower in VIS datasets. Therefore,
the proposed approaches are robust for both NIR and VIS
images. However, the GAN approach presented a decrease in
the results, while the FCN obtained little variation.

D. Visual & Qualitative Analysis

Here we perform a visual and qualitative analysis. First,
in Fig. 4, we show poor and well-performed iris segmenta-
tion results obtained in each dataset by the FCN and GAN
approaches. Some images were poorly segmented, thus ex-
plaining the high standard deviations obtained.

Then, in Fig. 5, we show iris segmentation performed by
both the FCN and GAN approaches, as well as the baselines.
We only show one image from each the Casial3 and CrEye-Iris
datasets due to lack of space.

We particularly chose images where all methods perform
fairly well and also where our methods performed better,
which is the case in most situations. One can observe that
our approach performed better in both NIR and VIS images.

VI. CONCLUSION

This work presented two approaches (FCN and GAN) for
robust iris segmentation in NIR and VIS images in both
cooperative and non-cooperative environments. The proposed
approaches were compared with three baselines methods and
reported better results in all test cases. The transfer learning for
each domain (or dataset) was essential to achieve outstanding
results since the number of images for training the FCN
is relatively small. Therefore, the use of pre-trained models
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Fig. 4. FCN and GAN qualitative results: good (left) and bad (right) results based on the error E. Green and red pixels represent the False Positives (FPs)
and False Negatives (FNs), respectively. (a)-(b) BioSec; (c)-(d) Casial3; (e)-(f) CasiaT4; (g)-(h) IITD-1; (i)-(j) NICE.I; (k)-(1) CrEye-Iris; (m)-(n) MICHE-I.
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Fig. 5. Qualitative results achieved by the FCN, GAN and baselines. Green
and red pixels represent the FP and FN, respectively. The first and second rows
correspond, respectively, to images from the Casial3 and CrEye-Iris datasets.

from other datasets brings excellent benefits in learning deep
networks. Moreover, specific data augmentation techniques
can be applied for improving the performance of the GAN
approach.

We also labeled more than 2,000 images for iris segmenta-
tion. These masks (manually labeled) are publicly available
to the research community, assisting the development and
evaluation of new iris segmentation approaches.

Despite the outstanding results, our approach presented high
standard deviation rates in some datasets. Therefore, as future
work we intend to (i) evaluate the impact of performing the
segmentation in two steps, that is, first perform iris detection

and then segment the iris in the detected patch; (ii) create
a post-processing stage to refine the prediction, since many
images have minor errors (especially at the limbus); (iii) first
classify the sensor or image type and then segment each image
with a specific and tailored convolutional network model, in
order to design a general approach.
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