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Abstract—In this work, we propose the use of single channel
Color Co-occurrence Matrices for texture description of Barrett’s
Esophagus (BE) and adenocarcinoma images. Further classifica-
tion using supervised learning techniques, such as Optimum-
Path Forest (OPF), Support Vector Machines with Radial Basis
Function (SVM-RBF) and Bayesian classifier supports the context
of automatic BE and adenocarcinoma diagnosis. We validated
three approaches of classification based on patches, patients
and images in two datasets (MICCAI 2015 and Augsburg)
using the color-and-texture descriptors and the machine learning
techniques. Concerning MICCAI 2015 dataset, the best results
were obtained using the blue channel for the descriptors and
the supervised OPF for classification purposes in the patch-
based approach, with sensitivity nearly to 73% for positive
adenocarcinoma identification and specificity close to 77% for
BE (non-cancerous) patch classification. Regarding the Augsburg
dataset, the most accurate results were also obtained using
both OPF classifier and blue channel descriptor for the feature
extraction, with sensitivity close to 67% and specificity around to
76%. Our work highlights new advances in the related research
area and provides a promising technique that combines color
and texture information, allied to three different approaches of
dataset pre-processing aiming to configure robust scenarios for
the classification step.

Keywords-Barrett’s Esophagus; Co-occurrence Matrices; Ma-
chine Learning; Texture Analysis

I. INTRODUCTION

The incidence of Barrett’s esophagus (BE) and Barrett’s
adenocarcinoma in the west of the globe have risen signifi-
cantly in the past decade. Because of their close association
with the metabolic syndrome, this trend is expected to continue
rising in the next years [1], [2], [3]. The early diagnosis of
Esophageal adenocarcinoma (EA) is critical for the diseases’
remission and justifies the necessity of efficient surveillance,
detection and characterization. However, the detection of
dysplastic regions and their characterization of abnormalities
within BE-diagnosed patients can be challenging, especially
for endoscopists presenting lack of experience for the eval-

uation. Even considering the dangerousness of the disease,
when detected at the early stages, the injured tissue can be
treated with very high rates of remission (93% after 10 years
of treatment) [2], [4], [5].

The computer-aided analysis of BE may be one powerful
instrument and has been subject of intensive research in the
past years [6]. Up to now, mainly handcrafted features of
endoscopic images based on texture and color were extracted
and classified subsequently. For instance, Van der Sommen [7]
designed a system for the automatic extraction of features
for detecting and delineating early neoplastic tissue regions in
patients diagnosed with BE, followed by some other relevant
studies in the same field [8], [9], [10] that aimed to assess
the feasibility of adenocarcinoma classification in endoscopic
images of BE diagnosed patients. Souza et al. [11] also
conducted a study introducing two approaches to distinguish
between BE and adenocarcinoma: (i) the Optimum-Path Forest
(OPF) [12], [13] classifier; and (ii) the use of Bag-of-Visual-
Words [14], [15] using points-of-interest extracted from endo-
scopic images using Speed-Up Robust Features [16] and Scale
Invariant Feature Transform [17] techniques for the feature
vector calculation [6].

There are, in addition, some image processing techniques
that can describe the image in different ways, providing
feature vectors based on color or texture of the injured
region. One of these techniques is the Co-occurrence Matrix
(CM), which usually employs gray-scale images to encode
texture information. However, there are some new approaches
considering the influence of both color and texture for the CM
calculation that can provide different descriptions for the BE
and adenocarcinoma context [18].

Considering the growth of studies in which BE and ade-
nocarcinoma evaluation is performed by means of machine
learning and image processing techniques, the main contribu-
tion of this paper is the evaluation of Color Co-occurrence
Matrices for the description of the dysplastic tissue in BE



diagnosed patients. Such assessment provides a novel BE
and adenocarcinoma identification approach in which color
and texture information can be combined to improve the
classification results. Some previous works already evaluated
the impact of color and texture information independently for
the BE and adenocarcinoma description [7], [19], [6], showing
promising results. However, the use of both phenomena in a
single descriptor has been poorly studied in this context.

The remainder of this paper is organized as follows: Section
II presents a brief background about color and texture combi-
nation using Co-occurrence Matrices. Section III discusses the
methodology employed in this work, and Section IV presents
the experimental results. Finally, Section V states discussions
and future works.

II. THEORETICAL BACKGROUND

A. Color and texture combination

The “parallel concept” [18] for color and texture analysis
considers both phenomena for data description separated.
While color is measured globally by means of histogram
calculation, the texture is characterized by the relationship
of the intensities of neighboring pixels ignoring their color.
The processing of both information, i.e., color and texture,
is performed independently, being combined subsequently to
compose a final feature vector (Figure 1, (a)). The parallel
approach can present advantages; however, the view on texture
as a structure purely based on intensity is simplified.

The “sequential concept” [18] uses color analysis as a first
means, in which the pattern is composed of segmented color
primitives obtained by clustering the color histogram. Some
previous works showed how useful the sequential approach
could be for some tasks, such as industrial quality control
and defect detection in granite images [20], [21]. However,
the concept of colored texture primitives may not provide
generalization support (Figure 1, (b)).

In the “integrative concept” [18], the information depen-
dency between both color and texture is taken into account
for feature extraction purposes. There are two strategies for
the integrative color-texture combination: single- and multi-
channel (Figure 1, (c)). The single-channel method analy-
ses the gray-scale texture on each color channel separately,
providing a subtle use for color information restricting the
intensity pattern to the wavelength interval associated with that
color channel [18]. The single channel approach is suitable for
methods based on the gray-scale domain. These concepts have
been proposed for well-known textural feature description,
such as Wavelet-based [22], Gabor filters [23], [24], [25] and
Markov Random Fields [26], showing very promising results
through the years.

B. Gray-scale and Single-Channel Co-occurrence Matrices

Co-occurrence Matrices are defined as the relationship
between the values of a central pixel p and its neighboring
η(p) [27]. Given a gray-scale image I , a pixel p contains
two information: its value I(p) ∈ [0, 255] and its position
p = (m,n), such that m,n ∈ N.
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Fig. 1. Color and texture concepts: (a) parallel concept for color texture
analysis; (b) sequential concept for color texture analysis and (c) integrative
single-channel color texture analysis (adapted from [18]).

Let ηp be the neighborhood of p such that p∗ ∈ ηp when
d(p, p∗) ≤ D, in which d(p, p∗) stands for the polar distance
between p and p?. Let Cd be a co-occurrence matrix defined
over distance d such that each element is computed as follows:

Cd
i,j = P (I(p) = i ∧ I(p∗) = j), (1)

such that p∗ ∈ ηp. In other words, Cd
i,j encodes the prob-

ability P of transition between brightness values from i to
j. Additionally, it is well known that one must compute one
co-occurrence matrix for each orientation angle.

Since Cd is symmetric for each orientation angle accord-
ing to d, Palm [18] proposed to combine the different co-
occurrence matrices into a single one that encodes distinct
orientation angles. Also, eight Haralick features [27] were
extracted (homogeneity, contrast, correlation, variance, inverse
difference moment, entropy, correlation I, correlation II) and
distributed over the four feature groups proposed by Gotlieb
and Kreyszig [28].



Such approach allows the use of large values for D, which
is basically the radius of a discrete circle. Computing CMs
for four different angles and constant radius D, one can obtain
8×4 rotationally-dependent features. In order to be rotationally
independent, we compute the mean and variance of each
Haralick feature, thus ending up with an 8 × 2 dimensional
gray-scale CM feature (GCF) space.

The Single-Channel Co-occurrence Matrices (SCMs) [18]
stand for the successively use of gray-scale CMs in each k
color channel separately (for RGB system, k = 1,2,3). Such
matrices are computed using the very same Equation 1, but ap-
plied to each color channel. Thus, the corresponding rotational
invariant single-channel Co-occurrence features (SCFs) consist
of K feature vectors SCFk presenting analogous behavior
of GCF according to k. Therefore, the evaluation becomes
a k-dimensional problem, once each k color-channel will
provide a different descriptor to be analyzed. The advantage
comes with the possibility of evaluation of each color channel
independently, analyzing its impact on the texture informa-
tion composition in a combined color and intensity texture
information. The information profit by analyzing intensity
independent color textures is quite high, being a brand new
way of evaluation for color- and texture-based problems.

III. METHODOLOGY

In this section, we describe the datasets, pre-processing
and feature extraction procedures, classification techniques and
approaches employed in this work.

A. Datasets

1) MICCAI Dataset: The experiments were conducted us-
ing the dataset of BE-and adenocarcinoma-diagnosed patients
provided at the “MICCAI 2015 EndoVis Challenge”1. Such
dataset is composed of 100 endoscopic images of the lower
esophagus from 39 individuals, in which 22 present BE and
17 present early-stage adenocarcinoma. For each patient, a
different number of samples was available (ranging from one
to eight), with a total of 50 samples showing BE and cancerous
tissue areas and 50 images showing only BE without cancer.
The injured tissue in cancerous images has been delineated by
five different endoscopy experts. Figure 2 shows some samples
and their respective delineation performed by the experts.

Fig. 2. Four MICCAI database samples with their respective delineations
provided by five different experts.

1https://endovissub-barrett.grand-challenge.org/

2) Augsburg Dataset: A dataset provided by the Augsburg
Klinikum, Medizinische Klinik III, was also used for the
experiments. Such dataset is composed of 76 endoscopic
images (esophagus) obtained from different patients with ade-
nocarcinoma (34 samples) and BE (42 samples). The images
were annotated (manual segmentation of the adenocarcinoma’s
and Barrett’s areas) by an expert from the Augsburg Klinikum.
The ground-truth diagnosis was validated by biopsy process.
Some Augsburg dataset samples can be observed in Figure 3.

Fig. 3. Four Augsburg database samples with their respective delineations
provided by the expert.

B. Pre-processing

Concerning the pre-processing step, the images were split
into patches to be used in different approaches for classifi-
cation purposes. Considering that databases present different
image resolutions, the patch size was chosen in order to
cover the entire image without overlapping. Regarding the
MICCAI database, each image was split into 48 patches of
200 × 200 pixels, resulting in 4, 800 non-overlapped patches
for the whole database. The Augsburg database images were
split into 20 patches per image, with sizes of 270 × 270 and
resulting in 1, 520 non-overlapped patches.

Additionally, it is important to notice that for the patch
labeling process, the experts’ annotations were considered for
both datasets. Concerning the MICCAI database, the intersec-
tion area of the five experts’ delineations was considered the
correct adenocarcinoma region including the fuzzy delineation
area (area of confusion among the delineations). Concerning
patches that cross this region, the numbers of cancerous and
non-cancerous pixels were compared, being the final label
defined by the majority of pixels inside the patch. With
respect to the Augsburg data, we used the only delineated
area available. Notice that an analogous procedure for labeling
patches was employed as well.

C. Feature Extraction

In order to consider a color-and-texture evaluation protocol
for the automatic identification of BE and adenocarcinoma, the
integrative single-channel co-occurrence matrix was applied.
For each color channel, SCMs and Haralick features were
computed and further used for learning purposes. Notice that
the same set of features were extracted from the gray-scale
images, which were obtained using the mean pixel values of
each channel.

The experimental protocol was composed of three distinct
evaluations: (i) first, we considered color and texture infor-
mation from each channel separately, (ii) then the same set of
features (i.e., from each channel) were concatenated to produce
a single feature vector, and (iii) the color and texture extraction



techniques used previously were also considered for the gray-
scale images.

Since each color channel and gray-scale feature vector
consist of 16 elements, the composite descriptors (RGB)
comprise 48 features (i.e., 3 × 16). Further, the Principal
Component Analysis (PCA) was applied to reduce the number
of features to a 16-dimensional space using the Single Value
Decomposition and the covariance matrix approach for the
largest eigenvalues definition, thus ending up with the same
single-channel descriptor dimension. For all approaches, the
SCMs were calculated with three different radii (i.e., 1, 5 and
10) to assess the impact on their representation concerning the
classification results.

D. Classification

After the feature extraction using the integrative single-
channel co-occurrence matrices, the descriptors from the
databases were used as input to the following supervised
learning techniques:

• OPF: supervised classifier with complete graph proposed
by Papa et al. [12], [13];

• SVM-RBF: Support Vector Machines with Radial Ba-
sis Function kernel and parameters optimized by cross-
validation [29];

• Bayes: standard Bayesian classifier.
Regarding the OPF and SVM-RBF classifiers, we used the

open-source libraries LibOPF [30] and LibSVM [29], respec-
tively. With respect to the Bayesian classifier, we employed
our own implementation.

E. Approaches

This work employs three different approaches for the
database pre-processing and classification: patch-based, patient
patch-based, and image-based approach. Regarding the patch-
based approach, 80% of all patches were randomly selected
for training, while 20% of the remaining ones were used for
testing purposes, being such partitioning process employed for
20 runs for both databases. Therefore, the patch-based classi-
fication step was conducted to discriminate between patches
from BE and adenocarcinoma classes without taking into
account information about the patients. Concerning MICCAI
dataset, 3, 840 patches were randomly selected for the training
step and 960 patches were used for the testing set. With respect
to the Augsburg database, the training set was composed of
1, 216 random patches, and the test set was composed of the
304 remaining patches.

Concerning the patient patch-based approach, the patient
information was used for the patch selection protocol. The
available number of patches for this approach was the same
available for the previous one (patch-based approach), but
the difference here was related to the protocol applied to the
definition of training and testing sets. In this experiment, we
used the well-known “leave-one-patient-out cross-validation”
(LOPO-CV), i.e., n− 1 patients are used for training and the
remaining one is used to evaluate the model, where n stands

for the number of patients. This procedure is repeated until all
patients have been evaluated.

Finally, the last experiment, i.e., image-based approach,
uses the same 20-fold cross-validation protocol applied to the
first approach (i.e., patch-based) with 80% for training and
20% for testing purposes. However, the descriptors were now
extracted from the full images. Notice that the same protocol
was applied to the Augsburg database. Figure 4 illustrates the
approaches mentioned above.

IV. EXPERIMENTS

In this section, we present the experiments used to eval-
uate the three proposed approaches. The discrimination be-
tween positive and negative samples to adenocarcinoma was
performed using OPF, SVM-RBF and Bayesian classifier
(hereinafter called “Bayes”). The results are presented and
discussed for each approach and database. All experiments
were conducted on an 8Gb-memory computer equipped with
an Intel® Core i5 - 2.30 GHz processor. Additionally, we
employed our implementation of the SCM approach in C++
language.

In this work, we adopted the following sensitivity (S),
specificity (P), accuracy (A), and F1 Score (F1) measures:

S =
TP

TP + FN
∗ 100, (2)

P =
TN

TN + FP
∗ 100, (3)

A =
TP + TN

TP + TN + FP + FN
∗ 100, (4)

and
F1 =

2 · S · P
S + P

, (5)

where TP and TN stand for the true positives and true
negatives, respectively, and FN and FP denote the false
negatives and false positives, respectively.

Table I presents the average results regarding sensitivity,
specificity, accuracy, and F1 score concerning the patch-
based approach. Since we considered different values for the
radius used in SCM technique, column “Radius” contains
the values that lead to the best results. With respect to the
Augsburg database, the best results were obtained using the
OPF classifier in the blue channel, with sensitivity, specificity,
accuracy and F1 values of 66.6%, 75.6%, 70.2%, and 70.8%,
respectively. Concerning the SVM-RBF classifier, the best
results were obtained on the red channel, with values of 58.6%
of sensitivity, 87.5% of specificity, 81.4% of accuracy, and
70.2% of F1 score. The Bayesian classifier provided the best
results in the red channel features as well, with values of
58.1% for sensitivity, 83.5% of specificity, 75.3% of accuracy,
and 68.5% of F1.

Since the F1 score presents a trade-off response between
the sensitivity and specificity values, the values in bold stand
for the best approaches with respect to such measure. The
accuracy can be very dependent on the sensitivity/specificity
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Fig. 4. Approaches used in the experiments: (1) patch-based, (2) patient patch-based, and (3) image-based approach.

values when we have a unbalanced database. We observed
that specificity always influenced considerably the accuracy
values, once the number of samples positive to cancer was
usually lower when compared to the negative examples.

Concerning the MICCAI database, OPF classifier provided
the best results in the blue channel once again, with values
of sensitivity, specificity, accuracy, and F1 equal to 72.6%,
77.2%, 76.6%, and 74.8%, respectively. The SVM-RBF clas-
sifier showed the best results in the blue channel as well, with
values of 63.9%, 76.7%, 70.1%, and 69.7% for sensitivity,
specificity, accuracy, and F1 score, respectively. The Bayes
classifier obtained the best results in the PCA-RGB features,
with sensitivity, specificity, accuracy, and F1 values of 58.3%,
80.3%, 75.6%, and 67.6%, respectively.

Table II presents the average results of sensitivity, speci-
ficity, and accuracy concerning the patient patch-based ap-
proach. Regarding the Augsburg database, the best results
considering the F1 values were obtained using the OPF
classifier in the blue channel, with sensitivity, specificity,
accuracy and F1 values of 63.0%, 77.4%, 73.5%, and 69.5%,
respectively. With respect to the SVM-RBF classifier, the
best results were obtained in the green channel, with values
of 63.6% for sensitivity, 74.4% for specificity, 70.9% for
accuracy, and 68.6% for F1. The Bayes classifier provided
reasonable results in the green channel as well, with values
of 65.8% for sensitivity, 70.5% for specificity, 69.1% for

accuracy, and 68.1% for the F1 score.

Regarding MICCAI dataset, the OPF classifier provided the
best results in the blue channel, with values of sensitivity,
specificity, accuracy and F1 Score equal to 71.6%, 72.9%,
72.3%, and 72.2%, respectively. The SVM-RBF classifier
obtained the best results using the PCA-RGB features, with
values of 61.9%, 79.5%, 75.4%, and 69.6% of sensitivity,
specificity, accuracy and F1, respectively. The Bayes classifier
with the PCA-RGB features provided the best results as well,
with values of sensitivity, specificity, accuracy and F1 of
60.1%, 82.4%, 78.6%, and 69.1%, respectively.

Table III presents the average results of sensitivity, speci-
ficity, accuracy and F1 score concerning the classification in
the image-based protocol. Concerning the Augsburg dataset,
the best results were obtained using the OPF classifier in the
red channel, with sensitivity, specificity, accuracy and F1 val-
ues of 63.5%, 66.2%, 64.5%, and 64.82%, respectively. Using
the SVM-RBF classifier, the best results were obtained using
the PCA-RGB features, with values of 37.7% for sensitivity,
83.4% for specificity, 66.9% for accuracy and 51.93% for
the F1 score. The Bayes classifier obtained its best results
with the PCA-RGB features as well, with values of 55.5%
for sensitivity, 77.6% for specificity, 62.7% for accuracy, and
64.72% for F1.

With respect to the MICCAI database, OPF classifier ob-
tained the best results in the red channel, with values of sensi-



tivity, specificity, accuracy and F1 equal to 60.7%, 70.8%,
68.4%, and 65.36%, respectively. The SVM-RBF classifier
achieved the best results using the PCA-RGB features, with
values of 49.5%, 78.2%, 71.1%, and 60.62% for sensitivity,
specificity, accuracy and F1 values, respectively. The Bayes
classifier obtained the best results in the red channel, with
values of sensitivity, specificity, accuracy and F1 equal to
61.7%, 73.5%, 67.0%, and 67.1%, respectively.

V. DISCUSSION AND CONCLUSIONS

In this paper, we dealt with the problem of computer-
assisted Barrett’s esophagus and esophageal adenocarcinoma
evaluation using endoscopy images. BE stands for an illness
that is visually confused with adenocarcinoma, requiring more
precise ways for its early detection and prevention.

We observed that only a very few works attempted at
coping with the problem of automatic BE identification using
image processing and machine learning techniques to date. In
this work, we fostered the research towards such area and
introduced the use of single channel Color Co-occurrence
Matrices in the feature extraction step for automatic BE
recognition, as well as we showed how each RGB channel
could perform compared to the gray-scale image evaluation.
The experimental results were considered over two databases:
(i) MICCAI 2015 and (ii) Augsburg. For both scenarios, we
evaluated three different approaches and supervised learning
techniques for classification purposes.

As one can observe in the previous section, each approach
presents a particular and interesting result that deserves at-
tention. Considering the patch-based approach (Table I), the
results over Augsburg data highlighted that cancerous patches
are harder to be identified than non-cancerous ones, thus
explaining low values of sensitivity and higher values of
specificity. However, the use of blue-channel SCMs associated
with the OPF classifier provided the higher sensitivity and F1
values. With respect to MICCAI database, the results presented
a similar behavior to those obtained over Augsburg ones. The
blue-channel SCMs combined with the OPF classifier achieved
the higher F1 scores when compared to the other classifiers,
thus suggesting it can be a strong learning technique for
color-and-texture feature classification. For both databases,
the number of non-cancer patches was considerably higher
than the cancerous ones, thus explaining the higher specificity
values. Although SVM-RBF and Bayes obtained satisfactory
results, they were outperformed by OPF.

Concerning the patient patch-based approach (Table II),
the best results over Augsburg data were obtained with the
OPF classifier and blue channel SCMs. The MICCAI dataset
results showed a better performance, with the best values
achieved by OPF and blue-channel SCMs as well. Both SVM-
RBF and Bayes classifiers were outperformed by OPF. Once
again, SVM-RBF provided better sensitivity values in some
experiments, but not the overall best results.

Since the image-based approach (Table III) makes use of
descriptors obtained from the entire image, the tendency is
to achieve the worst results due to the presence of both

cancerous and non-cancerous regions in the very same image
labeled as cancer. Surprisingly, the results presented satis-
factory classification rates for both databases. Concerning
the Augsburg and MICCAI databases, the best results were
achieved with the OPF classifier and red-channel SCMs. The
SVM-RBF showed the worst performance in this approach,
with low sensitivity but high specificity values. The image-
based approach demonstrates the generalization strength of the
SCMs over the entire images. Even with different regions in
cancer-labeled images, the obtained feature vector can provide
good generalization for the classification step.

Considering all approaches, it is relevant to point out
that the results using color-channel features outperformed the
gray-scale ones in all experiments, thus corroborating the
importance of the color-texture analysis. The blue channel
results obtained for the patch and patient-based approaches
suggest that, for local evaluation, the blue channel present
a more accurate and robust way of description, while the
red channel may provide a better global evaluation of the
BE and adenocarcinoma problem, according to the global
results provided by the image-based approach. The blue re-
sults corroborate the ones obtained by Ilgner et al. [31] in
which laryngoscopy images presenting or not diseased tissue
were classified using colored-texture descriptors, being blue
the color channel that provided the best classification rate
(81.4%). PCA-RGB features showed a very well performance,
achieving the best results between the channels for some
classifiers and approaches. With respect to the SCMs, feature
vectors calculated with large distances (i.e., higher values of
D) showed better results when compared to short distance
ones (in this case, D = 5 or D = 10 always presented better
results than the ones obtained using D = 1). Such premise
is also relevant, reinforcing the importance of the neighbor-
ing information during the CMs calculation, suggesting that
higher values of D may provide better generalization abilities
for classification purposes. The experiments pointed out that
SCMs are suitable to handle BE automatic identification, and
there must be a trade-off between the sensitivity and specificity
values to compose a cohesive diagnosis result for the BE and
adenocarcinoma distinction.

Concerning the previous results obtained for the BE and
adenocarcinoma classification in the literature, this one, in
particular, proposes a new protocol of image evaluation, in
which the images are split into patches, so the labeling
problem is changed. It is well-known that once we work with
full images, cancerous and non-cancerous regions receive the
same label, but when the problem is extended to the patches,
the labeling problem becomes less critical. With the patches
labeling, even with images that present BE and adenocarci-
noma, the misclassification of regions do not exist, once each
patch will be labeled according to the previous annotation
provided by the experts. Regarding the classification results,
handling with patches may improve the results because of this
accurate labeling definition that does not happen in the full-
image approach. The comparison with previous works can be
performed with the third approach (image-based approach)



TABLE I
MEAN VALUES CONCERNING THE PATCH-BASED APPROACH.

OPF SVM-RBF Bayes
Database Channel S P A F1 Radius S P A F1 Radius S P A F1 Radius

Augsburg

gray 53.7 87.5 80.2 66.6 10 59.9 82.7 77.2 69.5 10 55.5 75.7 70.9 64.4 5
red 54.4 82.7 77.3 65.7 10 58.6 87.5 81.4 70.2 10 58.1 83.5 75.3 68.5 10

green 43.4 93.5 87.8 59.3 5 47.4 90.8 87.2 62.3 10 39.5 89.7 86.8 54.9 10
blue 66.6 75.6 72.0 70.8 5 60.2 77.8 71.0 67.9 10 53.5 80.2 75.3 64.2 10

PCA-RGB 57.7 83.2 73.3 68.1 5 55.7 82.3 76.7 66.4 10 56.8 81.4 76.8 66.9 10

MICCAI

gray 64.3 85.5 83.4 73.4 10 66.7 79.5 79.1 68.8 5 47.8 78.4 73.4 59.4 10
red 51.2 90.4 87.5 65.4 10 47.9 91.1 86.9 62.8 10 54.7 85.3 80.0 66.7 10

green 49.7 90.4 82.7 65.3 5 51.4 90.8 89.1 65.6 10 41.5 87.3 81.5 56.3 5
blue 72.6 77.2 76.6 74.8 10 63.9 76.7 70.1 69.7 10 50.0 86.7 81.3 63.4 10

PCA-RGB 65.1 82.1 77.5 72.6 10 57.5 80.4 73.2 67.0 10 58.3 80.3 75.6 67.6 10

TABLE II
MEAN VALUES CONCERNING THE PATIENT PATCH-BASED.

OPF SVM-RBF Bayes
Database Channel S P A F1 Radius S P A F1 Radius S P A F1 Radius

Augsburg

gray 52.3 71.0 59.4 60.2 10 54.0 78.2 72.2 63.9 5 50.5 73.4 64.9 59.8 10
red 52.6 67.4 68.3 59.1 10 56.1 70.9 64.7 62.6 10 54.8 63.9 60.1 59.0 10

green 70.2 67.2 68.1 68.7 10 63.6 74.4 70.9 68.6 10 65.8 70.5 69.1 68.1 5
blue 63.0 77.4 73.5 69.5 10 59.7 78.7 72.9 67.9 10 52.0 77.6 70.4 62.3 10

PCA-RGB 56.2 83.4 76.3 67.2 10 61.4 72.3 66.8 66.4 10 55.2 76.8 68.3 64.2 10

MICCAI

gray 54.3 82.8 73.6 65.6 10 60.9 76.7 67.8 67.9 10 47.0 74.1 63.2 57.5 5
red 55.3 81.0 64.6 65.7 5 50.2 81.9 62.6 62.2 5 55.1 71.7 60.8 62.3 5

green 50.9 84.5 71.1 63.5 10 50.0 85.2 73.9 63.0 5 49.9 81.4 69.5 61.9 10
blue 71.6 72.9 72.3 72.2 10 63.8 75.5 69.1 69.1 10 59.6 77.2 69.1 67.3 10

PCA-RGB 71.1 71.7 71.5 71.4 10 61.9 79.5 75.4 69.6 10 60.1 82.4 78.6 69.1 5

TABLE III
MEAN RESULT VALUES CONCERNING THE IMAGE-BASED APPROACH.

OPF SVM-RBF Bayes
Database Channel S P A F1 Radius S P A F1 Radius S P A F1 Radius

Augsburg

gray 55.5 60.1 57.5 57.7 10 33.7 84.5 63.8 48.2 5 30.7 64.5 51.3 41.6 5
red 63.5 66.2 64.5 64.8 10 29.7 89.5 67.6 44.6 10 57.1 55.6 56.3 56.3 5

green 52.8 64.2 59.0 57.9 10 30.3 85.5 64.7 44.7 10 46.8 71.8 59.9 56.7 5
blue 44.9 69.7 58.8 54.6 10 33.9 85.9 65.6 48.6 10 50.3 53.6 50.1 51.9 5

PCA-RGB 52.0 64.2 57.8 57.5 10 37.7 83.4 66.9 51.9 10 55.5 77.6 62.7 64.7 5

MICCAI

gray 59.7 52.7 55.5 56.0 10 50.3 55.4 50.7 52.7 10 47.5 64.8 56.3 54.8 5
red 60.7 70.8 68.4 65.4 10 38.9 86.6 79.2 53.7 10 61.7 73.5 67.0 67.1 10

green 54.9 69.7 64.8 61.4 10 37.8 83.9 73.2 52.1 10 44.4 84.6 72.3 58.2 10
blue 57.8 63.1 59.6 60.3 10 35.8 86.5 76.4 50.6 5 55.5 60.4 58.4 57.9 10

PCA-RGB 60.0 66.3 65.2 63.0 10 49.5 78.2 71.1 60.6 10 54.9 79.4 72.5 64.9 5

for the MICCAI 2015 database. Souza Jr. et al. conducted
two different works with a similar image-based evaluation in
such database, but using SURF [9] and SIFT [11] descriptors
associated to a large number of classifiers. The accuracy,
sensitivity and specificity results obtained in this work could
not outperform the ones using SURF and SIFT features
for the full-images approach. However, this work provides
two very important contributions: (i) the introduction of the
single-channel co-occurrence matrices technique for the BE
and adenocarcinoma description and (ii) the evaluation based
on patch-based approaches in which very promising results
could be provided, suggesting that the proposed descriptor,
associated with a local representation of the problem, can
become a strong resource for the BE and adenocarcinoma
context evaluation.

In regard to future works, we aim at considering four

major new tasks: (i) the multi-channel implementation of co-
occurrence matrices [18] instead of the single-channel ap-
proach used in this work; (ii) the reduction of the feature vector
dimensionality using feature selection techniques, and (iii) the
use of the methodology used in this work as an end-to-end
approach to aid physicians during the diagnosis process and;
(iv) a scale-evaluation of the BE and adenocarcinoma context
using the proposed color co-occurrence matrice descriptor for
many levels of image scale, providing descriptors based on a
scale-space approach.
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