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Abstract—Poor visibility is a common problem when capturing
images in participating mediums such as mist or water. The
problem of generating a haze-free image based on a hazy one
can be described as image dehazing. Previous approaches dealt
with this problem using physical models based on priors and
simplifications. In this paper, we demonstrate that an end-to-
end convolutional neural network is able to learn the dehazing
process with no parameters or priors required, resulting in
a more generic method. Even though our model is trained
entirely with hazy indoor images, we are able to fully restore
outdoor images with real haze. Also, we propose an architecture
containing the novel Guided Layers, introduced in order to
reduce the loss of spatial information while restoring the images.
Our method outperforms other machine learning based models,
yielding superior results both qualitatively and quantitatively.

I. INTRODUCTION

Particles in the air interact with the light rays when captur-
ing images in an external environment. In a hazy day, this
interaction results in an image that differs from an image
captured in a sunny day. The main phenomenon that cause this
effect is called scattering. This effect causes an information
attenuation increasing exponentially with the distance between
the scene and the observer.

Scattering causes information loss and also adds noise to the
image, producing Forward Scattering and Backscattering. The
former occurs when light rays originated from the scene are
scattered in small angles, reaching neighboring pixels, creating
a blur in the image. This phenomenon is usually neglected due
to its little impact [1]. In fact, light rays originated from outside
the scene are scattered into the camera in hazy days, creating
a partially opaque covering on the scene. Even on sunny days,
distant objects in the scene present lower contrast and tend to
be covered by a white mist.

Image dehazing is the procedure of taking a hazy image
as input and removing the degradation effect caused by the
scattering phenomenon, resulting in a haze-free image.

Originally, state-of-the-art dehazing techniques relied on an
image formation simplified physical model, shown in Eq. 1.
In this model, an image is described as a superposition of
the scene’s radiance and the scattering effects. This model is
widely adopted in classical hazy image modeling [2], [3] and
is described as:

I(x) = J(x)t(x) + (1− t(x))A, (1)

where I is the final hazy image, J is the scene radiance, A is the
global atmospheric light and t is the medium transmission that
determines the amount of light that reaches the observer. While
these methods achieve good performance when the parameters
and priors are well adjusted, they fall short when applied
in a more generic context, such as real-time dehazing in
unpredictable conditions. This occurs because these methods
are based on strong assumptions and require the adjustment
of several parameters related to the image formation, which
are not always available.

Deep Neural Networks are constantly being used to suc-
cessfully tackle image transformation problems, such as image
denoising [4], [5], image colorization [6], [7], image super-
resolution [8], depth prediction [9] and, recently, image de-
hazing with models that use convolutional neural networks
(CNNs) by either estimating physical parameters [10]–[12] to
apply in the image formation model showed in Eq. 1, or with
an end-to-end model that yields directly the restored image
[13].

One of the main problems with neural network models
applied to dehazing is the loss of the original scene’s struc-
tural integrity. This adversity causes the visual results to be
unrealistic and decreases significantly the output score when
evaluating with structural similarity metrics such as the SSIM
[14]. Nowadays, the main approach to handle this problem is
the usage of skip connections [15] in the network architecture,
and post processing using guided filter [16].

However, we propose in this paper a new approach that
addresses the structural similarity issue. Our model is com-
posed of a single end-to-end CNN to fully dehaze images.
It uses a transformation neural network that takes a single
hazy image as input and yields a fully restored image. The
fact that our method does not require any additional pre
or post-processing techniques is important, since it improves
the model’s simplicity. Also, our model does not rely on
human-developed priors or the physical model described in
Eq. 1, enabling it to be used in a fully automated system.
Furthermore, the usage of CNNs that are expensive to training
but fast to execute enables us to operate in real time using an
appropriate hardware.

We introduced Guided Layers in order to maintain the
structural integrity of the image. These layers are based on the



guided filter [16], a technique often used in post processing on
classic physical dehazing models. In this work, this technique
is brought into the neural network as a layer instead of using
it on post processing. The main advantage of the guided layer
is that it tackles the structural integrity problem multiple times
during the training instead of only once on the post-processing.
This allows our network to backpropagate already filtered
results with more structural integrity.

There are two main adversities when tackling the image
dehazing problem using a deep learning approach: the lack of
pairs of haze and haze-free image and the loss of structural
integrity in the restored image. We deal with both of these
problems. The first one is dealt using an image set with indoor
images with precise synthetic haze. The latter is tackled using
the proposed guided layer and the already consolidated skip
connections.

Contributions: Our work introduces an end-to-end CNN
designed to solve the single image dehazing problem to fully
restore hazy input images. Our model achieves this without the
requirement of adjusting parameters depending on the image’s
conditions. Thus, obtaining a more generic method, allowing
our model to be applied in a large range of situations. Also, we
introduced the novel Guided Layers, which takes the guided
filter into account when adjusting the weights of the network.
In addition, our method is able to restore images taken of real
outdoor hazy scenes, even though our training set is composed
entirely of indoor scenes with simulated haze.

II. RELATED WORKS

Image dehazing task is generally approached with physical
methods based on the simplified image formation model [17],
[18], described in Eq. 1. Several dehazing methods [19]–
[22] are based on priors to solve ill-posed problem using
the image formation model. The most successfully is the
Dark Channel Prior [20], where the minimum value between
the color channels in a patch of the image is used as a
transmission indicative. Although effective with the correct
priors and parameters, this idea can fail in several situation and
require the manual tuning of many critical parameters such as
the patch size. Similarly, other methods based on priors present
similar drawbacks.

Recently, methods were developed using a CNN to estimate
the medium transmission t. [10] uses a CNN to estimate a
medium transmission based on 16 × 16 RGB image patches.
This method trains the network using as input synthetic hazy
color images and, as the ground truth, a single transmission
value for all pixels in the 16× 16 patch. The authors propose
to refine the transmission applying the guided filter [16] after
the network’s last layer to fully restore an image. The refined
transmission is applied in Eq 1 to obtain the final result.
Differently, [23] divides the model into two separate CNNs.
The first one roughly estimates the medium transmission
based on the entire image. The second network locally refines
the transmission. During the network training, each pixel is
associated with a single transmission value. That approach
achieves a more precise result than [10].

While those methods address the medium transmission
estimation problem, they do not use the neural network to
understand the image formation phenomenon. [11] proposed
a dehazing network based on a reformulated light propagation
model, where the transmission and the atmospheric light are
estimated jointly and the restoration is optimized directly.
However, he network still relies on the simplified model.
Differently, [13] introduced an end-to-end model to solve the
dehazing problem that learns the effects caused by haze. This
method’s approach is the most similar to ours, however, they
do not deal with the structural information loss in the neural
network. Our method addresses this problem using a different
network architecture, yielding superior results.

Using a CNN to only estimate a transmission map does
not solve the limitation presented by the simplified physical
models, since these methods still require priors to estimate
parameters such as the global atmospheric light. Also, simpli-
fications are used in these models, since neither the ambient
light nor the minimum transmission are estimated. Further-
more, the simplified image formation model described in Eq.
1 is generally adopted.

Differences to this work: Previous methods adopt an
already consolidated physical image formation model. Instead,
our work proposes an approach using an end-to-end CNN
that addresses the structural integrity problem. Our goal is to
understand whether an end-to-end neural network integrated
with guided layers is capable of learning the physical world’s
complexity, being able to solve the image dehazing task
without any additional hand tuned parameters or refining
methods.

III. METHODOLOGY

One of the greatest challenges when developing deep learn-
ing models is to achieve a data set with a large quantity of
input/ground-truth pairs in order to train the model properly.
In our case, hazy and haze-free images pairs are required. It
is also essential both images in each pair are captured under
the same light conditions, making it really difficult to capture
realistic images of the same scene with real haze.

In this section, we firstly explain how we proceeded to
overcome the problem of gathering a large number of image
pairs eligible to train our network. Then, we describe our
network, explain the training process and give details about
our model’s implementation.

A. Acquiring Data

Ideally, the image set used to train a neural network de-
signed to solve the dehazing problem would be composed of
image pairs of the same scene with and without haze, under
the same light conditions. Also, such scene would be outdoors,
since the haze effect usually does not occur indoors. However,
capturing images in which this requirement is met is extremely
difficult [24]. Besides, the pair amount needed to train a deep
neural network is extensive, making it impractical to use a
data set composed of real images.



Fig. 1. Examples of images generated by the haze simulator. First row: haze-free images captured indoors, used both as base image in the simulator and as
ground-truth in the network training. Second row: scene’s depth map, used to estimate the transmission of object in the scene in order to apply the simulated
haze degradation. Third row: hazy images, synthesized by the simulator and used as input for the network.

Since acquiring a data set with pairs of real haze-free
and hazy images would be difficult, we decided to generate
synthetic data. Using the image formation model described
in Eq. 1, we can use the scene’s depth to estimate the
transmission and apply simulated haze on haze-free images.
Ideally, our data would be context-specific images (outdoors)
with a precise depth map, in which we could generate synthetic
hazy images nearly indistinguishable from real ones. However,
current sensors are not yet able to correctly capture depth
information outdoors, making our ideal data set unobtainable.

Outdoor images would permit us to create a larger and more
diversified training set composed of outdoor hazy images,
which is exactly the image type we intend to restore using
the trained model. However, if we decided to use outdoor
images with poorly-captured depth maps, we would end up
with images with lack of spatial variation in haze intensity,
making the simulated haze inaccurate.

Aware of these adversities, we decided to generate syn-
thetic data using haze-free indoor images. This permits us
to synthesize a much more realistic haze degradation effect,
even though the information present in the scenes are out of
context. We expect our model to learn to remove the haze
phenomenon itself, independent of the context behind it. With
that in mind, we preferred to synthesize a realistic haze effect
in an unrealistic context instead of generating hazy images in
a realistic context but with an inaccurate representation of the
phenomenon our model needs to remove.

We need the scene’s atmospheric attenuation coefficients
and the global illumination color in order simulate the haze
phenomenon realistically. Those can be calculated based on
patches with minimal transmission extracted from real hazy
images. Also, we also need the scene’s depth map, which could
be easily obtained using a Kinect camera, since we decided to
use indoor images.

In order to synthesize the hazy images, we adopted the
simulator proposed by [24]. It is able to generate a turbid
underwater version of an input clear image, based on the

depth map and a turbidity patch. We were able to adjust this
model to, instead of using a turbidity patch, use a haze patch,
generating an input clear image’s hazy version. This is possible
only because the underwater turbidity and haze phenomena are
physically similar.

A set of hazy and haze-free image pairs was developed using
the images captured with the Kinect camera, simulating the
haze with the image formation model described in 1. Since all
haze is synthetic, we are able to adjust simulator’s parameters
to generate multiple hazy images originated from the same
scene using several haze degradation levels.

Examples generated by the simulator can be seen in Fig 1.
Images in the third row with synthetic haze were generated
based on the indoor clear images in the first row.

B. Network Architecture

Our approach is to use a transformation neural network
that, given a hazy image patch, is able to greatly reduce or
even completely remove the degradation caused by the haze
phenomenon.

The transformation neural network used in this work can
be seen in Fig. 2. This network architecture is based on the
unet architecture proposed in [15]. We decided to use an
architecture similar to this one due to the fact that an encoder-
decoder network has a large enough receptive field, even
with a limited number of layers. Also, the skip connections
enable some of the structural information from the input
to be transferred to the output. This happens because the
skip connection concatenates a feature map produced by an
encoding layer directly to a feature map in the decoding part
of the network.

The main difference from our architecture to unet’s is the
presence of the guided layers, inspired by the guided filter
[16]. This novel layer type was introduced in order to reduce
the structural information loss, which is a common problem in
the dehazing problem, due to the noise being spatially variant.
Many models seek to reduce structural loss, some use a explicit
stage used to refine the transmission estimative [10], [20], [22],



Fig. 2. Network architecture. All convolution and transpose convolution layers use zero padding set to one. Each convolution layer is described with a color
and a text as follows: [number of feature maps] conv [filter dimensions] stride [stride used].

Fig. 3. Discriminator network’s architecture. All convolution layers use zero padding set to one. Each convolution layer is described with a color and a text
as follows: [number of feature maps] conv [filter dimensions] stride [stride used]. The value in the dense layers represents the number of weights.

[25] and others use the architecture itself with skip connections
[11], [23]. Our approach, although also using skip connections,
differs from previous models because it uses the guided filter
as a part of the network architecture. This means that its impact
is considered when updating the weights during the training.

C. Guided Layer

In this work, we introduce a novel layer type based on [16]’s
guided filter. The guided filter is a local linear model that
receives two images as input: an image to be filtered and the
guidance image. The model is used to transfer the guidance
image’s structural information to the filtering output.

We implemented the guided filter [16] in Tensorflow as a
function that can be used as a layer. Our model uses the guided
layer with the network’s input image as the guide in order
to reduce the loss of structural integrity of the last decode
layer, which outputs an image with the same shape as the
input. In the end, we concatenate the outputs of three layers:
the guided layer, the input and the guided layer multiplied
element-wise with the input. The result of this concatenation

is passed through a last convolution layer, resulting in the
output haze-free image.

D. Training

Our model is implemented using Tensorflow [26]. The
network’s input is a batch of 16 hazy images generated by the
simulator and its ground-truth is this batch’s respective haze-
free images. We trained the model using the Adam Optimizer
[27] for 25 epochs, which is enough for the loss function to
stabilize. The parameters used for the optimizer were:

• Learning rate: 10−4,
• β1: 0.9,
• β2: 0.999,
• ε of 10−8.

Also, in order for the network to learn the desired robustness
and invariance properties, we use data augmentation to enlarge
the image set. We used four rotation degrees, each with two
mirrored horizontally. With this setup, we multiply the size of
our data set by eight.



The loss function used in order to adjust the network
weights is a combination of the feature loss [28] with an
adversarial loss network.

The feature loss seeks to ensure the output and ground-
truth images have similar high-level features. This loss uses a
classification neural network, thus, its first layers are trained
to extract features semantically relevant. The loss function can
be described as:

`feat =
1

HjWjDj
||φj(ŷ)− φj(y)||22, (2)

where φj(x) are the activations of the network’s j-th layer
used by the loss function when processing the image x and
Hj , Wj and Dj are its dimensions. In this work, we adopted
the 16-layer VGG [29] trained with the ImageNet dataset [30]
as the feature loss network. The j value was set to the third
convolutional layer.

Using adversarial loss networks, we aim to apply the
concept of generative adversarial networks (GANs) [31] so
that the network output ends up more similar to haze-free
images. The adversarial loss uses a discriminator network to
produce a single value representing the probability in which an
image comes from the dataset rather than the network output.
In our work, we used the discriminator network proposed in
[8], which is illustrated in Fig. 3.

Since the discriminator function does not receive any in-
formation from the input, we use it combined with a loss
function that considers the input. The combination produced
is described in Equation 3:

`feat+GAN = `feat + λ`GAN , (3)

where λ is a parameter that determines the adversarial loss
influence.

IV. RESULTS

The first step to test our method was to verify whether
the Guided Layer would bring any improvement to a CNN
architecture. With that in mind, we tested it with two dehazing
neural network methods: Dehazenet [10] and MSCNN [23].
Both models estimate the transmission based on a hazy image
to subsequently use it in the restoration process. We trained
both models using the original work architecture and compared
it to a version introducing the guided filter as a part of the
network architecture (as seen in Fig 2, where the guide image
is the same as the input.

Both models were trained in a set of image and transmission
map pairs with 224×224 dimensions. Of these pairs, 90% were
in the training set and the remaining 10% in the validation set.
The loss function used in this evaluation was the L1 Loss, a
loss function that seeks to minimize the difference between the
output and the ground-truth image pixel-wise. This function
can be described as

`L1 =
||ŷ − y||1
HWD

, (4)

where ŷ is the network output, y is the ground-truth image and
H , W and D are their height, width and depth, respectively.

(a) Dehazenet

(b) MSCNN

Fig. 4. The L1 loss value while training the (a) Dehazenet [10] and (b)
MSCNN [23] compared to their respective versions with the guided layer.
These experiments used ε = 10−3 and a 40 × 40 window in the guided
layer.

The networks were trained for 75 epochs using the Adam
Optimizer [27], with a learning rate of 10−5, exponential decay
rate β1 of 0.9 and β2 of 0.999. The numerical stability constant
value ε adopted was 10−8.

The results, as shown in Fig 4, reveal that the guided layer
addition caused both models to have an increased performance
during the training. This indicates the usage of this layer
can be advantageous even in methods where the networks
already uses skip connections to preserve the image’s structural
integrity, such as the MSCNN [23].

In this work, we decided to evaluate our method’s results
quantitatively using synthetic images and qualitatively using
real images. We compared our method with the main physical
models: CLAHE [32], Tarel [19], Ancuti & Ancuti [33], He
et al. [20], Meng et al. [21], Fattal [22]. Our method was
also compared with the main machine learning based methods:
MSCNN [23], Dehazenet [10], AOD [11] and DeepDive [13].

All results presented in this Section were obtained using
the parameters described in Section III. Our model’s inputs
are hazy synthetic 224× 224× 3 images. These images were
generated from a combination of the images acquired using the
Kinect camera and the NYU-Depth V2 dataset [34]. In order
to generate the synthetic haze in this haze-free RGBD images,
we used a haze version of the simulator proposed by [24].



(a) Input (b) He et al. (c) MSCNN (d) AOD (e) DeepDive (f) GuidedNet

Fig. 5. Comparative using the Flags image. In this figure, (a) represents the input, (b) is an image made available by the authors, (c), (d) and (e) are images
generated by the code made available by the respective authors and (f) is our model’s output.

(a) Input (b) He et al. (c) MSCNN (d) AOD (e) DeepDive (f) GuidedNet

Fig. 6. Comparative using the Cones image. In this figure, (a) represents the input, (b) is an image made available by the authors, (c), (d) and (e) are images
generated by the code made available by the respective authors and (f) is our model’s output.

(a) Input (b) He et al. (c) MSCNN (d) AOD (e) DeepDive (f) GuidedNet

Fig. 7. Comparative using the Tiananmen image. In this figure, (a) represents the input, (b) is an image made available by the authors, (c), (d) and (e) are
images generated by the code made available by the respective authors and (f) is our model’s output.

A. Qualitative Analysis

Even though our network was trained entirely with indoor
hazy images, we used only real outdoor images for the
qualitative analysis. All image outputs were produced by a
model trained only once, without the need to adjust any
parameters or any pre or post-processing stages.

The results obtained using the physical methods proposed
by [20] are more pleasant visually, however, these methods
require prior parameter adjusting to restore each image. Our
method results were obtained using a neural network trained
only once, allowing it to be used in applications requiring real-
time response, such as embedded systems in numerous areas.

As seen in Figure 5, many of the models were able to
produce visually satisfying results. However, most of them
failed when dehazing the white sign on the top right, darkening
it. This happened because most methods assume whitened
areas have a greater chance to be haze, yielding over-corrected
results in white or gray regions. Our model was able to
successfully distinguishing real white objects from haze.

An interesting case is shown in Figure 6. The scene presents

basically the same structure distributed at various distances
from the camera with distinct degradation levels. In this
image, our method produced visually satisfying images and
the visibility was considerably increased. In this example, the
MSCNN [23] and AOD [11] were not able to successfully
dehaze the entire image, only the parts near the camera.

Lastly, Figure 7 shows our method is capable of maintaining
the input’s structural integrity and also displays its robustness
when treating a haze phenomenon that does not scatter color
channels equally. Also, differently from the physical methods,
our model does not saturate the sky, maintaining the original
exposure.

B. Quantitative Analysis

Two methods were used in our quantitative analysis: the
structural similarity index (SSIM) [14], a metric that considers
the similarity between the structures in the evaluated and
reference images in grayscale. Since the color correction is
one of the most important parts in image dehazing, we also
evaluate the results using the CIEDE2000 [35], a metric that
evaluates the color difference between the images.



Fig. 8. Quantitative analysis using the Middlebury part of the D-Hazy dataset
using the SSIM metric. The values used to compute the CLAHE, Tarel, Ancuti
& Ancuti, He et al., Meng et al. and Fattal values are available in [36]. The
values shown for the MSCNN, Dehazenet and AOD methods were computed
using the implementation provided by the authors. The last candle in the
boxplot corresponds to the method proposed.

The SSIM metric yields a value in the [−1, 1] interval,
where 1 is the best result with two identical images. The
CIEDE2000, however, produces values between 0 and 100,
where smaller values represent better color preservation. The
dataset used to perform this comparison was the D-Hazy [36],
which is composed by images with synthetic haze originated
from the Middlebury [37] and NYU-Depth V2 [34] datasets.
However, the images originated from the NYU-Depth V2
dataset were not used, since they were used to generate our
training set.

Our work outperformed every other machine learning based
method compared, as can be seen in Figures 8 and 9. These
figures display the results using the box and whisker plot,
where the line displays the minimum and maximum value and
the box limits display the upper and lower quartiles. Even
though our method’s performance was slightly worse than the
physical based method proposed in [20], it is important to
remember their model has parameters that should be adjusted
for each image in order to obtain these results, while our model
uses a single network trained only once to treat all the images,

Fig. 9. Quantitative analysis using the Middlebury part of the D-Hazy dataset
using the CIEDE2000 metric. The values used to compute the CLAHE, Tarel,
Ancuti & Ancuti, He et al., Meng et al. and Fattal values are available in
[36]. The values shown for the MSCNN, Dehazenet and AOD methods were
computed using the implementation provided by the authors. The last candle
in the boxplot corresponds to the method proposed.

resulting in a model that could be used in a much wider range
of situations without the need to adjust any parameters. If
compared to the AOD [11], which takes a similar approach,
our method presents superior results in both metrics.

V. CONCLUSIONS

In this work, we demonstrated that neural networks are
capable of solving the dehazing task without any additional
pre or post-processing, resulting in a generic method that can
be implemented in systems for real-time application. Also, it
was shown the guided layers and skip connections are able
to soften the structural integrity problem, yielding results with
more structural information and more visually pleasant.

We were able to achieve results superior to the other
machine learning based methods, including [13], a model that
uses a similar approach to the dehazing problem.

The beneficial results obtained using the novel guided layers
to this application indicate it can be used to improve results
in similar image transformation tasks, such as colorization,
denoising and super-resolution.



Also, despite being trained entirely with indoor images with
simulated haze, our model was able to successfully restore
external images with real haze. We believe, however, that
the next step to improve our method’s results is to obtain a
dataset with scenes more similar to outdoors and with a more
complex haze simulation, providing a sensible context with
high precision haze simulation.
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