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Abstract—Dialogue Act classification is a relevant problem for
the Natural Language Processing field either as a standalone task
or when used as input for downstream applications. Despite its
importance, most of the existing approaches rely on supervised
techniques, which depend on annotated samples, making it
difficult to take advantage of the increasing amount of data
available in different domains. In this paper, we briefly review
the most commonly used datasets to evaluate Dialogue Act
classification approaches and introduce the Optimum-Path Forest
(OPF) classifier to this task. Instead of using its original strategy
to determine the corresponding class for each cluster, we use a
modified version based on majority voting, named M-OPF, which
yields good results when compared to k-means and Hierarchical
Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN), according to accuracy and V-measure. We also
show that M-OPF, and consequently OPF, are less sensitive to
hyper-parameter tuning when compared to HDBSCAN.

I. INTRODUCTION

Dialogue Acts (DAs) concisely identify each utterance in a
dialogue according to a combination of pragmatic, semantic
and syntactic criteria, characterizing the speaker’s intention
and goal [1]. Consequently, the task of DA classification
consists in assigning each utterance of a conversation to a
tag of a predefined set of labels that represent the domain of
the problem. For example, the utterance “Where is the closest
shopping mall?” can be assigned to the class ask directions.

The DA classification task can also be seen as a sub-problem
for other tasks, such as the development of chatbots where
the DA of the utterance emitted by the user can be used
to select the most appropriate response. Other applications
involve learning conversational dynamics [2], categorization of
sentences in posts from web forums to help the users telling
informative from feedback messages [3], and prediction of
thread structure [4].

The process of manually annotating data to train a super-
vised classifier is expensive, time-consuming and error-prone.
This last characteristic is probably due either to not well-
defined annotation rules or to sentence ambiguity. Regarding
this last aspect, Stolcke et al. [1] noticed that in the annotation
of the Switchboard corpus [5], the inter-labeler agreement was
of 84% despite the existence of extensive annotation guide-
lines. Furthermore, due to its slowness, this phase becomes a
bottleneck for both the adoption of new datasets and to test
new ideas [6]. These aspects also make difficult to leverage

data available from the increasing amount of sources, such as
social networks and message-exchanging applications.

Differently from supervised learning, unsupervised tech-
niques can cluster utterances according to their inter-similarity
in a completely data-driven approach, avoiding the need to
manually label the dataset using handcrafted rules, which is
required to train a supervised classifier. It is also interesting to
mention that unsupervised classification does not necessarily
have to be an end goal, but it can also be used as an intermedi-
ate step for data exploration. After clustering the samples, the
effort to inspect each data partition is presumably smaller than
the cost to analyze samples individually. Furthermore, irregular
clusters can be manually labeled, thus consuming less effort.

Despite these aspects, most of the work related to DA clas-
sification uses supervised approaches, as observed by different
authors [3], [7]. Well-known algorithms such as k-means, k-
medoids and hierarchical clustering have been previously used
for DA classification as well [8], [9]. On the other hand, Jo
et al. [10] model conversations using graphical models where
each DA is a mixture of foreground and background topics,
the latter being shared across multiple dialogues. Brychcı́n and
Král [7] use Hidden Markov Models (HMM) with Multivariate
Gaussian distributions to represent each utterance. Ritter et al.
[2] also use HMMs not only to classify DAs but also to learn
the dialogue structure.

Pattern recognition techniques have been around in the last
decades, and there is always room for new ideas and devel-
opments. The Optimum-Path Forest (OPF) is a framework
to the design of pattern classifiers based on graph partitions,
where the idea is to rule a reward-based competition process
in which some key samples compete among themselves to
conquer the remaining samples of the dataset. This competition
process ends up partitioning the graph into groups of samples,
which can be labeled [11]–[13], unlabeled [14], and partially
labeled [15].

This paper aims to introduce the unsupervised OPF classi-
fier to the Natural Language Processing (NLP) field, more
specifically for the DA classification task. OPF results are
compared to other clustering algorithms: k-means and Hi-
erarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) [16]. To the best of our knowledge,
this is the first application of the unsupervised OPF classifier



in this context. The remainder of this paper is organized as
follows: Section II presents the unsupervised Optimum-Path
Forest classifier and Section III presents an overview of the
most commonly used datasets and their corresponding relevant
works for DA classification. On Section IV, the experiments
are described and the results obtained are presented on Section
V. Conclusions are drawn on Section VI.

II. UNSUPERVISED LEARNING WITH OPTIMUM-PATH
FOREST

In this section, we briefly present the theoretical background
related to unsupervised OPF. Let X = {x1, x2, . . . , xm} be
an unlabeled dataset such that xi ∈ Rn stands for a feature
vector extracted from some sample related to the problem to be
addressed. Additionally, let G = (X ,Ak) be a graph derived
from that dataset, which means X denotes the set of graph
nodes (i.e., vertices) and Ak stands for a k-nearest neighbors
adjacency relation.

In a nutshell, the OPF working mechanism is based on
a reward-competition problem, where some samples called
“prototypes” rule a competitive process among themselves
to conquer the other samples from the dataset X . Such
competition ends up partitioning X into optimum-path trees
(OPTs), which are rooted at each prototype node. It is worth
mentioning that a sample that belongs to a given OPT is more
“strongly connected” to the root and samples of that tree than
to any other in the forest (i.e., a collection of all trees in the
graph).

At a glance, the whole process can be summarized in the
following steps:

1) To establish a proper neighborhood size and build up
Ak (i.e., to find out “suitable” k values);

2) To elect the prototypes;
3) To start the competition process.
Concerning step 1), a number of different approaches to

cope with the task could be considered. Rocha et al. [14]
proposed to compute the best value of k (i.e., the neighborhood
size), say that k∗, as the one that minimizes the normalized
graph cut, which is a measure that considers both the dissim-
ilarity between clusters as well as the similarity within the
groups of samples [17].

Soon after computing k∗, the next move concerns finding
the prototypes (i.e., step 2), also known as the “roots of the
trees”. Such essential samples are in charge of ruling the
competition process that ends up partitioning the graph into
OPTs (i.e., clusters).

The supervised OPF proposed by Papa et al. [11] elects the
prototypes as the nearest samples from different classes, which
can be accomplished by computing a Minimum Spanning
Tree (MST) over the training graph. Then, the samples from
different classes that are connected in the MST are marked as
prototypes. However, unsupervised OPF does not make use of
labeled datasets, which motivated Rocha et al. [14] to elect
the prototypes as the samples that are located at the center
of the clusters. Such samples can be computed by assigning a
density score ρ(xi) for each dataset sample xi ∈ X . That score

is computed using a probability density function (pdf) given
by a Gaussian distribution considered in the neighborhood of
each sample as follows:

ρ(xi) =
1√

2πσ2k

∑
∀xj∈Ak(xi)

exp

(
−d(xi, xj)

2σ2

)
, (1)

where i 6= j and σ = dmax/3. In this case, dmax stands for
the maximum arc-weight in G. Using such formulation, ρ(xi)
considers all adjacent nodes for the probability computation
purposes since a Gaussian function covers 99.7% of the
samples within d(xi, xj) ∈ [0, 3σ].

After computing Equation 1 for all nodes, the competition
process among samples can take place. Each density value
will be used to populate a priority queue, where the idea of
the unsupervised OPF algorithm is to end up maximizing the
cost of each sample, and thus partitioning the graph.

The definition of “cost” is based on paths on graphs, i.e., a
sequence of adjacent samples with no cycles. Let πxi be a path
with terminus at sample xi and starting from some root R(xi),
where R stands for the set of prototype samples. Additionally,
let πxi = 〈xi〉 be a trivial path (i.e., a path composed of a single
sample) and πxi · 〈xi, xj〉 the concatenation of πxi and the arc
(xi, xj) such that i 6= j.

The OPF algorithm assigns to each path πxi a value f(πxi)
given by a connectivity function f : X → R. In this context,
a path πxi is considered optimum if f(πxi) ≥ f(τxi) for any
other path τxi . Such sort of functions are known as “smooth
functions”, and they figure important constraints that ensure
the theoretic correctness of the OPF algorithm [18]. A more
comprehensive discussion regarding the conditions necessary
to guarantee the proper behavior of the algorithm is presented
in the work of Ciesielski et al. [19].

Among different path-cost functions that have been pro-
posed in the literature, unsupervised OPF employs the follow-
ing formulation for ∀xi, xj ∈ X such that i 6= j:

f(〈xi〉) =

{
ρ(xi) if xi ∈ R
ρ(xi)− δ otherwise, (2)

and
f(πxi · 〈xi, xj〉) = min{f(πxi), ρ(xj)}, (3)

where δ = min∀(xi,xj)∈Ak|ρ(t)6=ρ(s) |ρ(t)−ρ(s)|. In a nutshell,
δ stands for the smallest quantity required to avoid plateaus in
the regions nearby the prototypes (i.e., areas with the highest
density).

Among all possible paths πxi from the maxima of the pdf,
the method assigns to sample xi a final path whose minimum
density value along it is maximum. Such final path value is
represented by a cost map C, as follows:

C(xi) = max
∀πxj∈(X ,Ak),i6=j

{f(πxj · 〈xj , xi〉)}. (4)

The OPF algorithm maximizes the connectivity map C(xi),
∀xi ∈ X , by computing an optimum-path forest over the



dataset. Such forest is encoded as a predecessor map P with
no cycles that assigns to each sample xi /∈ R its predecessor
P(xi) in the optimum path from R, or a marker nil when
xi ∈ R.

The unsupervised OPF algorithm finds the number of the
clusters on-the-fly, which means there is no need to have
such information beforehand. The only parameter that needs
to be set is the kmax, which constraints the search for suitable
neighborhood sizes k∗.

III. DATASETS

In this section, the most commonly used datasets for DA
classification are described followed by the works considering
them. Although there are different resources available for
this task, most of the work based on unsupervised methods
rely on domain-specific data, which are not publicly avail-
able, hindering the reproducibility of results and comparison
among models. Furthermore, despite some datasets providing
a specific split for train, evaluation and test sets, it is usually
difficult to reproduce the exact same set of samples for each
partition, as they commonly require further preprocessing such
as grouping tags, removal of samples marked with error codes
or removal of non-annotated utterances.

An interesting aspect of the available datasets is related
to label frequency. In the International Computer Science
Institute (ICSI) dataset [20], for instance, the most common
class (statement) represents 59% of the data, being 4.2 times
more frequent than the second most common label. This
behavior can also be observed in the Switchboard dataset
[5], where the most common class (statement-non-opinion)
corresponds to about 36% of the samples, while 10 classes
correspond to 1% of the data each, and other 25 classes
together (more than half of the possible labels) represent only
5% of the entire dataset. It is important to mention that class
imbalance is a widely known problem in machine learning,
as the classifier can become biased towards the most frequent
classes, making the training of effective models difficult.

A. HCRC Map Task dataset

The HCRC Map Task dataset [21] consists of the transcrip-
tion of 128 dialogues between pairs of speakers: an instruction
giver and a follower. By knowing that their maps are slightly
different, the participants are asked to reproduce the route
printed from the giver’s map on the follower’s map through
verbal communication. The dataset is composed of 12 DAs
and an additional uncodable class, however since there is no
standard split of the dataset, different works use it in different
ways, both in terms of splits and amount of classes to be
considered.

Regarding supervised classification, Surendran and Levow
[22] used Support Vector Machines (SVM) with Viterbi de-
coding and achieved 59.1% of accuracy considering just text
features and using only the half of the dataset in which
the participants cannot make eye contact. Tran et al. [23]
obtained 63.3% of accuracy using hierarchical Long-Short
Term Memory (LSTM) networks with attention mechanism,

and Di Eugenio et al. [24] achieved 78.76% of classification
accuracy with a k-Nearest Neighbors classifier using Feature
Latent Semantic Analysis and considering as features not only
the utterances but also the preceding DA, the current speaker,
and the sub-dialogue type.

B. NPS Internet Chatroom Conversations dataset

The NPS Internet Chatroom Conversations dataset [25]
consists of utterances extracted from 15 online chat rooms and
exhibits domain-specific characteristics, such as the presence
of slangs, emojis, and misspellings. The dataset does not
provide standard splits and it is annotated with 15 classes,
one of which corresponds to system notifications. Moldovan
et al. [26] achieved 78.35% accuracy using a supervised
Naı̈ve Bayes classifier in this dataset. Concerning unsupervised
approaches, Jo et al. [10] obtained a V-measure score of
0.33 using graphical models. Furthermore, these authors also
applied the works from Brychcı́n and Král [7], Ezen-Can and
Boyer [27], and from Lee et al. [28] in this dataset, achieving
a V-measure of 0.28, 0.28 and 0.31, respectively.

C. Switchboard dataset

The Switchboard dataset [5] is formed by the transcription
of 1,155 casual telephone conversations between pairs of
participants about some random subject. This dataset contains
220 classes that can be clustered into 42 labels1 which are
commonly used in the literature for DA classification. Stolcke
et al. [1] provide a split for training and testing models, while
Lee and Dernoncourt [29] further sub-divide the first partition
into train and development sets. Interestingly, it is possible to
observe that three of the less frequent classes are not present
in the standard test split.

In terms of supervised classification, Stolcke et al. [1]
obtained 71% of accuracy using HMM; Kalchbrenner and
Blunsom [30] achieved 73.9% accuracy using Recurrent Con-
volutional Neural Networks; Tran et al. [23] reached 74.5%
using hierarchical LSTM with attention mechanism and Ku-
mar et al. [31] obtained 79.2% accuracy using bidirectional
LSTM with Conditional Random Fields (CRF).

Regarding unsupervised classification, Yang et al. [6] used
a k-means classifier considering only the ten most frequent
DAs and 50,000 sentences, achieving accuracy of 78.62%;
Brychcı́n and Král [7] achieved a 65.7% of F1 score using
HMM with Multivariate Gaussian distributions in the same
split provided by Stolcke et al. [1], but since the model’s
accuracy is not provided, it is difficult to compare this result
with other approaches.

D. International Computer Science Institute Meeting dataset

The ICSI Meeting dataset [20] contains the transcription of
75 meetings of ICSI teams where each utterance is annotated
with one of 11 general tags and a combination of 39 specific
tags, producing a total of 2,083 different labels. However, it is
possible to map these tags to only 5 classes using the mapping

1A clustering procedure is provided by Christopher Potts at http://compprag.
christopherpotts.net/swda.html.



introduced by Ang et al. [32]. Additionally, a standard split is
provided for train, evaluation and test partitions.

In supervised classification, Ortega et al. [33] achieved
84.3% accuracy using LSTM with attention mechanism; Lee
and Dernoncourt [29] obtained 84.6% using Convolutional
Neural Networks (CNN) with context information, and Kumar
et al. [31] attained 90.9% of accuracy using bidirectional
LSTM with CRF.

E. Dialog System Technology Challenges datasets

The Dialog System Technology Challenges, previously Di-
alog State Tracking Challenge (DSTC), stands for series of
competitions held yearly since 2013 aiming to foster the
development of models to understand and extract relevant
information from utterances in a conversation [34]. In all the
competitions up to 2016, the provided datasets consisted of
conversation transcriptions only. In its first three editions [34]
the released dataset was formed of human-machine conversa-
tions annotated with, apart from other information, DA labels.
Notwithstanding, the participants were not required to perform
this type of classification. On DSTC4 [35] and DSTC5 [36] an
optional multi-label DA classification task was created based
on the TourSG dataset [37]. Despite being formed only by
conversations between humans, such dataset is not publicly
available.

IV. MATERIALS AND METHODS

In order to run the experiments, the ICSI, NPS and Map
Task datasets were considered, since they are formed by con-
versations between humans, are publicly available and contain
a reasonable amount of classes. This section is organized
as follows: initially, the preprocessing steps for each dataset
are described, followed by the feature extraction procedure
to represent utterances as vectors, and then the evaluation
procedure is described. The code used to preprocess and
analyze each dataset is made available online2.

A. Preprocessing

Since each dataset stems from different domains, specific
preprocessing techniques were applied to them individually.
Words were segmented from sentences using the Stanford
Tokenizer [38] and were further lowercased. Special symbols,
including numbers, were removed, unless explicitly noted. Ad-
ditionally, stop words and words with a frequency smaller than
fmin, which was determined empirically, were disregarded.

The authors of the NPS dataset have anonymized the iden-
tity of the chatroom participants by replacing their usernames
with unique identifiers following a convention. These patterns
were all replaced by the word “user”, aiming to map the
names to a word that has a representation under the vectorial
model, as described in Section IV-B. Following, links were
removed and emojis, which are characteristic of this domain
and are commonly used to express some kind of sentiment,
were replaced by a unique emoji, which is also present in the
vectorial model used. The original fifteen classes, including

2https://github.com/lzfelix/sibgrapi2018 opf

system notifications, were considered. For the Map Task
dataset, the only additional preprocessing step consisted in
removing all samples from the “uncodable” class.

Finally, concerning the ICSI dataset, the initial labels were
mapped to the 5 classes introduced by Ang et al. [32] and an
additional class that indicates samples that were not labeled.
This latter type of utterance was then removed, along with
two entire transcripts and all samples marked with error
codes, as described in the dataset manual. Considering that
the utterances were transcribed from records, the punctuation
was kept as it consists solely of dots, which signalize end of
an utterance, question marks and a special symbol indicating
incomplete utterances. The characteristics of each dataset after
these steps are summarized in Table I according to the number
of samples, the size of the folds used to train, evaluate and
test the models, the amount of classes |C| and the vocabulary
size |V |, which represents the number of unique words in each
dataset.

B. Feature extraction

Word vector models, such as Glove [39], word2vec [40]
and fastText [41], have become the cornerstone of modern
NLP approaches. This can be attributed to the quality of the
obtained results and the availability of pre-trained vectors in
different languages. Furthermore, since these are unsupervised
techniques, it is possible to train new models on unseen data
without incurring the cost of labeling.

The main idea behind these methods consists in learning
a fixed-length vector representation vw for each word w in a
vocabulary V . This procedure aims to map words with similar
syntactic or semantic meaning to similar vectors, which is
measured through the cosine similarity function. An example
showing that this approach is able to capture word sense
consists in converting words to their corresponding vectors,
performing some basic arithmetic operation in this space and
then mapping the resulting vector back to its closest word. The
most popular example of this operation is the transformation
king −man+ woman = queen due to Mikolov et al. [42].

From the trained vectors it is possible to compute sentence
representations in a number of ways, as briefly reviewed by
Arora et al. [43], being the simplest of them to consider the
average of the word vectors that form the utterance of interest.
These authors also propose a simple approach that, in some
scenarios, outperforms more complex alternatives based in
Recurrent Neural Networks. According to this technique, the
initial representation x′i for each utterance si from a dataset
of utterances S is computed using the following equation:

x′i =
1

|si|
∑
w∈si

a

a+ p(w)
vw, (5)

where p(w) is the probability of occurrence of the word w
in the dataset used to train the word vector model, |si| is the
utterance length, and a is a smoothing parameter. The obtained
vectors x′i are grouped, forming a matrix E ∈ R|S|×d, where
|S| is the amount of utterances in the dataset and d is the
word vectors dimensionality. Next, let r be the first singular



TABLE I
CHARACTERISTICS OF THE DATASETS USED IN THE WORK.

Dataset |C| |V | fmin # Samples Fold size
NPS 15 3,885 1 10,568 697
Map Task 12 1,052 2 26,158 1,738
ICSI 5 5,004 3 106,047 7,068

vector from E, then the final sentence vectors are computed
as follows:

xi = x′i − rrT x′i, (6)

which are further normalized to have unitary length. In our
experiments, words that are present in the utterances but
not in V are completely ignored. We empirically chose to
use the 300-dimensional pre-trained GloVe word vectors3 and
a = 10−3, observing the analysis developed by Arora et al.
[43].

C. Evaluation procedure

To train and evaluate the results produced by k-means4,
HDBSCAN5 and OPF6 classifiers, a 15-fold cross-validation
procedure was used. Each dataset was split into 15 partitions,
of which 14 were used to project the classifiers and one
for testing. From the 14 parts, 13 were used for training
and one for fine-tuning. This process was repeated 15 times,
ensuring that each part was used once for validation and
once for testing. The validation set was used to fine-tune
the hyper-parameters, namely: k for the k-means, β1 and β2
for HDBSCAN, and the ranges [kmin, kmax] for the OPF
classifier. Regarding the latter, despite the possibility of fixing
kmin = 1 and setting kmax in a way to create a large search
interval for k∗, we used multiple small ranges instead to study
how this value influences the quality of the generated clusters.

It is worth mentioning that the HDBSCAN hyper-
parameters β1 and β2 control, respectively, the minimum
amount of data necessary to form a cluster and how rigorously
the algorithm marks samples as noise, where higher values
correspond to more samples being assigned to this class.

After the partitioning procedure, it is necessary to determine
to which classes from the dataset each cluster corresponds
to. For the k-means and HDBSCAN classifiers, we label the
partitions with the most frequent class among its elements. On
the other hand, in its original conception, OPF propagates the
ground-truth label from the prototype to all conquered sam-
ples. In our experiments, we propose an alternative approach
to label the clusters with the majority class as well, hereinafter
named M-OPF. Notice that the clusters formed by OPF and
M-OPF are identical, being just the label propagation strategy
different.

3Available at http://nlp.stanford.edu/data/glove.840B.300d.zip
4We used the implementation from scikit-learn.
5We used the implementation from scikit-learn-contrib.
6We used the modified implementation of LibOPF from https://github.com/

lzfelix/LibOPF/tree/unsupervised.

To evaluate the results we consider the accuracy and the V-
measure [44], which consists in the harmonic mean between
homogeneity (h), in Equation 7, and completeness (c), in
Equation 8, with h ∈ [0, 1] and c ∈ [0, 1]:

h =

{
1 if |C| = 1,
1− H(C|K)

H(C) otherwise.
(7)

c =

{
1, if |K| = 1,
1− H(K|C)

H(K) otherwise,
(8)

where C and K are, respectively, the sets of ground truth
classes and clusters generated after the mapping procedure is
applied, | · | represents set size, N is the number of samples
clustered, αck is the number of samples from the c-th ground
truth class allocated into the k-th cluster, and

H(C|K) = −
|K|∑
k=1

|C|∑
c=1

αck
N

log
αck∑|C|
d=1 αdk

,

H(C) = −
|C|∑
c=1

∑|K|
k=1 αck
|C|

log

∑|K|
k=1 αck
|C|

,

H(K|C) = −
|C|∑
c=1

|K|∑
k=1

αck
N

log
αck∑|K|
d=1 αcd

,

H(K) = −
|K|∑
k=1

∑|C|
c=1 αck
|C|

log

∑|C|
c=1 αck
|C|

.

(9)

Homogeneity measures to what extent each cluster contains
samples from a single ground truth class, while completeness
evaluates the ability of the algorithm to allocate all samples of
the same ground truth class to a single data partition. In the
extreme case where every cluster is formed by a single sample,
h = 1 as each partition is as homogeneous as possible, but
c = 0, since the algorithm fails to group all samples of the
same ground truth class under a single cluster. Contrariwise,
h = 0 and c = 1 if all samples are allocated to the same
cluster, as the latter criterion is satisfied at the cost of having
a single cluster as heterogeneous as possible. In both cases the
V-measure is zero, considering that it is the harmonic mean of
such metrics. Finally, the obtained results are analyzed under
the Wilcoxon signed-rank test [45] with p = 0.05.

V. EXPERIMENTAL RESULTS

This section describes the results obtained in the considered
datasets. The best hyper-parameters were searched in the
intervals described in Table II. For the k-means classifier, we
use the interval [2, 15] when training it in ICSI dataset, as it
is known beforehand that there are only five classes in this
scenario. Regarding the HDBSCAN, as every sample belongs
to one of the defined classes, the samples identified as noise are
aggregated in a single cluster, which is also labeled according
to the most common class among its elements. Besides, during
preliminary tests, we observed that increasing β2 only harms



TABLE II
HYPER-PARAMETERS SEARCH VALUES.

Models Hyper-parameters
k-means k ∈ [2, 15] or k ∈ [2, 20]

OPF, M-OPF
[kmin, kmax] ∈ {[1, 5], [5, 10], [10, 20], [20, 50]
[50, 100], [100, 150]}

HDBSCAN β1 ∈ {5, 10, 15, 20, 25, 30, 35, 40}; β2 = 1

the performance of this classifier, therefore we fixed its value
to 1.

The performance of each classifier is shown in Table III,
where the best results, according to the Wilcoxon signed-rank
test, are displayed in bold. The hyper-parameters found during
the fine-tuning process for each classifier were k = 20 for k-
means in all datasets, except for ICSI, where k = 15. For OPF
and M-OPF, we used k∗ = 5, and regarding HDBSCAN we
employed β1 = 5 and β2 = 1.

By analyzing the homogeneity measurements, we can infer
that M-OPF favors the creation of clusters that better represent
each class when compared to other approaches. This gain is
due to the fact that M-OPF makes the most common ground
truth label in each cluster to conquer all of its samples,
differently from the original approach proposed by OPF, where
the ground truth label of the prototype, which might not be
too common in that cluster, ends up ruling it. Again, it is
important to highlight that the difference in results between
OPF and M-OPF is due only to the strategy used to determine
to which class each cluster corresponds to. When completeness
is considered, we can observe that HDBSCAN is best suited
for fitting more samples of the same class into a single cluster.
This aspect may be due to the fact that such a classifier
does not assume that the underlying data follow a Gaussian
distribution, hence being able to generate clusters of arbitrary
shapes. Notwithstanding, grouping more samples of the same
class within a single cluster through this method comes at the
expense of creating data partitions with a greater diversity of
ground truth labels, which is reflected in its homogeneity and
V-measure. Finally, when homogeneity and completeness are
considered through this latter metric, we can observe that M-
OPF offers the best compromise between both aspects in two
datasets, being slightly worse than HDBSCAN in the Map
Task scenario only.

Regarding accuracy, M-OPF outperforms the other models,
except in the Map Task dataset, although the difference among
values is not statistically significant. Furthermore, in the other
cases, M-OPF has the smallest standard deviation for this
metric, indicating better stability. Following, we analyze the
accuracy results for M-OPF and HDBSCAN in terms of their
hyper-parameters in order to gain a better understanding of the
role played by these values. Figure 1 displays the classifiers
performance as k∗ and β1 vary. We chose to compare only
two techniques since the hyper-parameters for each algorithm
have different intervals. Furthermore, HDBSCAN also shows
good results under the V-measure.

Although HDBSCAN has two hyper-parameters (β2 was

TABLE III
EXPERIMENTAL RESULTS FOR EACH CLASSIFIER.

Models ICSI Map Task NPS
Homogeneity

k-Means 0.49 ± 0.02 0.24 ± 0.01 0.41 ± 0.02
OPF 0.47 ± 0.03 0.21 ± 0.02 0.51 ± 0.02
M-OPF 0.55 ± 0.01 0.29 ± 0.01 0.50 ± 0.02
HDBSCAN 0.42 ± 0.01 0.34 ± 0.01 0.44 ± 0.02

Completeness
k-Means 0.57 ± 0.02 0.32 ± 0.01 0.62 ± 0.04
OPF 0.47 ± 0.02 0.21 ± 0.01 0.48 ± 0.02
M-OPF 0.55 ± 0.01 0.33 ± 0.02 0.48 ± 0.02
HDBSCAN 0.50 ± 0.01 0.36 ± 0.01 0.66 ± 0.03

V-Measure
k-means 0.53 ± 0.02 0.28 ± 0.01 0.49 ± 0.02
OPF 0.47 ± 0.02 0.21 ± 0.01 0.50 ± 0.02
M-OPF 0.55 ± 0.01 0.28 ± 0.01 0.54 ± 0.02
HDBSCAN 0.46 ± 0.01 0.30 ± 0.01 0.53 ± 0.02

Accuracy
k-means 80.18 ± 0.63 41.20 ± 1.30 68.72 ± 1.63
OPF 78.81 ± 1.57 34.96 ± 1.65 64.25 ± 1.64
M-OPF 83.09 ± 0.35 43.55 ± 1.17 71.31 ± 1.59
HDBSCAN 77.64 ± 0.39 43.77 ± 1.00 69.93 ± 2.07

initially set to 1), M-OPF provides higher accuracy results than
the best version of the first classifier, regardless the choice of
its unique hyper-parameter in the ICSI dataset, as shown in
Figure 1a. Regarding the Map Task scenario, both classifiers
yield statistically similar accuracy results for the best hyper-
parameters found, however, when k∗ > 5 and β1 > 5, M-OPF
becomes better than HDBSCAN with statistical significance,
as displayed in Figure 1b. According to Figure 1c, M-OPF
starts getting worse than HDBSCAN in the NPS dataset
when k∗ = 20, however, this difference is not statistically
significant when compared to the best version of HDBSCAN.
Consequently, the M-OPF only becomes worse than the latter
with k∗ = 50. Therefore, it is reasonable to conclude that
M-OPF, and consequently OPF, are less sensitive to hyper-
parameter choice when compared to the other considered
models, presumably requiring less domain knowledge in order
to provide good results.

VI. CONCLUSIONS

In this paper, we introduced the unsupervised OPF classifier
to the NLP field, more specifically to the DA classification
task. Additionally, we proposed a small modification in the
strategy used to determine to which class each of the clusters
formed by OPF correspond to. Instead of propagating the
ground-truth label from the cluster prototype to all of its
conquered samples, we use a majority voting procedure. Albeit
simple and useful only when the ground-truth is available, such
procedure helps to evidence the clustering power of the OPF
algorithm, as the data partitions formed by OPF and M-OPF
are identical. Under this regime, M-OPF showed good results
in the three considered datasets concerning accuracy and V-
measure. Furthermore, M-OPF showed to be less sensitive to
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Fig. 1. Comparison of accuracy results under different values of k∗ for M-OPF and β1 for HDBSCAN considering (a) ICSI (b) Map Task and (c) NPS
datasets.

hyper-parameter fine-tuning results than HDBSCAN. Finally,
despite the existence of different datasets publicly available for
DA classification, most of the work in this direction rely on
supervised techniques, leaving opportunities yet to be explored
by unsupervised approaches.
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